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The hemodynamic, metabolic, and biochemical changes produced during the transition
from fetal to neonatal life may be aggravated if an episode of asphyxia occurs during fetal
life. The aim of the study was to examine regional cerebral blood flow (RCBF), histologi-
cal changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of
oxidative stress in the first hours of postnatal life following severe fetal asphyxia. Eighteen
chronically instrumented newborn lambs were randomly assigned to either a control group
or the hypoxic–ischemic (HI) group, in which case fetal asphyxia was induced just before
delivery. All the animals were maintained on intermittent positive pressure ventilation for
3 h after delivery. During the HI insult, the injured group developed acidosis, hypoxia, hyper-
capnia, lactic acidosis, and tachycardia (relative to the control group), without hypotension.
The intermittent positive pressure ventilation transiently improved gas exchange and car-
diovascular parameters. After HI injury and during ventilatory support, there continued to
be an increased RCBF in inner regions among the HI group, but no significant differences
were detected in cortical flow compared to the control group. Also, the magnitude of
the increase in TUNEL positive cells (apoptosis) and antioxidant enzymes, and decrease
of ATP reserves was significantly greater in the brain regions where the RCBF was not
higher. In conclusion, our findings identify early metabolic, histological, and hemodynamic
changes involved in brain damage in premature asphyxiated lambs. Such changes have
been described in human neonates, so our model could be useful to test the safety and
the effectiveness of different neuroprotective or ventilation strategies applied in the first
hours after fetal HI injury.
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INTRODUCTION
Perinatal asphyxia is produced by a reduction in blood flow
(ischemia) or oxygenation (hypoxia) and most likely for both rea-
sons (Vannucci, 1990; Johnston et al., 2001). Between two and four
of every 1000 full-term live births suffer asphyxia during prena-
tal or intrapartum periods, representing up to 90% of neonatal
hypoxic–ischemic (HI) lesions, and over 20% of HI newborns
have respiratory failure, and need ventilatory support (Vannucci
and Perlman, 1997). Although technological advances have greatly
improved neonatal management, no reduction in the prevalence
of cerebral palsy or neurological dysfunction has been consistently
confirmed.

Many experimental models have been used to study hemo-
dynamic and neurological changes in preterm or near-term fetal
lambs in which an HI event is produced by means of internal iliac
artery occlusion, reduction of maternal inspired O2, or umbili-
cal cord occlusion (Gunn et al., 1992; Penning et al., 1994; Ikeda
et al., 1998a). These studies did not, however, investigate postnatal

resuscitation treatments and evaluation of brain damage during
the neonatal period (postpartum) as fetuses continued to be on
placental respiration. Only a few studies have been performed to
assess resuscitation techniques used on lambs, and these were car-
ried out during the final gestational period (140–143 days), by
which time lung maturity is complete (Richardson et al., 1989;
Smolich et al., 1992). Specifically, other than those to assess resus-
citation techniques focused on immature lungs, no studies seem
to have been published on brain damage during preterm life.

A possible explanation for brain damage is the free radical the-
ory and the magnitude and duration of ATP depletion, which
depends on irreducible ATP consumption, metabolic reserves, and
physiological readjustment. In premature and full-term animals,
neuronal necrosis and apoptosis suggest that such processes take
place faster than in adults Horn and Schlote, 1992; Vannucci and
Perlman, 1997). Thus any intervention to reduce neuronal injury
will be most effective in the 2- to 6-h following birth asphyxia
(Nagdyman et al., 2001). Therefore, it is important to discover
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reliable early indicators of brain damage (Nagdyman et al., 2001),
and to employ early interventions in the first hours after birth.

This study aims to: (1) assess changes in total and regional
cerebral blood flow (RCBF); (2) describe changes in cerebral brain
metabolism; (3) analyze the activity of antioxidant enzymes; and
(4) evaluate histological changes in the brain during the first 3 h
of postnatal life following induction of severe fetal asphyxia.

