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In both humans and rats high levels of anxiety impair decision-making in the Iowa gam-
bling task (IGT) in male subjects. Expression of the immediate early gene c-fos as marker
of neural activity in rat studies indicated a role of the medial prefrontal cortex (prelimbic
and infralimbic region; mPFC) in mediating the relationship between anxiety and decision-
making. To delineate this relationship further and assess the underlying neurobiology in
more detail, we inactivated in the present study the mPFC in male rats using a mixture of
the GABA-receptor agonists muscimol and baclofen. Rats were exposed to the elevated
plus maze (EPM) to measure effects on anxiety and to the rodent version of the IGT (r-
IGT). Inactivation led to increased levels of anxiety on the EPM, while not affecting general
activity. The effect in the r-IGT (trials 61–120) was dependent on levels of performance
prior to inactivation (trial 41–60): inactivation of the mPFC hampered task performance in
rats, which already showed a preference for the advantageous option, but not in rats which
were still choosing in a random manner.These data suggest that the mPFC becomes more
strongly involved as rats have learned task-contingencies, i.e., choose for the best long-
term option. Furthermore they suggest, along with the data of our earlier study, that both
anxiety and decision-making in rats are mediated through a neural circuitry including at
least the mPFC. The data are discussed in relation to recent data of rodent studies on the
neural circuitry underlying decision-making.
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INTRODUCTION
Recently, we (De Visser et al., 2010) and others (Miu et al., 2008;
conform Haegler et al., 2010) have shown that anxiety affects
decision-making. More specifically, both low and high anxious
male subjects as well as high anxious female subjects perform
poorly in the Iowa gambling task (IGT; De Visser et al., 2010). The
IGT measures decision-making processes by simulating real-life
decisions involving reward, punishment, and uncertainty of out-
comes. While healthy participants learn to prefer long-term advan-
tageous options associated with immediate moderate rewards over
long-term disadvantageous options associated with immediate
high rewards (Bechara et al., 1994, 1999), high anxious subjects
seem to remain exploratory, while low anxious subjects appear to
be risk-taking (De Visser et al., 2010; see also Rivalan et al., 2009).
However, the neural underpinnings of the relationship between
anxiety and decision-making remain elusive.

A number of brain areas have been implicated in both anxi-
ety and IGT-like decision-making in humans, such as the medial
prefrontal cortex (mPFC), dorso-lateral prefrontal cortex, anterior
cingulate cortex, and amygdala (e.g., Bechara et al., 1999; Grachev
and Apkarian, 2000; Ernst et al., 2002; Bishop et al., 2004; Bolla
et al., 2004; Etkin et al., 2004; Brand et al., 2006; Lawrence et al.,
2009; Li et al., 2010; Salomons et al., 2010). The anterior cingulate

cortex and dorso-lateral prefrontal cortex are specifically involved
in a negative feedback circuit of cortical control over limbic areas
(Ridderinkhof et al., 2004; Bechara, 2005). The function of this
top-down control circuit, that likely controls decision-making on
the basis of reward and punishment as assessed in the IGT (Quirk
et al., 2000; Miller and Cohen, 2001; Rogers et al., 2004; Davis et al.,
2010; St Onge and Floresco, 2010), may be impaired in high anx-
ious individuals (Bishop et al., 2004; Roiser et al., 2009), leading to
suboptimal decision-making. In rats, the mPFC has been shown
to be involved in unconditioned anxiety (Duncan et al., 1996; Jinks
and McGregor, 1998; Salomons et al., 2010) and probability-based
decision-making in rats (St Onge and Floresco, 2010). The mPFC
in rats has been suggested to share an anatomical and functional
homology to the anterior cingulate cortex and dorso-lateral pre-
frontal cortex in humans (Uylings and van Eden, 1990; Brown and
Bowman, 2002; Uylings et al., 2003).

