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Newborn interneurons in the accessory olfactory bulb
promote mate recognition in female mice
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In the olfactory bulb of adult rodents, local interneurons are constantly replaced by imma-
ture precursors derived from the subventricular zone. Whether any olfactory sensory
process specifically relies on this cell renewal remains largely unclear. By using the well
known model of mating-induced imprinting to avoid pregnancy block, which requires acces-
sory olfactory bulb (AOB) function, we demonstrate that this olfactory memory formation
critically depends on the presence of newborn granule neurons in this brain region. We
show that, in adult female mice, exposure to the male urine compounds involved in mate
recognition increases the number of new granule cells surviving in the AOB. This process
is modulated by male signals sensed through the vomeronasal organ and, in turn, changes
the activity of the downstream amygdaloid and hypothalamic nuclei involved in the preg-
nancy block response. Chemical depletion of newly generated bulbar interneurons causes
strong impairment in mate recognition, thus resulting in a high pregnancy failure rate to
familiar mating male odors. Taken together, our results indicate that adult neurogenesis is
essential for specific brain functions such as persistent odor learning and mate recognition.
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INTRODUCTION
Interneurons at the first level of olfactory processing, the main
olfactory bulb (MOB), are subjected to life-long replacement
(Alvarez-Buylla and Garcia-Verdugo, 2002; Petreanu and Alvarez-
Buylla, 2002; Gheusi et al., 2009). The integration and survival of
these cells depends on olfactory activity (Petreanu and Alvarez-
Buylla, 2002; Yamaguchi and Mori, 2005) and on their high
excitability (Lin et al., 2010). In the MOB neurogenesis has been
shown to be important for olfactory perceptual learning and long-
term memory (Lazarini et al., 2009; Moreno et al., 2009) as well as
social odor discrimination in mice (Sakamoto et al.,2011). We have
previously shown that, similarly to the MOB, inhibitory granule
cells in the accessory olfactory bulb (AOB) are constantly replaced
by immature neuronal precursors migrating from the subventric-
ular zone (SVZ; Oboti et al., 2009). In female mice the number
of the surviving cells is increased by exposure to bedding soiled
by male urine (Oboti et al., 2009). Exposure to male urine odors
can also facilitate estrous in females, leading to altered puberty-
onset, shortened estrous cycle length, and interruption of embryo
implantation soon after mating, an effect that is known as selective
pregnancy block or Bruce-effect (Bruce, 1966). These neuroen-
docrine responses are mediated by vomeronasal (VN) excitatory
projections to the medial amygdala (MeA), the bed nucleus of the
stria terminalis (BNST), the medial hypothalamus (MPA), and

ultimately the dopaminergic neurons of the arcuate nucleus (arc)
that control prolactin release by the anterior pituitary (Li et al.,
1989). During mating, the granule cell inhibitory modulation of
the contextual male chemosignals is enhanced so that they are no
more capable of estrous induction (Brennan et al., 1990; Matsuoka
et al., 1997). This male-specific pheromone recognition process
involves a restricted pool of granule cells in the AOB,which inhibits
mitral cell signal transmission to the forebrain areas involved in
estrous regulation for several weeks (50–60 days; Brennan et al.,
1990; Matsuoka et al., 1997). Long-term maintenance of this inhi-
bition implies that, since matings may occur at shorter intervals,
different or partially overlapping cohorts of cells may be necessary
to each imprinting process. Here, we hypothesize that the sensory-
driven granule cell addition in the AOB may provide the substrate
for the pheromonal imprinting on stud male odors in order to
avoid pregnancy block.

To sustain this idea, we show that adult neurogenesis in the
AOB of female mice is regulated by vomeronasal inputs involved
in mate pheromonal imprinting: it is enhanced by exposure to
male pheromones comprised in the low molecular weight (LMW)
fraction of male urine, the same compounds that are critical
for mate recognition (Peele et al., 2003; Leinders-Zufall et al.,
2004); it is triggered by MeA feedback sensory activity, and in
turn attenuates the responses to male odors of the AOB–MeA
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downstream pathway which regulates estrous induction. In addi-
tion we show that this response is individual-specific since AOB
young granule cells are prominently activated by those male signals
driving their integration.

Ultimately, we show that long-term ablation of these cells, and
re-exposure of recently mated females to their stud male, leads to
embryo implantation failure, like when unfamiliar pheromones
are sensed. Together, our results indicate that the pheromonal
imprinting process required to block estrous induction by mat-
ing male pheromones is preferentially localized on AOB newborn
granule cells.

MATERIALS AND METHODS
ANIMALS
Experiments employed three strains of mice: CD-1 [females, ages:
postnatal day (p) 20 or 45; males, ages: 4–6 weeks], c57bl6/j
(females, age: p45), and trpc2−/− (females, age: p45). In all exper-
iments CD-1 strain female (or male) mice have been used, the
c57bl6/j strain has been used only in the trpc2-ko experiment. Ani-
mals of the same gender were maintained 4–6 per cage in rooms
with a 12:12 light/dark cycle, with standard diet and water ad libi-
tum. All female subjects were kept in isolation for the duration
of all experiments. All procedures were in accordance with the
European Communities Council Directive of November 24, 1986
(86/609/EEC) and with institutional guidelines on animal wel-
fare (DL 116/92) of the University of Turin and the University of
Saarland. Experiments were designed to minimize the number of
animals used.

BrdU TREATMENTS
To identify newly generated cells at different survival times, mice
were intraperitoneally injected with bromodeoxyuridine (BrdU)
in 0.1 M Tris (pH 7.4) twice a day (delay = 8 h, 100 mg/kg body
weight), and sacrificed 28 days later for evaluation of neuronal
survival.

IMMUNOHISTOCHEMISTRY
Following anesthesia, mice were transcardially perfused with
phosphate-buffered saline (PBS) followed by 4% (w/v)
paraformaldehyde in PBS. Brain tissue was dissected, incubated
overnight in 30% sucrose in PBS at 4˚C, embedded in O.C.T
(Tissue-Tek), and snap-frozen in a dry ice/2-methylbutane bath.
25-μm thick floating sections were used in all immunohisto-
chemical assays. Newborn cells in the olfactory bulb (OB) were
labeled as described previously (Oboti et al., 2009). A glucose
oxidase-diaminobenzidine (DAB) method was used for the c-Fos
immunostaining. Briefly, tissue sections of the whole brain were
first washed in phosphate-buffered saline (PBS) containing 7.5%
normal goat serum (NGS) and 0.1% Triton X-100 for 3 h, fol-
lowed by incubation in primary antibody prepared in blocking
solution (2% NGS and 0.1% Triton X-100 in 0.01 M PBS, pH
7.4). Sections were then incubated for 48 h at 4˚C in primary rab-
bit antibody against c-Fos (1:5000; rabbit monoclonal IgG, Santa
Cruz Biotechnologies, CA, USA). Secondary antibody was biotiny-
lated goat anti-rabbit IgG (1:250;Vector Laboratories, Burlingame,
CA, USA) in blocking solution. Endogenous peroxidase was
inactivated by incubation with 3% H2O2 for 30 min followed
by incubation with avidin–biotin–peroxidase (HRP) complex

(1:150; Vector Laboratories, Burlingame, CA, USA). Immunore-
activity was visualized using 0.05 M Tris–HCl containing 3,3′-
diaminobenzidine tetrahydrochloride (DAB, 1.5 mg/ml; Sigma,
Italy) for 5 min. Sections were incubated in the same DAB solu-
tion containing 0.45 μl/ml H2O2 and 0.3% NiCl. Sections were
then dehydrated and coverslipped with Sintex (Nuova Chimica,
Cinisello Balsamo, Italy).