MATERIALS AND METHODS
ANIMALS AND SURGICAL PREPARATION
Eighteen preterm lambs were delivered by cesarean section at
133 ± 1 days (term: 145 days). We used fetal lambs at 88% of gesta-
tion, which have immature lungs (Gastiasoro et al., 2006) while the
degree of maturity of the brain is considered to be similar to that
of the full-term newborn infant (Raju, 1992). The experimental
protocol met all regulations for animal research (EU 86/609 and
RD 1201/2005). The ewes were sedated with xylazine (1 mg kg−1)
and ketamine hydrochloride (5 mg kg−1), and anesthetized with a
continuous infusion of propofol (10 mg kg−1 h; Gastiasoro et al.,
2006). Ewes were intubated and mechanical ventilation was used to
maintain normoxia and normocapnia. After laparotomy and hys-
terotomy, the fetal head was exteriorized and an endotracheal tube
(4 mm i.d.) was inserted. Fetal catheters were placed in the right
jugular vein, one in the direction of the heart to maintain the fluid
balance and anesthesia, and the other in the direction of the brain
to collect jugular venous blood. In addition, a 20-gage intravenous
catheter was inserted in the superior sagittal sinus for collection
of cerebral venous blood, while another catheter was placed in the
brachiocephalic trunk (via the left axillary artery) to inject colored
microspheres and to obtain an arterial blood sample for blood gas
analysis (Gem Premier 4000, Instrumentation-Laboratory, Lex-
ington, MA, USA: PaO2 , PaCO2 , pH, base excess, O2 saturation, and
acid lactic). This catheter was also used to measure mean arterial
blood pressure (MABP) and heart rate (HR). The left carotid artery
was isolated and a non-invasive ultrasonic perivascular flow probe
(MA3PS, Transonics, Ithaca, FL, USA) was placed to continuously
measure carotid blood flow (CarotidBF).

In this study ketamina was infused for anesthetic purposes to
fetal lamb. The use of an anesthetic agent may be controversial due
to its effect on fetal cerebral blood flow and its possible neuropro-
tective effect, but is crucial in ethical animal research. Ketamine
is a non-competitive agonist of NMDA receptor; therefore, as
a NMDA antagonist it might reduce excitotoxic brain damage
(Spandau et al., 1999). This protective effect, however, has been
demonstrated to be dose-dependent. Thus, ketamine only reduces
post-ischemic brain damage in newborn rats at doses greater than
20 mg kg−1, which is the minimum dose reported for ketamine
to block NMDA receptors when administered in vivo (Spandau
et al., 1999). In our experiments, however, we infused ketamine at
only 4 mg kg−1 h for 3 h (total dose 12 mg kg−1), a dose below that
reported for ketamine induced neuroprotection.

HYPOXIC–ISCHEMIC INJURY
The HI injury was induced by partial occlusion of umbilical blood
flow for 60 min using a vascular occluder (OC20HD, Harvard
Apparatus, MA, USA). The end point was defined by an arterial
pH < 7.1 and a base excess <−12 mEq L−1 (Ikeda et al., 1998a).

Following the period of occlusion, the umbilical cord was cut.
Animals were weighed and placed in an open incubator. Anes-
thesia and paralysis was maintained by continuous infusion of
hydrochloride ketamine (4 mg kg−1 h) in 5% dextrose and pan-
curonium bromide (1 mg kg−1 h; Gastiasoro et al., 2006). Their
core temperature was kept between 38 and 39˚C.

VENTILATOR SUPPORT
Each lamb, placed in an open incubator, was connected to a time-
cycled pressure-limited neonatal ventilator with the following set-
tings: respiratory frequency (fR) 60 breath min−1; PIP: 30 cmH2O;
PEEP: 5 cmH2O; I:E 1:2; FI,O2 : 1.0, and flow: 10 L min−1.
Throughout the period each animal was on a ventilator, the set-
tings (PIP and fR) were adjusted in an attempt to normalize PaCO2

values between 30 and 50 mmHg. PIPs higher than 40 cmH2O
were not used to avoid pneumothoraces.

To assess the effectiveness of mechanical ventilation in each
animal (Gastiasoro et al., 2006): oxygenation index (OI = FI,O2 ×
MAP × 100/PaO2 ), and ventilation efficiency index (VEI =
3800/[(PIP − PEEP) × fR × PaCO2 ]) were calculated.

STUDY DESIGN
Lambs were randomly assigned to either the control group: no
induction of fetal HI injury and following cutting of the umbilical
cord, lambs were managed on intermittent positive pressure ven-
tilation for 3 h (n = 6); or the HI group: fetal HI injury induced
as described above, and then management like the controls, on
intermittent positive pressure ventilation for 3 h (n = 6).