To address the underlying neurobiology of anxiety and
decision-making we (De Visser et al., 2011) recently conducted
a study in male rats combining the elevated plus maze (EPM)
to assess levels of anxiety, a rodent analog of the IGT (Van den
Bos et al., 2006b; Homberg et al., 2008; De Visser et al., 2011)
to determine decision-making performance, and expression of
the immediate early gene c-fos as marker of neural activity in
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areas implicated in anxiety and decision-making. Overall, these
data suggested that in high anxious-poor performing male rats
among others the mPFC (prelimbic, PrL and infralimbic, IL areas)
is poorly recruited during task-progression leading to subopti-
mal decision-making. To assess this more specifically, we tran-
siently inactivated in this study the mPFC using a mixture of
the GABA-receptor agonists muscimol (GABAA receptor) and
baclofen (GABAB receptor) before rats were tested on the EPM
and the r-IGT. This mixture has been shown to be effective in tran-
siently inactivating the mPFC (e.g., St Onge and Floresco, 2010).
As the mPFC is suggested to become active when rats have changed
their behavioral strategy toward choosing the long-term advanta-
geous option in the IGT (Van den Bos et al., 2006a, 2007; De Visser
et al., 2010, 2011), we inactivated the mPFC in rats that either still
showed exploratory behavior or rats that already showed a pref-
erence for the long-term advantageous option in the r-IGT. We
predicted that inactivation of the mPFC would increase anxiety
on the EPM and lead to suboptimal decision-making in the r-IGT
in those rats that already showed a preference for the long-term
advantageous option.

MATERIALS AND METHODS
SUBJECTS
Male Wistar rats (n = 30), 10 weeks of age, were purchased from
Harlan (Horst, the Netherlands). They were housed individually
in Makrolon type IV cages under a reversed 12 h light/dark cycle
(lights off at 7 am). A shelter and paper tissues were provided
as cage enrichment. Food and water were freely available except
during testing (see below). Room temperature was controlled at
21 ± 2˚C with a relative humidity of 60 ± 15%. A radio provided
background noise. All experiments were approved by the Animal
Ethics Committee of Utrecht University and were conducted in
agreement with Dutch laws (Wet op de Dierproeven, 1996) and
European regulations (Guideline 86/609/EEC).

EXPERIMENTAL PROCEDURE
After arrival, rats were allowed to habituate to the housing con-
ditions in the animal facility for 2–3 weeks. Cages were cleaned
once a week. Rats were handled two to three times a week to famil-
iarize them with the experimenters. After this habituation period,
surgery followed. All rats were allowed to recover for at least 10 days
before behavioral testing started. During this recovery period, ani-
mals were handled daily and habituated to the infusion procedure.
Rats were then tested on the EPM. One week later, rats were tested
in the rodent IGT (r-IGT) for 2 weeks under mild food restric-
tion. All experiments were carried out during the dark phase of
the day–night cycle, between 8.30 am and 5 pm.

Surgery
Rats (380–420 g) were anesthetized using a mixture of fentanyl
(0.25 mg/kg, i.p., Fentanyl Bipharma, Hameln Pharmaceuticals
GmbH, Hameln, Germany, 0.05 mg/mL fentanyl citrate) and
dexmedetomidine (0.15 mg/kg, i.p., Dexdomitor®, Pfizer Animal
Health BV, Capelle a/d IJssel, the Netherlands, 1 mg/mL medeto-
midine hydrochloride). Further induction of anesthesia was car-
ried out when necessary by administration via mask inhalation of
isoflurane (IsoFlo®, AST Farma BV, Oudewater, the Netherlands)
vaporized in oxygen at concentrations of up to 5%.

Rats were implanted bilaterally with stainless steel guide can-
nulas (length: 5 mm; 22 ga; Plastics One type C313GRL, Plastics
One Inc., Roanoke, VA, USA) using an in-house built stereotaxic
model (Bayer Elberfeld Appnr. 159406; Tropon Inv. Nr. 36774).
The cannulas were aimed at the prelimbic cortex under a lat-
eral angle of 20˚ using the following coordinates adapted from
the atlas of Paxinos and Watson (2005) to our rats: anteropos-
terior (AP): 10.46 mm (1.46 from bregma); mediolateral (ML):
±1.7 mm (from midline); dorsoventral (DV): −3.6 (flat skull).
The AP coordinates were adjusted when necessary, i.e., when the
distance between the interaural line and bregma deviated from the
value of the atlas (9 mm). Stylets were inserted into the cannulas
and remained in place until the infusions were made.