Single labeling for BrdU and double labeling for doublecortin
and BrdU (DCX/BrdU), c-Fos/BrdU, and c-Fos/NeuN have been
described previously (Oboti et al., 2009). For double labeling BrdU
and DCX or, olfactory marker protein (BrdU/OMP) tissue slices
have been incubated in anti-DCX or anti-OMP primary antibody
(DCX: 1:500; goat polyclonal IgG; SantaCruz Biotechnologies, CA,
USA; OMP: 1:6000; goat polyclonal IgG; kindly provided by F.L.
Margolis) in PBS containing 1% normal donkey serum (NDS) and
0.5% Triton X-100 for 24 h, followed by an anti-goat secondary
antibody (1:250; Vector Laboratories, Burlingame, CA, USA) in
PBS 0.01 M. Fluorescent staining has been obtained with avidin–
FITC (1:400; Vector Laboratories, Burlingame, CA, USA) for 1 h.
Followed 30′ HCL 2N incubation for BrdU antigen-retrieval, incu-
bation with primary anti-BrdU antibody (1:8000, rat monoclonal
IgG, Oxford Biotechnologies). In all protocols described three
rinses (10 min each) in 0.01 M PBS have been performed between
any incubation.

CELL COUNTING AND STATISTICAL ANALYSIS
Analysis of the number and density of BrdU-positive nuclei in the
AOB and MOB granule cell layer (GrL), as well as the percentage
of double labeled c-Fos-positive cells (BrdU), was performed as
described previously (Oboti et al., 2009) using blind quantifica-
tion. For each AOB, 9–10 tissue sections (each 25 μm thick) were
used in each analysis and densities were calculated by summing
cell counts made on all sections per animal and referred to the
proper cellular layer volume (Σ of sampled areas μm2 × 25 μm).
Newborn cells were sampled in the MOB GrL on five 25-μm
thick tissue sections per animal using a fixed sampling volume
(1000 × 400 × 25 = 10,000,000 μm3) that was positioned below
the AOB, symmetrically with reference to the rostral migratory
stream axis (Figure 1A). In all cases the sampled volume was
located in the ventral–medial MOB, a region that is strongly acti-
vated by social odors and urine detected via the main olfactory
epithelium (MOE; Xu et al., 2005). Double labeled c-Fos/BrdU
cells were visualized and counted with a confocal microscope using
a UPlanFL 100× (n.a. 1.3) Olympus objective. Quantification of
c-Fos-positive nuclei in the MeA and MPA was performed using
automated routines (ImageJ), applying a fixed threshold to the
images and using the particle-counting plug-in.

Images of the anterior MeA and MPA were captured in anatom-
ically matched brain sections (three per region for each animal).
Particle number (n˚ of labeled nuclei) revealed after thresh-
old selection was counted in a standard circular sampling area
(radius = 75 μm) and was then divided by the volume of tis-
sue analyzed (π × 752 × 25 μm3). All c-Fos analysis data (BNST,
MeA, MPA, arc) have been eventually normalized to the respec-
tive control values in each group (Figure 2). The amount of
NeuN-positive nuclei after Ara-C or Saline treatment has been
evaluated in the AOB granular layer on three tissue sections
per animal (three animals per group) applying a grid over the
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FIGURE 1 | Male pheromones affect neuronal survival in the adult female

AOB. (A) Olfactory bulb sagittal section showing doublecortin (DCX)
immunostaining in the OB and throughout the rostral migratory stream (rms).
Enlargement (upper right) shows a BrdU/DCX double-stained cell located in
the AOB–GrL 10 d.p.i. (x :y :z = 1:1:8). Dotted white lines indicate the sampled
areas in each tissue section: glomerular (GL), external plexiform (epl), granular
(GrL) AOB layers and MOB granular layer. (B) Coronal OB section showing
NeuN labeling in the MOB and AOB–GrL. Examples of BrdU/NeuN co-labeled
cells are shown at higher magnification (see arrowhead, 15 d.p.i.,
x :y :z = 1:1:4). In (A) and (B) red boxed areas are depicted at higher
magnification in the right panels. (C,D) Quantification of BrdU-labeled cells at
28 d.p.i. (see red circle in the bar below the graphs) in multiple AOB layers
and MOB GrL of p45 female mice after familiarization performed in four
different weeks (red bars below the graphs). (E) Density of newborn granule

cells in adult females, pre-pubertal females, and adult males evaluated at 28
d.p.i. of BrdU and after 1 week exposure to female (F) or male (M) bedding
(from 7th to 14th d.p.i. of BrdU). (F) Example of a sagittal AOB section
showing c-Fos/BrdU double immunolabeling in the GrL, with a co-labeled cell
in the magnified panel (x :y :z = 1:1:4). (G,H) Percentage of c-Fos/BrdU and
c-Fos/NeuN -positive cells induced by familiar and unfamiliar pheromones in
AOB–GrL (G) and c-Fos/BrdU in MOB GrL (H). In (G) the black dot represents
the basal levels of c-Fos expression in 4 weeks old AOB granule cells. (I)

Retention time of newborn AOB granule cell preferential activity. Data are
means ± SEM [represented by gray areas in (F–H)], the numbers in the
graph bars indicate the amount of animals used. *P < 0.05, **P < 0.01,
***P < 0.001 (Table 1). Bars in (A): left 500 μm, right 100 μm, upper right
5 μm. In (B): left 200 μm, middle 50 μm, right 5 μm. In (F): upper 100 μm,
lower 5 μm.

section (3D grid modular size 40 μm2 × 25 μm) and counting
NeuN-positive nuclei in 1/5 grid modules (Neurolucida setup with
a Nikon Plan Fluor 40×/0.75 objective has been used; only in-
focus nuclei have been counted, excluding those crossing the upper
and right sides of each module) and referring the estimated total
(n˚ nuclei × 5) to the sampled volume (sampled area × section
thickness). When normally distributed, data have been analyzed
for variance differences with a univariate general linear model
(F-test) using the cell densities as dependent variables and treat-
ment, age, cell type, cell age, pheromone as between-subject factors.
The type one error (α value) under which the F-test has been
accepted as statistically significant has been set to 0.05. In each
Anova/Glm F-test the Tukey-HSD post hoc comparison was per-
formed in case of significance (P < 0.05). t -Tests have been used
in simple 1:1 comparison (one dependent variable, one grouping
variable with two levels). Whenever parametric tests have been
used, data represented in the histograms are mean values ± the
SEM. Non-parametric tests (Wilcoxon and Chi-square tests) have

been used to assess differences in either the proportion of time
spent exploring odorant sources in the olfactory behavioral tests
or the percentage of successful pregnancies, respectively. In the
evaluation of the pregnancy rate in the different conditions ana-
lyzed, the expected values have been estimated using the pregnancy
rates of first treated groups in the comparisons detailed in Table 1:
saline-treated (1), Ara-C-mate exposure (2), Ara-C-short-term
(4), saline-vnx (5). Whenever a data set has been used more than
one time for any comparison (for example in the comparison of
the percentages of pregnancy rate) the α value has been halved as
many times as the quantity of comparisons performed. For a com-
plete list of the results of the statistical analyses performed refer to
Table 1.