MEASUREMENTS
Blood samples were obtained from the right jugular vein (brain
direction) and from the superior sagittal sinus to compare the
PO2 measurements from the two locations. Also, arterial blood
samples were obtained from the brachiocephalic trunk to mea-
sure blood gases, lactic acid, and cardiac troponin I (cTnI; AQT90,
Radiometer, Copenhagen, Denmark).

Cerebral arterial (venous) oxygen content (Ca(v)O2
), oxygen

delivery (OD), and cerebral metabolic rate of oxygen (CMRO2 )
were calculated as follows (Gleason et al., 1989):

Ca(v)O2
= (

Sa(v)O2
× Hb × 1.39/100

) + (
Pa(v)O2

× 0.003
)

;

OD = CaO2 × CBF; and CMRO2 = (
CaO2 − CvO2

) × CBF.

Core temperature, MABP, HR, and CarotidBF were continuously
monitored. Data were collected during fetal life at baseline (B) and
at the end of HI injury (HI), and during neonatal life immediately
following connection to the ventilator (V) and subsequently every
30 min thereafter until the end of experiment. Upon completion
of the study, all animals sustained with a perfusion of ketamine
and pancuronium bromide, were sacrificed with an overdose of
potassium chloride (150 mg kg−1).

CEREBRAL BLOOD FLOW
As previously reported (Van Bel et al., 1994, 2006), changes in the
CarotidBF measurement, assessed using the transit time technique
with ultrasonic flow transducers, were used to indicate changes in
cerebral blood flow (CBF).
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TISSUE PREPARATION
At the end of the experiment, the fetal brains were removed. For
each specimen, half the brain was fixed (4% formalin) and divided
into: cortical regions, inner regions (striatum, thalamus, and hip-
pocampus), cerebellum, and brainstem to determine RCBF and
to perform histological studies; the other half of the brain was
immediately placed into dry ice and stored at −80˚C until used
for biochemical assays. The interval between fetal death and initial
processing of the brain was no more than 10 min (Ikeda et al.,
2000).

REGIONAL CEREBRAL BLOOD FLOW
Regional cerebral blood flow was determined using four different
colors of microspheres (15 μm, Dye Track®, Triton Technology
Inc, San Diego, USA). These were injected within 30–45 s at B,
HI, and 60 and 180 min later. Each brain piece was weighed and
submitted to chemical degradation with alkali in a shaking bath.
The disaggregated samples were filtered (10 μm) to recover the
colored microspheres. Filters were dried, and dimethylformamide
was added to extract dye from the microspheres. The optical den-
sity was measured using a spectrophotometer at four different
wavelengths to determine the number of microspheres per sample.
Having obtained the number of microspheres per sample (tissue
microspheres), we calculated the number of microspheres for the
entire brain (reference microspheres). To ensure the accuracy of
the statistical analysis, all tissue samples contained at least 400
microspheres. RCBF was calculated as previously described, using
CBF as the reference flow (Meadow et al., 1999):

Tissue flow = (Tissue microspheres × Reference flow)/Reference
microspheres.

HISTOLOGICAL ANALYSIS
The histological examinations were carried out by a neuropatholo-
gist who was blinded to the study. Different areas of the brains were
embedded in paraffin wax to prepare sections for light microscopy
and stained for routine histological examination (hematoxylin–
eosin). In addition, DNA fragmentation was examined using the
TUNEL method (ApopTag Kit, Intergene, NY, USA). Only cells
with clearly apoptotic morphology were noted. The number of
apoptotic cells was expressed as number of labeled cells per high-
power magnification (HPF), namely those observed using 10×
and 20× objectives (Falkowski et al., 2002). The objective used
was a Plan 20×/0.40/0.17, meaning that these HPFs correspond
to an image covering an area of 1 mm2. In all cases, we counted
all consecutive images and repeated the procedure in three paraf-
fin sections (20 μm apart). The number of apoptotic cells was
expressed as the number of cells × 10−2 mm−2. Sections of invo-
luting mammary glands were used as positive controls for the
TUNEL method.

BIOCHEMICAL ANALYSIS
Brain samples were rapidly weighed and kept cold by the addi-
tion of liquid nitrogen. Samples were homogenized, depro-
teinized, slowly allowed to thaw, neutralized, and centrifuged.
The supernatant was used for ATP measurements, expressed as
mmolATP g−1 of tissue (Lamprecht and Trautschold, 1974). To
determine antioxidant enzyme activity, brain tissue was weighed,
homogenized, centrifuged, and the supernatant removed.