Elevated plus maze
The EPM was made of gray PVC and elevated 75 cm above the
floor. The four arms (50 cm × 10 cm) formed a cross with the cen-
tral platform. A wall (height: 30 cm) of non-transparent material
enclosed two arms, located opposite to each other. Each rat was
placed on the central platform facing one of the enclosed arms
and allowed to freely explore the maze for 5 min. In between tri-
als, the maze was cleaned with warm water and dried thoroughly
using clean towels. Behavior was recorded on DVD and scored
afterward using Observer 5.0 (Noldus Information Technology,
Wageningen, the Netherlands).

Rodent Iowa Gambling Task
The same apparatus and procedure was used as previously
described (Van den Bos et al., 2006b; Homberg et al., 2008; De
Visser et al., 2011) with minor modifications, such as the number
of trials per day (see below). The r-IGT apparatus was made of
wood and consisted of a start box, choice area, and four arms.
Before the start of testing, rats were habituated to the apparatus
in a 10-min free exploration trial. Two days later, they were mildly
food restricted (approximately 95% of free feeding body weight)
and tested for a period of 9 days, i.e., a 5-day period and a 4-day
period, interspersed by a two test free days (weekend days). Food
was freely available on weekend days. A trial started by lifting the
slide door of the start box. The rat could freely enter the choice
area of the apparatus and choose one of the four arms. The chosen
arm was only closed when the rat had entered a choice arm with
its full body, including its tail. At the end of the arm, rats could
obtain sucrose pellets or quinine-treated sucrose pellets (baited
arms; see below) or no pellets at all (empty arms). Each trial had a
maximum duration of 6 min. The inter-trial interval was 30 s. The
rats received a total of 120 trials: 6 days of 10 trials, and 3 days of 20
trials. Intra-cerebral injections were given on the three sessions of
20 trials (see below). Rewards were 45 mg sucrose pellets (BioServe
Inc.,Frenchtown,NJ,USA) and punishments were quinine-treated
sucrose pellets that were unpalatable but not uneatable. Most rats
consumed the quinine-treated pellets once, but left them uneaten
on subsequent encounters. Rats that consistently ate the quinine-
treated sucrose pellets were excluded from the analysis. Of the four
arms in the maze, two were baited and two were empty. The two
empty arms were included to measure non-reward related explo-
ration (Van den Bos et al., 2006b; Homberg et al., 2008; De Visser
et al., 2011). The two baited arms consisted of a “bad” arm and
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a “good” arm. In the “bad” arm, the rats received occasional big
rewards (three sucrose pellets in 1 out of 10 trials) among fre-
quent punishments (three quinine-treated sucrose pellets in 9 out
of 10 trials). In the “good” arm, the rats received frequent small
rewards (one sucrose pellet in 8 out of 10 trials) and infrequent
punishments (one quinine-treated sucrose pellet in 2 out of 10
trials). This provided the same principle as in the human IGT: an
option with a chance of a big reward (three sucrose pellets), but
with little long-term success (three sucrose pellets per 10 trials; cf.
decks A and B; Bechara et al., 1994) and an option with a chance
of a small reward (one sucrose pellet), but with bigger long-term
success (eight sucrose pellets per 10 trials; cf. decks C and D). The
location of the baited and empty arms, as well as “good” and “bad”
arms was counterbalanced across subjects.

Microinfusion procedure
The mPFC was bilaterally inactivated by infusion of a drug mixture
containing the GABAA agonist muscimol (MSM; 0.1 nmol, Sigma-
Aldrich, St. Louis, MO, USA) and the GABAB agonist baclofen
(BAC; 1.0 nmol, Sigma-Aldrich) dissolved in saline and injected
in a volume of 1.0 μL per side using a 26-ga injection needle
protruding 0.5 mm past the end of the cannulas (Martin and
Ghez, 1999; McFarland and Kalivas, 2001). Infusions were done
using a device consisting of a 10-μL Hamilton syringe attached
to tubing and the injection needle. Either the muscimol/baclofen
mixture (MSM/BAC) or saline was injected by hand at a rate
of approximately 0.5 μL/min. Rats were injected in a Makrolon
type II cage, using a swivel allowing the animals to move freely
during the procedure. The needle was left in place for an addi-
tional 1 min to allow for diffusion. Hereafter rats were returned to
their home cage. After 15–20 min behavioral testing (EPM, r-IGT)
started.