CHEMOSENSORY STIMULATION
The animals exposed to male/female soiled bedding in the dif-
ferent experiments were given a daily renewed bedding mix-
ture collected from the cage of an individually housed male or
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FIGURE 2 | Familiar male odors induce attenuated responses in the

vomeronasal system. Normalized c-Fos expression density levels evaluated
in the VNS after male bedding exposures. IEG expression has been evaluated
in the BNST, MPA, MeA, and arc after familiarization (1 week exposure,
light-gray bar in the upper scheme) to male individual odors and re-exposure
to the stimuli produced by the same donor (familiar, light-gray) or by another

male (unfamiliar, dark-gray). Another group of females has been exposed to
male individual odors with no prior experience of male derived stimuli (focal,
lined gray). As shown in the graph, novel odors (unfamiliar or focal) induce
strong activity in the MeA, MPA, and arc, while familiar odors (light-gray) do
not. Radius of sampled areas: 75 μm. Scale bar: 100 μm. Data are normalized
means ± SEM, *P < 0.05, **P < 0.01.

female CD-1 mouse, respectively. In case of the trpc2+/+ and
trpc2−/− female mice, soiled bedding of a c57bl6/j male mouse
was used. Familiarization with male bedding consisted of a 7-days-
long exposure to soiled bedding material, renewed each day. The
“control” groups were treated similarly but with clean bedding.
For the c-Fos expression analyses, all groups including controls
underwent a 30-min soiled bedding presentation, 90 min before
perfusion, to detect odor specific c-Fos activation. For stimuli
consisting of urine or urine fractions, 100 μl of each solution
was added to filter paper which was submitted into the cage of
the females twice a day (the stimulation has been repeated to
avoid inefficiency due to paper consumption by the animals).
Urine fractionation (Chamero et al., 2007), protease treatment
(Chamero et al., 2007), and menadion displacement of volatile
compounds from major urinary proteins (MUPs; Xia et al., 2006)
were performed as previously described.

STEREOTAXIC SURGERIES
Osmotic mini-pump installation has been performed (p40 CD-1
females) as described previously (Morgan et al., 1987) using the

coordinates (referring to Bregma): anterior–posterior, 0.40 mm;
medial–lateral, 0.7 mm; and dorsal–ventral, 3 mm. To assess the
efficiency of the anti-mitotic administration, BrdU injections have
been used in order to label proliferating cells during the treatment
(after 14 days in the 28-days long-term protocol or 4 days in the
7-days short-term protocol, not shown). After each anti-mitotic
infusion (28 or 7 days), the expression of BrdU in the OB was
inspected and animal specimens showing even a scarce presence
of BrdU-positive nuclei were discarded.

For the amygdala lesions, mice (p38 CD-1 females) were anes-
thetized with a ketamine (4 mg/kg body weight)–xylazine (1 mg/kg
body weight) solution and placed on a stereotaxic apparatus (Kopf
Instrument). Lesions were performed by injecting ibotenic acid
(IB; Sigma, Italy) diluted at 10 mg/ml in saline solution (pH 7.4)
using a picospritzer III system (Science Products GmbH, Hofheim,
Germany) with a fine glass pipette (diameter = 40 μm). Lesions
were performed into the medial nucleus of the amygdala (MeA)
at the coordinates (referring to Bregma): anterior–posterior,
−1.2 mm; medial–lateral, 2.1 mm; and dorsal–ventral, 5.3 mm.
Sham-lesioned mice underwent the same surgical procedure with
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Table 1 | Results of all statistical analyses performed.