Catalase activity assays were used to measure the reduction of
H2O2 to H2O by catalase (Holmes and Masters, 1969). One unit of
catalase is defined as the amount of enzyme needed to react with
1 μmol of H2O2 min−1. Similarly, glutathione-peroxidase (GSH-
Px) activity assays were employed to measure the reduction of
H2O2 to H2O by GSH-Px (Paglia and Valentine, 1967). One unit
of GSH-Px is defined as the amount of NADPH oxidation·min−1.
Further, we performed superoxide-dismutase (SOD) assays using
a kit purchased from Cayman Chemical (Ann Arbor, MI, USA; Cat
no.706002). One unit of SOD is defined as the amount of enzyme
needed to exhibit 50% dismutation of the superoxide radical.

Lastly, DNA determination was performed using a fluoro-
metric method that relies on the intercalation of a fluorescent
dye (Hoechst 33342) into intact double stranded DNA (Labarca,
1980). Results for antioxidant enzymes are expressed as U μg−1 of
DNA.

DATA ANALYSIS
Data are expressed as mean ± SD. Results were assessed using
the Levene test to confirm the homogeneity of variance between
the different treatments and the Kolmogorov–Smirnoff test for
normality (StatView SE Graphics; Abacus Concepts, Orlando,
FL, USA). One-way analysis of variance (ANOVA) was per-
formed to assess differences in gas exchange, OD,CMRO2 , CaO2 ,
hemodynamic parameters, ventilation indexes, RCBF, antioxidant
enzymes, and apoptotic count as a function of group. Comparison
of parameters (gas exchange, OD, CMRO2 , CaO2 , hemodynamic
parameters, ventilation indices, and RCBF) were performed by
two-way ANOVA for repeated measures as a function of group
and time with and without the Bonferroni–Dunn correction. Pear-
son correlation and linear regression analysis were performed to
compare PO2 of the jugular vein and the superior sagittal sinus. A
p-value of 0.05 was accepted as significant.

RESULTS
Briefly, all ewes were found to have sufficient and stable gas
exchange and cardiovascular parameters (pH: 7.42 ± 0.06; PaCO2 :
40 ± 9mmHg; PaO2 : 130 ± 32mmHg; MABP: 70 ± 10 mmHg)
throughout the study.

GAS EXCHANGE, OD, AND CMRO2

All lambs were alive at the completion of the experiments. At
baseline, they all had an adequate acid–base balance and gas
exchange in the placenta (Table 1) with normal levels of lactic
acid (4 ± 1 mmol L−1) and cTnI (0.02 ± 0.01 μg L−1).

Following HI injury, HI lambs displayed arterial acidosis,
hypercapnia, and a significant decrease in PaO2 , CaO2 , and base
excess (−14 ± 3 vs. 1 ± 3 mEq L−1) with a significant increase
in lactic acid (12 ± 3 vs. 4 ± 1 mmol L−1) and cTnI (0.25 ± 0.13
vs. 0.02 ± 0.01 μg L−1) levels compared to the control group
(Table 1). During postnatal life with mechanical ventilatory
support, control groups demonstrated better gas exchange (pH
and PaCO2 ) with lower mean oxygenation level by the end
of experiments (Table 1), while higher lactic acid (10 ± 2 vs.
4 ± 1 mmol L−1) and cTnI (0.56 ± 0.13 vs. 0.13 ± 0.08 μg·L−1)
concentrations, with lower CaO2 , OD, and CMRO2 , were noted
in the HI group (Table 1).
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Differences in oxygenation were independent of the ventilation
strategy. Although, both groups were ventilated with similar mean
airway pressure (data not shown) and at a constant FI,O2 of 1.0
throughout the study, OI was higher in the HI group than among
the controls from 30 min onward (Table 2). On the other hand,
there were no statistically significant differences in VEI between
groups (Table 2).

Differences demonstrated by two-way ANOVA with Bonfer-
roni correction in pH, PaO2 , CaO2 , and OI parameters, were also
detected as trends consistent with the overall effects observed in
pH, PaCO2 , PaO2 , CaO2 , and IO at several time intervals, and in
CMRO2 and OD at specific time points, using a less conservative
strategy without Bonferroni correction.