Rats were randomly allocated to the experimental groups: con-
trol rats received saline, while MSM/BAC rats received the mixture
of GABA-agonists. Each rat received a single infusion prior to test-
ing on the EPM. For the r-IGT, all rats were first trained for a total
of 60 trials before receiving three daily infusions of either saline or
MSM/BAC. After each infusion they received 20 trials, reaching a
total of 120 trials by the end of the experiment.

Histology
After completion of behavioral testing rats were decapitated and
the brains were quickly removed and frozen in liquid (−80˚C)
2-methylbutane which was cooled with dry ice and stored at
−80˚C. Coronal sections (20 μm) were cut on a cryostat and
mounted on Menzel SuperFrost Plus slides (Menzel GmbH & Co,
Braunschweig, Germany) and stained with cresyl violet. Cannula
placements were verified with reference to the neuro-anatomical
atlas of Paxinos and Watson (2005).

BEHAVIORAL MEASURES
EPM measures
Behavior on the EPM was analyzed as in our previous study (De
Visser et al., 2011). Based on the data analysis of that study, the
following parameters were taken: time spent on the open arm, as
a measure of anxiety, and the number of closed arm entries, as
a measure of general activity. An arm entry was scored when the
animals had at least three paws on the arm.

r-IGT measures
To determine the choice behavior of the rats, the number of visits
to the “bad” or disadvantageous arm was calculated as a fraction
of the total visits to the two baited arms. To measure choices for
unrewarded arms, the number of visits to the empty arms was
calculated as a fraction of the total number of trials per block.
From trial block 41–60 onward clear differences begin to emerge
between “poor performers” and “good performers” (see Figure
2, panel A: De Visser et al., 2011). Therefore, we used a split-
median approach to differentiate “good performers” from “poor
performers”: subjects below the median were designated as “good
performers,” subjects above the median “poor performers.” The
performance in trial blocks 61–80, 81–100, and 101–120 was mea-
sured as per cent change from the respective base-line values at
trial block 41–60. This split-median approach was done separately
for empty arms and baited arms.

Responses to encounters with quinine-treated sucrose pellets
or sucrose pellets in the advantageous arm were measured as win-
stay/lose-shift behavior (see De Visser et al., 2011). As the number
of visits to this arm may be low in animals treated with MSM/BAC
in the mPFC the data were analyzed in one single trial block, i.e.,
trial block 61–120. Thus, when rats encountered a sucrose reward,
its subsequent choice was scored as a win-stay when it revisited
the advantageous arm. When rats encountered a quinine punish-
ment, its subsequent choice was scored as a loose-shift when the
rat switched to another arm. Win-stay and lose-shift was calcu-
lated as a fraction of the number of encounters with either sucrose
pellets (win) or quinine-treated sucrose pellets (loss). Further-
more, the total number of switches between different arms was
calculated as a measure of exploratory behavior (De Visser et al.,
2011).

STATISTICAL ANALYSIS
All statistical analyses were carried out using SPSS 16.0 for Win-
dows. For the EPM Student t -tests were performed to determine
differences between the control and the MSM/BAC group on the
time spent on the open arms and the number of closed arm
entries. For the r-IGT a two-way analysis of variance (ANOVA)
was run, with one factor encompassing treatment (saline versus
MSM/BAC) and one factor as repeated measure (trial blocks 61–
80, 81–100, and 101–120). This was done for the choices of both
empty and baited arms. One sample t -tests were used to determine
whether rats improved from base-line (trial block 41–60 = 100%).
Student t -tests were used to assess significant differences between
treatments (saline versus MSM/BAC) for the number of switches,
win-stays, and lose-shifts.

Statistical significance was set at p ≤ 0.05 (two-tailed); p-
values ≤ 0.10 (two-tailed) were considered trends (t ), NS: non-
significant [p > 0.10 (two-tailed)].

RESULTS
GENERAL
Five rats (n = 2 MSM/BAC group, n = 3 saline group) were
excluded from analysis due to incorrect placement of the cannulas
or to not completing the IGT because of problems with cannulas.
No rats were excluded for eating quinine pellets. This left n = 25
rats for data analysis.
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INJECTION SITES
Figure 1 shows the location of tip of the cannulas. Injections were
directed at the PrL of the mPFC.