Experiment Object Figure Test df Variables Value P

4 weeks BrdU AOB 1C F 51,3 BrdU*week 12.927 <0.001

4 weeks BrdU AOB 1C F 51,6 BrdU*layer*week 5.251 <0.001

4 weeks BrdU MOB GrL 1D F 15,3 BrdU*week 3.499 0.042

F-M bedding AOB–GrL 1E F 41,4 BrdU*pheromone*group 2.649 <0.05

F-M bedding AOB–GrL 1E F 13,2 BrdU*pheromone*group (Fp45) 7.441 <0.05

F-M bedding AOB–GrL 1E Tukey-HSD M bedding*Ctrl 0.01

F-M bedding AOB–GrL 1E Tukey-HSD M bedding*F bedding 0.019

C-Fos/BrdU% AOB–GrL 1G F 22,1 C-Fos*odor 76.419 <0.001

C-Fos/BrdU% AOB–GrL 1G F 13,5 Familiar: C-Fos*odor 15.685 <0.001

C-Fos/BrdU% AOB–GrL 1G F 13,5 Unfamiliar: C-Fos*odor 7.403 0.02

C-Fos/BrdU% AOB–GrL 1G Tukey-HSD Familiar: 3 w*2, 4–8 w <0.05

C-Fos/BrdU% AOB–GrL 1G Tukey-HSD Unfamiliar: 3 w*2, 6 w <0.05

C-Fos/BrdU% MOB GrL 1H F 30,1 C-Fos*odor 17.11 <0.001

C-Fos/BrdU% MOB GrL 1H F 24,4 C-Fos*odor*cell_age 1.427 0.25

C-Fos/BrdU% MOB GrL 1H F 14,4 Unfamiliar: C-Fos*odor*cell_age 15.25 <0.001

C-Fos/BrdU% AOB–GrL 1I F 14,2 C-Fos*delay*odor 21.755 <0.001

C-Fos/BrdU% AOB–GrL 1G T 1 C-Fos 2 week familiar*unfamiliar <0.001

C-Fos/BrdU% AOB–GrL 1G T 1 C-Fos 3 week familiar*unfamiliar <0.001

Urine fractions AOB–GrL 3B F 14,3 BrdU*fraction 7.433 <0.01

Urine fractions AOB–GrL 3B Tukey-HSD Ctrl*M-p 0.048

Urine fractions AOB–GrL 3B Tukey-HSD Ctrl*bedding 0.025

Urine fractions AOB–GrL 3B Tukey-HSD F-M*M-p 0.022

Urine fractions AOB–GrL 3B Tukey-HSD F-M*M-b 0.11

Trpc2-ko AOB–GrL 4B F 13,3 BrdU*group 23.788 <0.001

Trpc2-ko AOB–GrL 4B Tukey-HSD Wt_ctrl*wt_bedding <0.001

ZnSO4 AOB–GrL 4C F 16,3 BrdU*group 8.414 <0.001

MeA-X BrdU AOB–GrL 4F F 18,3 Injection*exposure 4.710 0.013

MeA-X BrdU AOB–GrL 4F Tukey-HSD Sal_ctrl*sal_bedding 0.046

C-Fos VNS BNST 2 F 11,3 C-Fos*group 33.64 <0.001

C-Fos VNS MeA 2 F 11,3 C-Fos*group 32.269 <0.001

C-Fos VNS MPA 2 F 11,3 C-Fos*group 17.462 <0.001

C-Fos VNS Arc 2 F 11,3 C-Fos*group 15.491 <0.001

NeuN GrL AOB NeuN+ 5C T Saline*Ara-c 0.457

Pregnancy rate N˚ pregnant F 6A X2 Fisher 1 vs. 2 0.027

Pregnancy rate N˚ pregnant F 6A X2 Fisher 2 vs. 3 0.047

Pregnancy rate N˚ pregnant F 6A X2 Fisher 1 vs. 3 0.608

Pregnancy rate N˚ pregnant F 6A X2 Fisher 1 vs. 5 0.126

Pregnancy rate N˚ pregnant F 6A X2 Fisher 4 vs. 1 0.713

Pregnancy rate N˚ pregnant F 6A X2 Fisher 5 vs. 6 0.655

neurotoxic-free saline solution. All surgically operated mice were
allowed to recover in their home cages in a separate room for at
least 7 days before the beginning of the experiments. At the age of
p45, mice were injected with BrdU (day 0) and exposed to male
soiled bedding between day 7th and 14th. Behavioral analysis has
been performed at day 6th and 15th to assess the preference for
male derived volatiles before and after the familiarization phase.
At 28 days after BrdU injections, brains have been harvested to
quantify BrdU-labeling in the OB.

For the surgical vomeronasal nerve cut, mice (p68 CD-
1 females) were anesthetized with a ketamine (4 mg/kg body
weight)–xylazine (1 mg/kg body weight) solution and placed on
a stereotaxic apparatus (Kopf Instrument). A midline incision

was made over the scalp and a hole was made on the skull
with a drill (Bregma: anterior–posterior, 5 mm; medial–lateral,
0 mm; and dorsal–ventral, 4.1 mm). A custom made steel blade
having a width of 0.5 mm was introduced between the bulbs
with a +40˚ slope referring to the vertical axis to cut the
vomeronasal fibers. Occurrence of the lesion has been established
by OMP immunohistochemistry 7–15 days after wound closure
and recovery.

OLFACTORY PREFERENCE TEST
Preference for male derived volatiles before and after a 5-
days bedding exposure was assessed as described previously
(Moncho-Bogani et al., 2005), but two sources of chemosensory
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stimulations were presented during each day: one was a direct
exposure to male soiled bedding, while the other consisted in male
bedding contained in a drilled box, to prevent direct physical con-
tact with this second odor source. Olfactory preference tests were
performed for male volatile odors derived from both odor sources:
one considered experienced (when direct bedding exploration was
allowed), the other considered unexperienced, (as no direct con-
tact with male bedding did occur). A 90 × 30 × 30 testing cage was
used and the odor stimuli were placed at opposite sides (chosen
randomly). Male odor stimuli were discharged when female mice
showed higher/lower explorative responses toward one of the two,
before the bedding exposure period. The duration of every nose
poke on the odor source (box) and the proportion of total time
(pT) spent exploring one odorant source (calculated as the time
spent sniffing one odor/total time spent sniffing ratio) was calculated
with a dedicated software [JWatcher; Copyright (c) 2000–2006
Daniel T. Blumstein, Janice C. Daniel, and Christopher S. Evans.
All rights reserved].

OLFACTORY DISCRIMINATION TASK
The habituation–dishabituation to male derived urine volatiles
was used to measure MOE-mediated olfactory discrimination fol-
lowing a previously described protocol (Breton-Provencher et al.,
2009). Briefly, after 20 min habituation to the testing cage, mice
were familiarized with a first odor (odor of habituation) in four
successive sessions and then exposed once to a novel odor (odor of
dishabituation). Each session was 1 min long and was followed by
10 min inter-session interval. Olfactory discrimination was ana-
lyzed using two different male odors delivered via patches of filter
paper tainted with male urine and enclosed in a perforated plastic
box. The two odors have been both tested alternatively as novel
stimuli (during dishabituation) in separate sessions. Odor sources
consisted of urine soaked filter papers contained in a drilled plastic
box.

BRUCE-EFFECT, PREGNANCY BLOCK TEST
To evaluate the rates of pregnancy failure (Bruce-effect), a pre-
viously established protocol of matings and pheromonal stimu-
lations was used (Peele et al., 2003; Leinders-Zufall et al., 2004).
We have preliminarily assessed the pregnancy rate for our labora-
tory mice as close to 100% using 32 female mice, that were in the
receptive pro-oestrus/oestrus stage, and mating them using the
traditional schedule. Females were returned to their home cage
24 h after mating. At 12 h intervals (five times) each female was
returned to her mating partner for 20 min. In this way exposures
to the mate covered 3 days after the beginning of the mating and
were timed to coincide with the prolactin peaks occurring 1 h
before lights-on and lights-off (Peele et al., 2003; Leinders-Zufall
et al., 2004). One group of females was exposed to an unfamiliar
male to evaluate the percentage of pregnancy loss (60%). Eleven
days after mating the females were killed and their uteri examined
for implantation sites of the ova.

RESULTS
NEWBORN AOB GRANULE CELLS IN FEMALE MICE ARE POSITIVELY
SELECTED BY MALE ODORS
The AOB, as the MOB, represents an integration site for
doublecortin-positive (DCX) neuroblasts migrating from the

adult SVZ, as revealed by BrdU birth dating experiments
(Figure 1A; Oboti et al., 2009). When these cells reach the AOB
cellular layers, they acquire a mature phenotype as indicated by
BrdU/NeuN co-labeling, already evident 15 days after BrdU injec-
tion (Figure 1B). The survival of AOB newborn neurons in adult
female mice has been shown to be enhanced by subsequent long-
term exposure (28 days post injection of BrdU; d.p.i.) to male
pheromones present in cage bedding, when direct vomeronasal
contact is allowed (Oboti et al., 2009). However, by labeling new-
born neurons with BrdU after 7 days of male bedding exposure,
other authors reported that bulbar neurogenesis is increased after-
ward as an indirect proliferative effect of such sensory stimulation
(Mak et al., 2007). Hence, it is currently unknown at which age
the newborn granule cells begin to respond to sensory stimuli
and when these neurons are integrated into functional adult AOB
circuits. Moreover, the question whether these neurons support
any specific sensory function dependent on vomeronasal sensing
remained unanswered.

To address these points, we first analyzed the sensory-driven
positive selection of newborn AOB granule cells labeled before
exposure to male urine soiled bedding in adult females. This
occurred in different moments of their maturation: 1st week (0–
7th d.p.i.), 2nd week (8th–14th d.p.i.), 3rd week (15th–21st d.p.i.),
and 4th week (22nd–28th d.p.i.; Figures 1C,D). We previously
found that the migration of one BrdU-labeled pool of SVZ neurob-
lasts reaching the AOB is accomplished in the 1st week as its density
reaches the maximum value at 7 d.p.i., while subsequently starts to
decrease (Oboti et al., 2009). Here we show that, immediately after
this peak (during the 2nd week), familiarization with male soiled
bedding is more effective in promoting cell survival, indicating
that, from 7 to 14 days after their genesis, most of AOB newborn
cells undergo sensory-driven positive selection (Figure 1C). This
effect was more prominent in the GrL of the AOB (Figure 1C) and
much weaker in the MOB GrL (Figure 1D). Remarkably, such an
increase in BrdU-positive cells in the AOB occurred only in adult
females after exposure to male derived pheromones, whereas expo-
sure to cues from both genders was uneffective in both adult males
and pre-pubertal females (Figure 1E).