VENOUS OXYGEN CORRELATION
A close relationship was found (Pearson correlation coefficient
r = 0.92; R2 = 0.85; p < 0.001) between jugular vein PvO2 and
superior sagittal sinus PvO2 (n = 36): PvO2 sagittal sinus = 0.55 ∗
PvO2 jugular vein + 4.87was used to calculate CvO2 andCMRO2 .

CARDIOVASCULAR PARAMETERS
No significant differences between groups were detected in MABP
during the experiment (Table 2). During partial occlusion of the
umbilical cord and initial ventilation, a significant increase in HR
developed in HI animals (Table 2) compared to controls. During
ventilation, the HR first decreased in the HI group to reach basal
values (min. 60), and later increased again reaching post HI values
by the end of experiment.

Differences demonstrated by two-way ANOVA with Bonferroni
correction in HR and CBF parameters, were also detected as trends
consistent with the overall effects observed in at several time inter-
vals, and in MABP at 60 min, using a less conservative strategy
without Bonferroni correction.

REGIONAL AND CEREBRAL BLOOD FLOW
A marked increase in CBF was observed after partial occlusion
of the umbilical cord in HI animals (Table 2). During ventila-
tory support, CBF maintained constant for the whole time in both
groups. RCBF data are summarized in Figure 1. In the control
group, RCBF did not exhibit significant changes during the fetal
or neonatal period compared to baseline. By contrast, in the HI
group, at HI, there was an increase in RCBF in the inner zones and
in the cerebellum–brainstem, though no significant changes were
observed in cortical RCBF. During ventilatory support, the RCBF
in inner zones remained higher in the HI group, but there were no
significant differences between groups in cortical and cerebellum–
brainstem flows. When inner zones were studied separately, it was
found that the RCBF only increased significantly in the thalamus
(Figures 1 and 3B).

HISTOLOGICAL ANALYSIS
Samples exhibited good histological preservation (8–10 on the
scale of van Reempts). Mild perivascular and interstitial edema
was observed, the most affected zones being: the mesencephalon,
brainstem, deep cerebellar nuclei, and cerebral cortex. Neu-
rons showing coagulative changes were observed in the basal
ganglia, mesencephalon, brainstem, and deep cerebellar nuclei
(Figure 2A).

The quantification of cell death using the TUNEL method
revealed that only 3 h after HI injury the number of TUNEL pos-
itive cells was higher in the HI group than the control group, and
that these were mainly located in the cerebral cortex, cerebellum,
and brainstem, but also in the striatum (Figure 2B). The increase
in TUNEL positive cells was significantly greater in the brain
regions where the RCBF values had not increased (Figure 3B).

BIOCHEMICAL ANALYSIS
The HI group displays a significant loss of energy reserves (ATP)
in the brain regions where the RCBF values were not higher than
in the control group, showing a similar pattern to TUNEL positive
cells (Figure 3C). Figure 4 shows the antioxidant enzyme activity
in the different brain regions. SOD activity was higher in asphyx-
iated animals, a finding that reached statistical significance in the
cortical regions and striatum (Figure 4A). Catalase and GSH-Px
activity did not differ significantly between the two groups, except
that catalase activity in the cortical regions was significantly higher
in HI injured group (Figures 4B,C).

DISCUSSION
The transition from fetal to neonatal life is a time of rapid phys-
iological changes that may be aggravated if episodes of asphyxia
occur during fetal life. In the perinatal period, a few studies have
been performed to assess techniques to support postnatal recov-
ery in fetal lambs at 140–143 days of gestation (when maturity
of the lungs is complete; Richardson et al., 1989; Smolich et al.,
1992). However, as far as we are aware no studies previous stud-
ies, performed to evaluate the management of postnatal recovery
focusing on immature lungs, have assessed brain damage during
early postnatal life.