ELEVATED PLUS MAZE
Due to a technical problem with the injection device (leakage), we
lost one batch of rats (n = 7 animals), leaving 18 rats for further
testing. Rats in the MSM/BAC group (n = 10) spent less time on
the open arms of the EPM (t = 3.508, df = 16, p = 0.003) than
rats in the saline group (n = 8; Figure 2). No difference existed
regarding the number of closed arm entries (t = −0.712, df = 16,
p = 0.487, NS). Thus, inactivation of the mPFC resulted in an
increase in anxiety-related behavior without changes in general
activity.

r-IGT PERFORMANCE
Good performing rats showed a lower fraction of visits to the dis-
advantageous arm (mean ± SEM: 0.25 ± 0.03; n = 13) than poor

FIGURE 1 | Schematic drawing of coronal sections of rat brain

showing the location of cannula tips used for micro infusions into the

mPFC. Sections correspond to the atlas of Paxinos and Watson (2005).

performing rats (0.52 ± 0.03; n = 12) at trial block 41–60. As
can be seen in Figure 3A, saline-treated good performing rats
improved in choosing the long-term advantageous arm from base-
line in trial blocks 61–80, 81–100, and 101–120, while MSM/BAC-
treated rats remained nearly at the same level of performance.
Statistical analysis revealed a significant treatment effect in trial
blocks 61–80, 81–100, and 101–120 [F(1,11) = 5.665, p = 0.04]
but no interaction term [trial block ∗ treatment F(2,22) = 0.162,
NS]. In contrast, as can be seen in Figure 3B, both saline-
treated and MSM/BAC-treated poor performing rats improved in
choosing the long-term advantageous arm from base-line in trial
blocks 61–80, 81–100, and 101–120. Statistical analysis revealed
no significant differences between saline-treated and MSM/BAC-
treated rats [trial block ∗ treatment F(2,20) = 0.460, NS; treatment
F(1,11) = 0.101, NS].

Good performing rats showed a lower fraction of visits to the
empty arms (mean ± SEM: 0.24 ± 0.02; n = 11) than poor per-
forming rats (0.46 ± 0.02; n = 14) at trial block 41–60. As can be
seen in Figure 3C, neither saline-treated nor MSM/BAC-treated
good performing rats improved in choosing baited over empty
arms from base-line in trial blocks 61–80, 81–100, and 101–
120. Statistical analysis revealed no significant differences between
saline-treated or MSM/BAC-treated rats [trial block ∗ treatment
F(2,18) = 0.559, NS; treatment F(1,9) = 0.008, NS]. As can be seen
in Figure 3D,both saline-treated and MSM/BAC-treated poor per-
forming rats improved in choosing baited arms from base-line
in trial blocks 61–80, 81–100, and 101–120. Statistical analy-
sis revealed no significant differences between saline-treated or
MSM/BAC -treated rats [trial block ∗ treatment F(2,24) = 0.458,
NS; treatment F(1,12) = 0.715, NS].

Tables 1 and 2 show that neither in good performing nor in
poor performing rats differences occurred between saline-treated

FIGURE 2 | Differences in EPM behavior between mPFC saline injected and MSM/BAC injected rats. CLOSEfreq = the number of closed arm entries,
OPENdur = the time spent on one of the open arms as a percentage of total observation time. Shown are means ± SEMs, *p ≤ 0.01 between groups.
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FIGURE 3 | Effects of injections of MSM/BAC or saline into the mPFC on

r-IGT performance for the disadvantageous choices (A,B) and empty arm

choices (C,D). Shown are means ± SEMs of per cent change from base-line

(=trial block 41–60). T : p ≤ 0.10 MSM/BAC versus saline; *: p ≤ 0.05
MSM/BAC versus saline; t : p ≤ 0.10 relative to 100%; #: p ≤ 0.05 relative to
100%; ##: p ≤ 0.01 relative to 100%.

Table 1 | Mean (±SEM) values of behavior related parameters for

saline-treated and MSM/BAC-treated rats in trial block 61–120 in

good performing animals (trial block 41–60).