It is known that sensory experience influences neuronal inte-
gration in the neurogenic areas increasing the number of new
neurons functionally involved in the activated sensory circuits
(Magavi et al., 2005; Kee et al., 2007). Given that mate pheromonal
imprinting in mice requires a cellular substrate responding specif-
ically to male individual odors in the AOB (Matsuoka et al.,
1997), we asked whether AOB new granule cells could have such
capability.

To answer this question, we combined immunostaining for
c-Fos, a marker for neuronal excitation (Morgan et al., 1987;
Kovacs, 2008), and BrdU labeling (Magavi et al., 2005; Kee et al.,
2007; Figure 1F). We quantified the percentage of c-Fos/BrdU
coexpression (the fraction of BrdU-positive cells expressing c-
Fos) induced by familiar (experienced for 1 week) or unfamil-
iar (never experienced before) male soiled bedding, at different
times after granule cell genesis in the AOB and MOB GrL of
female mice (Figures 1G,H). We found that newborn AOB gran-
ule cells preferentially responded to experienced male individual
cues around the age of 3 weeks after BrdU labeling (Figure 1G).
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Moreover, this response was transient and vanished within 1 week
following bedding exposure (Figure 1I). This age-specific gran-
ule cell involvement in AOB sensory processing was not evident
while considering the total granule cell population (including
pre-existing NeuN-positive neurons; Figure 1G, dotted lines)
or granule cells aged over 3 weeks (at 28 days). Indeed, c-Fos
expression levels in older cells (BrdU-positive) were not sig-
nificantly increased by bedding exposure and were compara-
ble both to control conditions (black dot in Figure 1G) or to
those of NeuN-positive granule cells (4 w-bedding, 6.6 ± 0.4%;
ctrl, 5.14 ± 0.59%, P = 0.21; 4 w-NeuN, 5.27 ± 0.47%; 4 w-ctrl,
5.14 ± 0.59%, P = 0.9; means ± SEM). Moreover, although c-Fos
expression levels in MOB newborn granule neurons were higher
after exposure to familiar chemostimuli in comparison to unfa-
miliar ones, the peak activity occurred at a much later time point
(i.e., around 6 weeks, Figure 1H) indicating that the preferential
involvement of MOB newborn interneurons in processing these
odors persists for longer times and spans different cell ages (Magavi
et al., 2005).

Together, these results indicate that, in female mice, the inte-
gration of AOB newborn granule cells is sensitive to male indi-
vidual chemosignals during the 2nd/3rd week of cell age and
occurs preferentially in the same circuits that respond to these
chemosignals.

The transient nature of this effect confirms the preferential
involvement in the elaboration of vomeronasal signals of AOB
interneurons in this cell age. Therefore, given the relevant role of
granule interneurons in gating bulbar output activity (Halem et al.,
2001; Matsuoka et al., 2004; Breton-Provencher et al., 2009), AOB
young granule cells are likely to convey important individual odor
informations to brain centers related to estrous induction. Accord-
ingly, after 1 week familiarization, we found that re-exposure to the
same male odor stimuli (familiar), but not to novel ones, induced
attenuated responses in the downstream nuclei of the vomeronasal
pathway controlling estrous induction. To rule out a possible effect
of odor familiarization on the extent of this response, we stim-
ulated female mice with novel odors with or without previous
contact with the familiar ones (unfamiliar or focal stimulation,
respectively). As a consequence of familiar odor exposure at the
end of the familiarization period, increased c-Fos expression levels
have been observed in the BNST (Figure 2). This is consistent with
a role of this brain region in mediating olfactory responses related
to experienced stimuli (Hosokawa and Chiba, 2007). Conversely,
familiar odors elicited attenuated responses the MPA, MeA, and
arc (Figure 2). These results suggest that the enhanced response
shown by newly generated AOB neurons to male individual odors
could be linked to the activity induced by the same cues in amyg-
daloid and hypothalamic nuclei, both of which are known to be
involved in estrous induction and thus in the pregnancy block
response.

AOB NEUROGENESIS IS AFFECTED BY PHEROMONES IN THE LMW
FRACTION OF MALE URINE
Individual odor signatures in scent marks are encoded by chemi-
cals excreted with urine (Brennan and Zufall, 2006). We therefore
tested the effect of male urine alone (M-U; Figure 3A) and found
that it promoted AOB granule cell integration as well as soiled

FIGURE 3 | Male urine LMW pheromones increase AOB granule cell

survival. (A) Strategy for isolating different urine fractions. Protein gel
electrophoresis showing the protein content in each fraction (MUPs: male
HMW urine fraction containing MUPs treated with menadion, F-L: female
LMW fraction used as diluting solution for male MUPs, F-M: female urine
LMW fraction loaded with male MUPs, M-p: male urine treated with
proteases, M-U: male urine). Proteins (>10 kD) are present only in those
fractions of male urine that contain MUPs. HMW proteins are absent in
female LMW urine fraction or male urine after protease treatment. (B)

Densities of 28 days old BrdU-positive cells in the AOB–GrL after exposure
to different fractions of male urine or male soiled bedding (M-b) during the
2nd week after injection. Means ± SEM, number in each bar indicates the
amount of animals used, *P < 0.05, **P < 0.01.

bedding exposure (urine, 7398.5 ± 742.2 nuclei/mm3, n = 8; ctrl,
3739.8 ± 609.9 nuclei/mm3, n = 5; P = 0.0029; means ± SEM). To
gain further insight into the nature of the cues affecting AOB
neurogenesis, we employed distinct male urine fractions and ana-
lyzed the density of BrdU-positive cells 28 days after injection
(Figures 3A,B). These cues could include molecules present in
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the LMW fraction (containing small organic molecules and small
peptides) as well as high molecular weight MUPs (contained in the
HMW fraction; Brennan and Zufall, 2006). We found that the M-p
fraction of urine, in which all MUPs were degraded by protease
treatment (Figure 3A), was still capable of increasing granule cell
survival to levels comparable to those seen after exposure to male
soiled bedding (M-b, Figure 3B). Consistent with this result, the
HMW fraction of male urine treated with menadion to deprive it
from all volatile ligands (Chamero et al., 2007) and loaded onto
female LMW urine fraction (F-M), was uneffective (Figure 3B).
These findings were specific for the AOB, as neither male urine
(M-U) nor any of the urine fractions affected MOB GrL neu-
ronal survival (urine, 15939.3 ± 1566.9 nuclei/mm3, n = 8; ctrl,
16949.7 ± 1295.7 nuclei/mm3, n = 5; P = 0.632; means ± SEM).
Together, these results rule out an essential role for MUPs in
increasing AOB neuronal survival and indicate that all activity is
comprised in the LMW fraction of male urine which is primarily
important for mate recognition (Peele et al., 2003; Leinders-Zufall
et al., 2004).