The fetal sheep model was chosen because it is a well-established
model for the evaluation of the cerebral circulation and metabo-
lism (Gleason et al., 1989; Richardson et al., 1996). Several methods
have been used to induce brain damage: occlusion of the com-
mon/internal iliac artery (Gunn et al., 1992), reduction of maternal
inspired O2 fraction (Penning et al., 1994), and umbilical cord
occlusion (Ikeda et al., 1998a). However, in those studies, the brain
damage during neonatal life (postpartum) was not studied, the
fetus being maintained on placental respiration. The premature
fetal sheep model has been very useful for studying lung imma-
turity related to prematurity (Björklung et al., 2001; Gastiasoro
et al., 2006), as lung maturation is not complete up to 135 ges-
tational days (Gastiasoro et al., 2006). In our study, during the
period of neonatal ventilation, the management, and effectiveness
of mechanical ventilation, based on mean airway pressure and VEI
was similar in the two groups. In addition, following the start of
mechanical ventilation, all animals had severe respiratory insuf-
ficiency, manifested by an OI greater than 15, which was getting
worse with time, so it was necessary to increase FI,O2 to 1.0. How-
ever, in the HI group, the OI was even higher than in the control
group, and this can be attributed to the HI event.

Newborn encephalopathy is often accompanied by dysfunc-
tion of other end organs (Martin-Arcel et al., 1995). Clinical
research has suggested that infants at the highest risk of HI brain
damage exhibit progressive fetal HR abnormalities shortly before
birth, pH < 7.1 and arterial lactate concentration >9 mmol/L and
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FIGURE 1 | Regional cerebral blood flow (mL 100g−1 min−1). Data are expressed as mean ± SD. Mean values for both control (open square) and
hypoxic–ischemic (close square) groups are represented as function of time; Baseline (B), Hypoxic–Ischemic (HI), 60 and 180 min points. *p < 0.05 vs. control
group (one-factor ANOVA).

FIGURE 2 | Histological analysis. (A) View of the brain stem 3 h after
hypoxic–ischemic injury. Presence of large eosinophilic neurons (arrows).
Hematoxylin–eosin stain. Original magnification × 200. (B) Cells with
apoptotic morphology figures (arrow) in the basal ganglia of the
hypoxic–ischemic group. On the left (arrowhead), damaged neurons with a
negative stain for TUNEL can also be observed. TUNEL counterstained with
methyl green. Original magnification × 400.

require major resuscitation in the delivery room, including car-
diac massage and intubation (Low et al., 1994; da Silva et al.,
2000). In our model, the HI injury was induced by partial umbil-
ical cord occlusion for 1 h resulting in severe acidosis, with an
increase in levels of lactic acid, as well as severe hypercapnia,
hypoxia, and a decrease in CaO2 . An increase in the troponin level,
even a slight one, usually means there has been some damage to
the heart. Healthy-termed newborns have a higher upper refer-
ence limit for cTnT (50 ± 60 μg/L) compared to adults being less
than 10 μg/L (Badera et al., 2006). Cardiovascular compromise as
impaired myocardial contractility and low cardiac output is com-
mon in sick term and preterm infants with perinatal asphyxia, this
reduced cardiovascular reserve may present with hypotension. In
contrast with previous observations, the HI injury did not produce
changes in MABP (Keumen et al., 1997; Ikeda et al., 1998a) but
we observed an increased HR that might have maintained cardiac
output. Tachycardia with no change in MABP is associated with
acute hypoxemia due to the stimulation of the sympathetic system
(Serwer, 1992). In this point (immediately after HI injury) a signif-
icant increase of serum cTnI (0.25 ± 0.13 μg/mL) was not enough
to demonstrate heart dysfunction (>50 ± 60 μg/L). However, after
3 h of HI injury a decrease of MABP (hypotension) was observed
in HI group associated with a significant increase of serum cTnI
(0.56 ± 60 μg/L), suggesting the presence of heart disorder.

There is an inverse correlation between the changes in CaO2 and
CBF (Jones et al., 1981) in order to maintain cerebral oxygenation
and glucose supply. In line with this relationship, no significant
differences were found in cerebral OD between our groups, the
increase in CBF compensating for the fall in CaO2 . This correlation
is maintained during HI event while hemodynamic parameters are
stable. However, in the later period following asphyxia, cerebral
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FIGURE 3 | (A) Number of apoptotic cells·mm−2. (B) Regional cerebral blood flow (mL 100g−1 min−1). (C) ATP concentration (mmol g−1) as function of brain
region and experimental group. Data are expressed as mean ± SD. *p < 0.05 vs. control group (one-factor ANOVA).