Parameter SAL (n = 6) MSM/BAC (n = 7)

Switches 27.3 ± 3.0 28.9 ± 3.0

Win-Stay 0.63 ± 0.09 0.62 ± 0.06

Lose-shift 0.29 ± 0.09 0.26 ± 0.07

Table 2 | Mean (±SEM) values of behavior related parameters for

saline-treated and MSM/BAC-treated rats in trial block 61–120 in poor

performing animals (trial block 41–60).

Parameter SAL (n = 4) MSM/BAC (n = 8)

Switches 35.3 ± 2.1 34.8 ± 3.7

Win-Stay 0.51 ± 0.06 0.42 ± 0.10

Lose-shift 0.32 ± 0.11 0.50 ± 0.07

and MSM/BAC-treated rats regarding the number of switches,
win-stay behavior or lose-shift behavior.

DISCUSSION
The present study yielded two main findings. Transient inacti-
vation of the mPFC by injecting the GABA-agonists muscimol
and baclofen (1) enhanced anxiety on the EPM, and (2) dis-
rupted improvement of choosing the long-term advantageous
option in the second part of the r-IGT in rats that already
showed a good performance, but not in rats that showed a poor
performance.

Our injection sites were mainly within the prelimbic area of
the mPFC. However as we used an injection volume of 1.0 μL we
probably also inactivated the underlying infralimbic area. However
both structures are implicated in the relationship between anxiety
and decision-making as exemplified from our earlier study (De
Visser et al., 2011). Accordingly, we will refer to the mPFC in the
remainder of the text.
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Inactivation of the mPFC decreased the percentage of time
spent on the open arms of the EPM, but did not affect the number
of closed arm entries. Thus, levels of anxiety were increased after
inactivation of the mPFC, but not levels of general activity. This
finding is in line with the data of some studies which indicated
that inactivation of the mPFC (PrL and/or IL) increased anxiety
on the EPM (Silva et al., 1986; Jinks and McGregor, 1998), but
not with those of others (Sullivan and Gratton, 2002; Shah and
Treit, 2003; Davis et al., 2010; Stern et al., 2010). Although various
reasons may underlie these differences between studies including
the present study, such as different procedures used (permanent
lesions versus transient inactivation, EPM protocols used, han-
dling of animals), we show here that inactivation of the mPFC
also hampered task-progression for choosing the best long-term
option in the r-IGT in good performing rats as predicted from
our earlier study (De Visser et al., 2011). Recent studies using
the EPM, r-IGT, and c-fos expression confirmed the relationship
between mPFC c-fos activity, r-IGT performance, and levels of
anxiety in another strain of rats (Long Evans rats; Van Hasselt
et al., in preparation). Overall, these data suggest that at least in
our hands mPFC inactivation is associated with increased levels of
anxiety.

The fact that we observed a selective effect – no effect on
empty arm choices and only an effect within the baited arms
in good performing rats – indicates that inactivation of the
mPFC did no lead to general effects on working memory or
attention, in which the mPFC has been implicated (Seamans
et al., 1998; Vertes, 2006; Maddux and Holland, 2011; conform
Enemoto et al., 2011). The mPFC was inactivated during the sec-
ond part of the r-IGT. Analogous to the human IGT (Bechara
et al., 1994), the rat task consists of two phases: initially, sub-
jects gradually learn the contingencies of the advantageous and
disadvantageous options by exploration, while during the later
stages of the task they establish and express a preference for the
advantageous option, and show a clear increase in the number
of choices for that option, i.e., express task-learning. Indeed, as
was suggested in earlier studies using this version of the IGT
(Van den Bos et al., 2006b; Homberg et al., 2008; De Visser
et al., 2011) the transition from exploration to establishing a
long-term advantageous choice occurs during the second part
of the task, i.e., after trial block 41–60. We have argued earlier
that the mPFC becomes more involved as subjects express their
preference for the best long-term option, while cortical struc-
tures such as the ventromedial prefrontal cortex/orbitofrontal
cortex are more involved during the exploratory phase as sub-
jects learn the overall reward value of the different options (Van
den Bos et al., 2006a, 2007; Lawrence et al., 2009; De Visser et al.,
2010, 2011). In line with this, the effect of mPFC inactivation
on r-IGT performance was dependent on the level of base-line
performance as we only observed effects in good performing
rats, i.e., rats which showed a clear preference for the advanta-
geous arm. The poor performing rats at trial block 41–60 improve
their task performance, reflected by a decrease in the number of
disadvantageous choices, irrespective of treatment. The good per-
forming saline-treated rats still show an increased performance,
while the MSM/BAC-treated rats did not show this improvement.