MALE ODORS INCREASE AOB GRANULE CELLS THROUGH BOTH
PERIPHERAL AND CENTRAL INPUTS
We have previously observed enhancement of neuronal survival in
the AOB of adult female mice only if direct contact with male soiled
bedding was allowed (Oboti et al., 2009), suggesting a necessary
role of VNO sensory inputs. It has been proposed that experience-
dependent circuital remodeling in peripheral sensory areas, when
triggered by feedback activity from higher order cortical relays, can
be functionally related to sensory perception (Gilbert and Sigman,
2007). Similarly, neuronal activity in the AOB can be regulated by
centrifugal inputs from the MeA, as a result of inputs converging
from both the main and accessory olfactory systems (Pankevich
et al., 2006; Martel and Baum, 2009). Thus, cellular activation of
the AOB could be generated either by peripheral or central inputs
or both (Pankevich et al., 2006).

To distinguish between these possibilities, we first compared
the effects of genetic deletion of the Trpc2 cation channel (leading
to impaired VN function; Leypold et al., 2002) with lesions of the
MOE caused by intranasal irrigation of zinc-sulfate (ZnSO4, see
the functional ablation sites in Figure 4A; McBride et al., 2003).
Adult female mice were exposed to male bedding on days 7th–
14th after BrdU treatment when the effects of the sensory input
on survival of AOB newborn neurons are maximal. Enhanced
AOB granule cell survival after male bedding exposure was absent
in trpc2−/− mice (Figure 4B, newborn MOB granule cells were
unaffected in both trpc2−/− and trpc2+/+ mice, data not shown).
By contrast, ZnSO4 lesions of the MOE (assessed by the lack of
OMP staining in the MOB glomerular layer) did not abolish the
enhanced neuronal survival in the AOB (Figures 4C,D). Thus,
vomeronasal contact is necessary and sufficient to increase new
AOB granule cells.

Next, to address the role of centrifugal inputs, we deliv-
ered excitotoxic lesions to the MeA by injections of ibotenic
acid (IB, Figures 4A,E; Chauveau et al., 2008), a glutamater-
gic agonist, and stimulated both lesioned and sham-lesioned
(saline injected) mice with male bedding from the 7th to the
14th d.p.i. (BrdU). We assessed the efficiency of the lesions

using both immunohistochemical (i.e., absence of the neuronal
marker NeuN in regions with massive cell loss; Jongen-Relo
and Feldon, 2002; Figure 4E) and behavioral criteria. The lat-
ter consisted in the evaluation of the attraction to a specific
male odor source after repeated VN contact (a function which
relies on the integrity of this nucleus; Moncho-Bogani et al.,
2005). Adult (p45), but not pre-pubertal (p20), female mice
were attracted by male volatile odors after physical contact with
male non-volatile compounds (p45: experienced, 0.64 ± 0.03 pT;
unexperienced, 0.36 ± 0.03 pT; U = 0.001; p20: experienced,
0.47 ± 0.03 pT; unexperienced, 0.52 ± 0.03 pT; U = 0.327; n = 18
for p20, n = 25 for p45; means ± SEM). Such behavioral
response was accompanied by concurrent neuronal activation
of the medial amygdala (p45, experienced, 43 ± 1.5 nuclei/area,
unexperienced, 60 ± 5.5 nuclei/area; P = 0.0409; means ± SEM).
Importantly, MeA-lesioned, but not sham-lesioned (saline
injected) mice, failed to show an attractive response to
male odors (IB: experienced, 0.387 ± 0.06 pT, unexperienced,
0.612 ± 0.06 pT, U = 0.172; saline: experienced, 0.632 ± 0.03 pT,
naïve, 0.367 ± 0.03 pT; U = 0.006; means ± SEM), thus confirm-
ing the effectiveness of the lesion.

We also found that sham-lesioned mice showed an increase in
cell survival in the AOB–GrL after exposure to male soiled bedding
whereas IB-treated mice did not (Figure 4F). By contrast, granule
cell survival in the MOB was unaffected by either bedding expo-
sure or IB lesioning (Figure 4G). Together, our results indicate
that positive selection of new AOB granule cells depends on both
centripetal as well as centrifugal sensory activity. These findings
are reminiscent of recent experiments in the MOB (Petreanu and
Alvarez-Buylla, 2002; Yamaguchi and Mori, 2005; Whitman and
Greer, 2007; Panzanelli et al., 2009; Veyrac et al., 2009).

AOB NEUROGENESIS IS NECESSARY TO PREVENT MATE INDUCED
PREGNANCY BLOCK
To confirm the involvement of newborn AOB granule cells in
mate memory formation, we blocked the renewal of adult-
born interneurons by infusing the anti-mitotic drug Ara-C using
osmotic mini-pumps (Breton-Provencher et al., 2009). Although
alternative methods are available to block the genesis of new
neurons in the brain (e.g., X-ray exposure or gene-coded selec-
tive deletion; Lazarini et al., 2009; Lazarini and Lledo, 2011), we
favored Ara-C brain infusion because it is the most efficient way to
eliminate the production of SVZ newborn cells even after short-
term treatment (Doetsch et al., 1999; Breton-Provencher et al.,
2009) and low doses of Ara-C that we and others used have no
aversive side-effects (Moreno et al., 2009; Lazarini and Lledo,
2011). By contrast, X-ray irradiation only partially reduces SVZ
neurogenesis (Lazarini et al., 2009) and genetic ablation of neuro-
genesis often requires injection of tamoxifen (Imayoshi et al., 2008;
Sakamoto et al., 2011), a substance which is a potential source of
bias when studying sexually dimorphic and estrogen responsive
structures such as the vomeronasal system (Halbreich and Kahn,
2000; Hoffmann and Schuler, 2000; Kedia-Mokashi et al., 2011).

Infusion of Ara-C for 28 days following previously established
protocols (Breton-Provencher et al., 2009) completely eliminated
from the AOB the cells that we found to be preferentially acti-
vated by male odors (Figure 1G; Figure 5A). BrdU injections were
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FIGURE 4 | Survival of new AOB granule cells depends on amygdala

feedback activity induced by vomeronasal input. (A) Sites of functional
impairment in the vomeronasal system: MeA, medial amygdala; MOE, main
olfactory epithelium; VNO, vomeronasal organ (lot, lateral olfactory tract; LV,
lateral ventricle). (B,C) Newborn 4-weeks-old AOB granule cells in trpc2+/ +,
trpc2−/− (B) and ZnSO4 (C) mice exposed to male bedding 1 week after BrdU
injection. (D) Micrographs showing the loss of OMP expression in the MOB
of ZnSO4-treated mice (lower), compared to saline-treated animals (upper). In
both cases OMP labeling is present in the AOB glomerular layer (asterisks at
the right) but absent in the MOB of the ZnSO4-treated mice (asterisk on the

left). This indicates that the lesion has left the VNO undamaged. (E) Pictures
showing NeuN labeling in the medial amygdala (MeA) after saline and
ibotenate injections, respectively. The loss of labeled neuronal nuclei reveals
the extent of neuronal death induced by the lesion after injection of ibotenate
(opt: optic tract). (F,G) BrdU-positive cell density in the AOB (F) and MOB GrL
(G) evaluated 1 month after injection, in ibotenate-treated (IB) and
saline-treated females. The line in the dot plots is the sample median,
other data are means ± SEM, the numbers in the graph bars indicate the
amount of animals used. Bars: in (D), 200 μm; in (E), 100 μm. *P < 0.05,
#P < 0.001.

performed at the 14th day of the anti-mitotic treatment and the
efficiency of neurogenesis ablation was assessed at the 28th day.