FIGURE 4 | Antioxidant enzymes activity (U μg−1 of DNA). (A) SOD activity. (B) Catalase activity. (C) GSH-Px activity as function of different brain regions
and experimental group. *p < 0.05 vs. control group (one-factor ANOVA).

OD, and CMRO2 decreased significantly in the HI group, and we
attribute this to CBF increases not being sufficient (myocardical
dysfunction) to compensate for the continuing fall in CaO2 . For
the calculation of CMRO2 sagittal sinus blood samples cannot be
substituted for by jugular vein samples in the pig, but in this lamb
model we confirmed that there is a good correlation, as previously
described (Van Bel et al., 1994, 2006). This finding is very use-
ful because sagittal sinus cannulation is not always possible and/or
presents technical problems (decannulation, inadvertent bleeding,
tissue hemorrhage, etc.).

Our previous results suggest that there is a relationship between
the type of cell death occurring early after HI injury and its loca-
tion in the brain (Goñi de Cerio et al., 2007). For perinatal animals
and, presumably, human infants, the process of cell destruction is
more rapid than for adults (Vannucci and Perlman, 1997), so any
therapeutic intervention will be more successful if it is employed
soon after assault, between 2 and 6 h after birth asphyxia (Nagdy-
man et al., 2001). In our model, the pattern of necrosis is located
fundamentally in subcortical regions (Goñi de Cerio et al., 2007).
The higher metabolic rate of subcortical nuclei compared to that
in cerebral hemispheres explains the preponderance of subcorti-
cal damage observed in experimental animal models and human
term infants (Reddy et al., 1998; Avery, 2005). Neuronal necrosis
in our model occurs swiftly during the HI period and these cells,
which die due to HI assaults, cannot be rescued, whereas apop-
totic processes can occur hours after HI insult (Goñi de Cerio
et al., 2007).

The relationship between differential RCBF distribution, bio-
chemical, and cell death at specific brain locations needs to be
clarified. After HI injury and during postnatal life, we observed
a sustained increase in cerebral blood flow in an internal area of
the brain (thalamus), whereas in cortical regions, the striatum and
the cerebellum–brainstem flow was similar to baseline, as previ-
ously reported (Johnson et al., 1979). Since partial umbilical cord
occlusion produces a continuous decrease in CaO2 , those brain
areas, even with a non-altered flow but receiving less CaO2 , are
susceptible to developing brain cell injury. Only areas with an
increased cerebral blood flow can partially compensate for low
CaO2 by increases in delivery of O2, glucose, and nutrient. In our
study, larger numbers of cells with apoptotic features were located
in cortical regions, the striatum and the cerebellum–brainstem,
where RCBF values were similar to baseline. In contrast, the zones
where the RCBF values (thalamus) remained high over time, the
number of apoptotic cells did not increase.

The energy balance in the brain is maintained by the production
of ATP, and cellular defense mechanisms are able to compensate for
oxidative stress. The depletion of high-energy phosphates has been
described as a necessary prerequisite to the initiation of the mech-
anisms underlying cell dysfunction, over production of oxygen
free radicals (Johnston et al., 2001), and cell death in the patho-
genesis of HI brain damage (Vannucci, 1990). In our study, as
early as 3 h after HI injury, we have observed a significant increase
in antioxidant enzyme activity and a significant decrease in ATP
concentration (Ikeda et al., 1998b; Johnston et al., 2001) in the
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cerebral zones where the RCBF values (cortical regions, striatum)
were not increased. In contrast, the zones where the RCBF values
(thalamus) remained high over time, the ATP concentration and
antioxidant enzyme activity did not show significant alteration
compared to non-injured group.

CONCLUSION
Our model of partial cord occlusion for an hour induced changes
in gas exchange, cardiovascular profile and deregulation of the
RCBF, which is accompanied by a significant decrease in energy
stores and increase in antioxidant enzyme activity, resulting in
brain lesions that resemble findings observed in infants suffer-
ing from HI injury. The findings of this study could be the key
to understanding the critical changes between fetal and postnatal

life and the adaptive response of asphyxiated neonates. Moreover,
the good consistency among regional cerebral metabolism, blood
flow, and cell death in our model could be useful to test the safety
and the effectiveness of different neuroprotective (cannabinoids,
hypothermia, magnesium sulfate, etc.,) and ventilation strategies
(liquid ventilation, high frequency, etc.,) when they are applied in
the first hours after fetal HI injury.
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