These findings indicate that the activity of the mPFC may be
critical in a window during decision-making where subjects have
changed their behavioral strategy toward choosing the long-term
advantageous option, i.e., shifting their behavioral strategy from
exploration to exploitation.

The present data are therefore in line with a growing body
of literature that the mPFC is critically involved in strategy
shifting, behavioral flexibility, and goal-directed learning behavior
by encoding task-rules (Dias et al., 1996; Ragozzino et al., 1999;
Birrell and Brown, 2000; Floresco et al., 2008; Tran-Tu-Yen et al.,
2009; Young and Shapiro, 2009; Balleine and O’Doherty, 2010; Sul
et al., 2010). The functional integrity of the mPFC may allow for
the coupling of the history of the choices of an animal and rewards
(computation) as well as behavioral flexibility to generate and
implement an optimal decision-making strategy under conditions
of uncertainty. The present findings echo those of a recent study in
which the mPFC was shown to be involved in proper performance
in a probabilistic discounting task, which shares characteristics
with the r-IGT (St Onge and Floresco, 2010). Interestingly, involve-
ment of the mPFC in the human IGT has been especially associated
with punishment processing (Lin et al., 2008) and risk anticipa-
tion (Fukui et al., 2005). In this scenario, the mPFC contributes
to cognitive control over emotional influences on behavior, allow-
ing the subject to maintain a long-term perspective and withhold
responding to immediate rewards or losses (McClure et al., 2004;
Tanaka et al., 2004).

In our earlier study we observed that the good performing –
low anxious rats were characterized by a decrease in the overall
number of switches, and a strong increase in win-stay behavior,
and strong decrease in lose-shift behavior in the advantageous
arm, while poor performing – high anxious rats were character-
ized by an overall high number of switches, and a weak increase
in win-stay behavior, and weak decrease in lose-shift behavior
in the advantageous arm (De Visser et al., 2011). Accordingly,
these data suggested that poor performing – high anxious rats
remained exploratory and responsive to for instance immedi-
ate losses in contrast to good performing – low anxious rats.
Here we show that the effects of mPFC inactivation did not
completely mirror our earlier findings: we did not observe an
effect on switches, win-stay, and lose-shift strategies. However
it should also be noted that differences between good perform-
ing – low anxious rats and poor performing – high anxious rats
were not solely related to differences in c-fos expression in the
mPFC (PrL and IL) but also to differences in the core and shell of
the nucleus accumbens (De Visser et al., 2011). More specifically,
poor performers showed an increased level of c-fos expression
in the nucleus accumbens shell compared to good performers,
while increased levels of neural activity in the nucleus accumbens
core were found in good performers compared to poor perform-
ers. This implies also a crucial role for the nucleus accumbens
in regulating both decision-making and anxiety (conform Lopes
et al., 2007; da Cunha et al., 2008). To what extent therefore differ-
ences in switches, win-stay, and lose-shift behavior, that underlie
or are related to differences in overall IGT performance between
individuals are specifically associated with differences in the inter-
action of cortical (mPFC) and subcortical (nucleus accumbens;
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Yin et al., 2008; see also De Visser et al., 2011) structures remains
to be determined.

It should finally be noted that given the small number of rats the
results are still preliminary. However, the present data contribute to
understanding the role of prefrontal areas in performing the r-IGT
and complement recent lesion-studies on the role of prefrontal
areas in the r-IGT (Rivalan et al., 2011; Zeeb and Winstanley,
2011). In these studies the mPFC (PrL) was also implicated and
suggested to play a role in detecting action–outcome contingency
variations, i.e., conditions of uncertainty, leading to an inability
to change behavior when lesioned, i.e., perseverative responding
(Rivalan et al., 2011).

CONCLUSION
The data of this study suggest that impaired function of the
mPFC may be one factor leading to both high anxiety and poor
decision-making.
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