Female mice treated with Ara-C completely lacked BrdU and
DCX labeling (Figure 5A), while saline-treated females showed
a normal rate of neurogenesis in the OB. Notably, the amount
of pre-existing neurons (NeuN-positive) remained unchanged in
the AOB after Ara-C infusion (Figures 5B,C), indicating that the
treatment specifically affected newly generated cells.

Next, after a 4-week-long ablation of bulbar neurogenesis, we
tested Ara-C treated females for their ability to recognize the mate
and thus avoid pregnancy block by male odor stimuli. Briefly,
female mice were mated and subsequently re-exposed to the famil-
iar partner odor during the following 3 days (Figure 6A; Bruce,
1966; Peele et al., 2003; Leinders-Zufall et al., 2004). Under con-
trol conditions (saline-treated female mice) re-exposure to the
familiar mate odor did not induce pregnancy block, as indi-
cated by a high pregnancy rate (or low pregnancy failure rate;
Figure 6A, experiment 1). In stark contrast, females treated with
Ara-C for 4-weeks underwent pregnancy block when re-exposed to
the mate (Figures 6A,B, experiment 2), indicating that in absence
of younger neurons they fail to imprint on the odors of the mating
partner, as they are treated as unfamiliar ones.

However, the high pregnancy failure rate observed after neu-
rogenesis ablation could be a result of Ara-C induced infertility.
To rule out this possibility, we quantified the pregnancy rate after
Ara-C treatment without subsequent exposure to the mating part-
ner (Figure 6A, experiment 3). In this case, the pregnancy rate
remained high and comparable to controls, indicating that the
high pregnancy failure observed in experiment 2 was specifically
induced by odor exposure after mating.

As a further control, we analyzed the effect of short-term
Ara-C treatment on mate recognition efficiency (the same dose
of the whole long-term treatment was given; Figure 6A, exper-
iment 4) by starting the brain infusion 1 week before mating
only. Under this condition, re-exposure to familiar odor did
not induce pregnancy block. Hence, when compared with the
findings of experiment 2, the inability of the short-term Ara-C
treatment to induce pregnancy block (experiment 4) confirms
that the lack of neurons aged between 2 and 4 weeks is ulti-
mately responsible for switching the outcome of the pregnancy
block test.

Finally, since Ara-C treatment eliminates newborn cells also
in the MOB and the impact of this ablation on mate recog-
nition is unknown, we tested the effects of mate re-exposure
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FIGURE 5 | Newborn but not pre-existing AOB–GrL interneurons are

eliminated by Ara-C treatment. (A) Micrographs showing double
immunolabeling for doublecortin (DCX) and BrdU performed at the end of a
saline or Ara-C (28 days) infusion. Mice infused with Ara-C (upper panels)
show a complete loss of immature neurons (DCX+, green staining) and
newborn ones (BrdU+ in red) contrarily to saline-treated animals [lower
panels; newborn cells are indicated with arrowheads in the higher
magnification panel on the right and in (A′); x:y:z = 1:1:4]. (B), NeuN+ cell
density quantification in the granular layer of the AOB of saline and Ara-C
treated mice. Data are means ± SEM (n = 3 animals per group). (C)

micrographs showing NeuN labeling in the AOB–GrL of Ara-C and
saline-treated mice (lot, lateral olfactory tract; GrL, granular layer; rms,
rostral migratory stream). Bars in (A): left 200 μm, middle 50 μm, 5 μm for
the single cell magnification. In (C): 50 μm. Means ± SEM, the numbers in
the graph bars indicate the amount of animals used.

on Ara-C treated females subjected to surgical lesion of the
vomeronasal nerves (VNX), a condition that alone is reported to
eliminate exteroceptive pregnancy block (Figure 6A, experiments

FIGURE 6 | Newborn granule cells in the AOB are necessary for mating

partner recognition. (A) Matings and male stimulations on female mice
after different protocols of Ara-C/saline treatment in normal and
vomeronasal nerve-lesioned mice (VNX). Shown in the graph are the
pregnancy rates (in percentage) as a function of the different treatment
conditions evaluated 11 days after mating. (B) Schematic diagram
illustrating the role of AOB newborn granule cells (NGr) in the modulation of
mate’s familiar signals (left side) and unfamiliar ones (right side): granule
cells are preferentially involved in the detection of male individual odors
once integrated into pre-existing circuits. When highly responsive newborn
granule cells (NGr) are eliminated after Ara-C treatment (left side, bottom),
pre-existing granule cells (PGr) are not sufficient to prevent pregnancy block
by mate’s familiar odors (red arrows). *P < 0.05, (Table 1).

5, 6; Figure 7A; Bellringer et al., 1980; Matsuoka et al., 2005).
Consistent with a lack of MOB involvement in this recogni-
tion process, after blockade of neurogenesis (Ara-C treatment)
in VNX mice, stud male odors where not effective in halt-
ing pregnancy onset after mating. Thus, in the absence of VN
inputs, a lack of MOB newborn granule cells does not lead to
pregnancy block by familiar pheromonal signals indicating that
newborn cells in the MOB are not required for this imprinting
process. As a further control that Ara-C treatment does not dis-
rupt the ability to discriminate male volatile odors, we performed
a habituation–dishabituation assay – which allows for measure-
ment of MOE-dependent novel odor investigation, short-term
odor learning, and odor discrimination – but found no signifi-
cant difference (hab4 vs. dishab, t -test, P < 0.05 for Ara-C, Saline,
and Saline-VNX mice) between sham-lesioned and Ara-C treated
VNX female mice (Figure 7B). Together, these results indicate
that the lack of bulbar newborn neurons compromises primarily
AOB-mediated discrimination, as shown by the mate recognition
impairment.

DISCUSSION
Our results highlight a direct link between VN sensory inputs and
AOB neurogenesis, and a crucial role for AOB newborn neurons as
preferential cellular substrate for mate pheromonal imprinting in
adult female mice. Neurogenesis in the OB received considerable
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FIGURE 7 | Infusion of anti-mitotic drug Ara-C eliminates olfactory bulb

neurogenesis but does not impair male odor recognition. (A)

Immunostaining for OMP and BrdU in the OB after Saline/Ara-C treatment
and surgical lesion of the vomeronasal nerve (experiments 1, 5, and 6 in
Figure 6). The injections of BrdU have been performed 14 days after the
beginning of brain infusion. In the third row, the lack of OMP/BrdU double
immunoreactivity shows the efficiency of VN surgery and neurogenesis
ablation in Ara-C/VNX mice compared to saline-treated mice (controls and
VN-lesioned mice). Bars in (A), 500 μm for low magnification images, 40 μm

for image details. (B) Habituation/dishabituation task for male volatile odor
discrimination in Saline/Ara-C treated mice. Odor sources consisted of filter
paper stripes soaked with male urine derived from different individuals and
contained in a plastic box to prevent direct nasal contact but not odor
perception. Mice were habituated to an odor with four consecutive
presentations. On the fifth presentation a different odor was presented. Both
saline-treated and neurogenesis-ablated mice (normal or VNX) similarly
increased the investigation time in response to the new odor. Means ± SEM,
*P < 0.05.

attention in the last decade, due to the suitability of the SVZ–OB
model to study the functional implication of neurons generated
during adulthood in sensory processes. Surprisingly, few authors
considered explicitly in their analyses this unceasing cell renewal
in the AOB (Bayer, 1983; Bonfanti et al., 1997; Peretto et al., 1999;
Martinez-Marcos et al., 2001; Sakamoto et al., 2011; Veyrac and
Bakker, 2011). Furthermore, the functional role of newborn neu-
rons in the perception of social odors and pheromones has been
evaluated only in the MOB (Shingo et al., 2003; Mak et al., 2007;
Larsen et al., 2008; Feierstein et al., 2010; Mak and Weiss, 2010)
with the exception of a few reports considering both the AOB and
the MOB (Oboti et al., 2009; Nunez-Parra et al., 2011; Sakamoto
et al., 2011). Therefore, to our knowledge, an integrated study
focused both at a cellular and behavioral level on the VNS circuitry,
is still lacking. Moreover, a possible involvement of AOB neuronal
turn-over in the well known granule-to-mitral AOB synaptic plas-
ticity occurring during mating, which is the neural correlate of
mate recognition (Brennan and Keverne, 1997; Matsuoka et al.,
2004), remained untested.

Here we have hypothesized that this memory formation
process, established in a short time window during mating, could
be promoted by the presence of renewed interneurons in the AOB
of adult female mice.

Accordingly, we report firstly that in adult female mice the func-
tional integration of these cells is triggered by the exposure to male
odors: such sensory-driven positive selection acted preferentially
on 2–3 weeks old granule cells (Figure 1A). In addition, shortly
after their integration, these neurons became particularly respon-
sive toward the experienced sensory stimuli (as shown by BrdU

and c-Fos imaging, Figure 1G). Thus, the timing of this process is
coherent with a rapid involvement of these interneurons in AOB
circuits underlying individual recognition.

Moreover, the same sensory activity increased the survival of
3 weeks old MOB granule cell but their preferential involvement in
OB sensory processing occurred only around the 6th week of age.
Therefore, it is likely that only young AOB granule cells are selec-
tively and rapidly involved in the elaboration of male individual
chemosensory signals.

More generally, such neuronal selectivity and perceptual res-
olution of peripheral sensory areas is modified through sensory
experience via feedback connections between higher and lower
cortical levels (Gilbert and Sigman, 2007). Thus, we argued that
if VN sensory inputs and AOB neurogenesis would have been
similarly linked, the hypothesis of the functional involvement of
AOB newborn cells in male odor recognition would have gained
likelihood.

Concerning the sensory structures involved in this olfactory
task, it is known that the main and accessory olfactory path-
ways act synergistically in pheromonal odor processing through
convergent projections to the medial amygdaloid region (MeA;
Moncho-Bogani et al., 2005). From here, a feedback loop is formed
by excitatory centrifugal afferents contacting the AOB granular
layer which, in turn, directly regulates the local activity in response
to external stimuli (Pankevich et al., 2006; Fan and Luo, 2009;
Martel and Baum, 2009). Hence, AOB neuronal activity, and neu-
rogenesis as well, can be alternatively modulated by either direct
peripheral sensory stimulation through VNO–MeA activation, or
indirectly by MOE–MeA centrifugal inputs.
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Thereafter, by selective functional ablation of the main sen-
sory relays involved in social odor perception (MOE, VNO, MeA),
we reported that the neurogenic process observed in the AOB is
actively guided by VNO–MeA sensory activity (but not MOE–
MeA) underlying its substantial correlation with vomeronasal
sensory processing.

Sustained by these evidences, we have halted the production of
new neurons in the brain by intracerebroventricular (ICV) Ara-C
infusion and tested the ability of adult female mice to recognize
their mating partners in order to avoid exteroceptive implantation
failure. The drug infusion period covered the time window for
AOB granule cell peak responsiveness to male individual odors.

As a result of the neurogenesis blockade, we found a high
rate of pregnancy failure in recently mated females after expo-
sure to the mating partner. This effect was specifically due to the
re-exposure to the stud male since no such pregnancy failure did
follow when Ara-C was given alone. Although Ara-C treated female
mice showed a subtle decrease in pregnancy rates in comparison
to saline-treated females (Figure 6A, experiments 3, 4 vs. 1; 60 vs.
77% = 17%), the strong decrease in pregnancy rate evident after
re-exposure to the mating male goes far beyond these differences
(Figure 6A; 2 vs. 3, 4; 21 vs. 60% = 39%). Nevertheless, this preg-
nancy failure rate does not reach the levels observed in our control
conditions and in other reports (60–70%; Bruce, 1966; Brennan
and Zufall, 2006), possibly because older cells (aged over 28 days)
spared by the anti-mitotic treatment could constitute a residual
substrate for the imprinting process.

Notably, the memory established on the stud male urine odors
during mating is localized specifically at the granule-to-mitral
synaptic interface in the AOB (Kaba et al., 1989). Thus, our
results strongly support a preferential role of AOB newly gen-
erated neurons in this olfactory recognition process (Figure 6B),
despite a capability of the main olfactory system to detect mate’s
pheromones (Brennan and Zufall, 2006) and widespread anti-
neurogenic CNS effects following Ara-C ICV infusion. In addition,
a lack of involvement of MOB interneurons was further supported
by the fact that the 4-week long anti-mitotic treatment left undam-
aged those new granule cells (6 weeks old) highly responding
to male familiar cues in this region (Figure 1H). Although this

observation alone does not rule out the involvement of these neu-
rons in mate recognition, a role of the MOB in the avoidance of
pregnancy block was shown only 6.5 days after mating (Serguera
et al., 2008) and therefore is not compatible with our mate expo-
sition protocol. Eventually, female mice treated with Ara-C were
still able to discriminate male individual odors, thus implying the
lack of cells aged up to 4 weeks does not disturb normal olfac-
tory recognition of individual males. Nevertheless, to confirm this
idea and test the effect of neurogenesis ablation only in the MOB,
we have blocked vomeronasal inputs by lesioning the vomeronasal
nerves in Ara-C treated female mice. This procedure was sufficient
to prevent the high rate of pregnancy block by stud male expo-
sure, ruling out the involvement of MOB newborn interneurons
(aged 1–4 weeks) in mate recognition and confirming the key role
of AOB interneurons in this process (Kaba et al., 1989; Hudson,
1993).

In conclusion our experiments demonstrate the importance
of newly generated AOB inhibitory interneurons in the mating
pheromonal imprinting process. Therefore, we provide evidence
that neurogenesis in the adult brain is indeed of extraordinary
functional significance, playing a critical role in the context of
AOB-mediated sensory processing, persistent odor learning, and
mate recognition. Our results also imply that newborn AOB
interneurons are necessary to convey nerve signals that, ultimately,
lead to determined neuroendocrine responses in higher circuits of
the vomeronasal pathway. The survival of new neurons in the AOB
seems to be regulated by both the detection of species-specific, sen-
sory vomeronasal stimuli, included in the LMW urine fraction,
that requires an intact Trpc2 cation channel, and central inputs
from the medial amygdala. The identification of the function of
newly generated AOB interneurons in pheromonal mate recogni-
tion provides an attractive cellular substrate to begin to dissect the
molecular logic of this feat.
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