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A key feature of human intelligence is the ability to predict the outcomes of one’s own
actions prior to executing them. Action values are thought to be represented in part in the
dorsal and ventral medial prefrontal cortex (mPFC), yet current studies have focused on
the value of executed actions rather than the anticipated value of a planned action. Thus,
little is known about the neural basis of how individuals think (or fail to think) about their
actions and the potential consequences before they act. We scanned individuals with fMRI
while they thought about performing actions that they knew would likely be rewarded or
unrewarded. Here we show that merely imagining an unrewarded action, as opposed to
imagining a rewarded action, increases activity in the dorsal anterior cingulate cortex, inde-
pendently of subsequent actions.This activity overlaps with regions that respond to actual
unrewarded actions.The findings show a distinct network that signals the prospective out-
comes of one’s possible actions. A number of clinical disorders such as schizophrenia and
drug abuse involve a failure to take the potential consequences of an action into account
prior to acting. Our results thus suggest how dysfunctions of the mPFC may contribute to
such failures.
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INTRODUCTION
A key feature of human intelligence is the ability to predict the
outcomes of one’s own actions prior to executing them. Much
of the literature on decision-making and reinforcement learn-
ing focuses on learning the value of various available options.
The optimal decision is one that has the highest value in the
decision-maker’s subjective evaluation (Thorndike, 1911), with
perhaps some value on exploring new options (Kaelbling et al.,
1996). Environmental cues indicate what options are available,
and the cues in turn guide instrumental responding via learned
stimulus–response (S–R) associations (Sutton and Barto, 1998).
This is the essence of model-free reinforcement learning (Dayan
and Niv, 2008). Such constitutes an inverse model (Shadmehr and
Wise, 2004), in that stimulus cues (S) activate a representation of
the desired goal such as a piece of food, and this goal is mapped
backward to the response (R) necessary to achieve the goal. The
values of stimuli and the goals they represent are likely repre-
sented in the orbitofrontal cortex (OFC; Tremblay and Schultz,
1999; Schoenbaum et al., 2003). All of this works fine for habit
learning.

The situation is more difficult when an animal faces a novel
environment in which the S–R association has not been learned,
or there is a more complex set of constraints, so that there is
no one automatic best response. This is where forward models
as in model-based reinforcement learning (Shadmehr and Wise,
2004; Daw et al., 2005; Glascher et al., 2010) are useful. A forward
model predicts the outcome of a planned action. This is a learned
response–outcome (R–O) association (Colwill and Rescorla, 1990)
which affords a “dynamic evaluation lookahead” (Van Der Meer
and Redish, 2010). Favorable outcome predictions might further

activate the corresponding response plan, while unfavorable or
risky outcome predictions might suppress it.

The process of employing a forward model to predict the likely
outcomes of planned actions is akin to the popular notion of
thinking before acting. Humans can think about or imagine (with
varying accuracies) what might be the outcome of a planned
action. Nonetheless, relatively little research has been done on the
neural basis of thinking ahead, with just a few cognitive (Johnson,
2000; Hassabis et al., 2007), neuroimaging (Newman et al., 2009;
Glascher et al., 2010), and rat (Van Der Meer and Redish, 2010)
studies. Some results suggest that anterior cingulate cortex (ACC)
may be involved in anticipating adjustments in control (Sohn et al.,
2007; Aarts et al., 2008; Aarts and Roelofs, 2011). We previously
showed that the medial prefrontal cortex (mPFC), and especially
ACC may learn to predict the likelihood of an impending error
resulting from current actions (Brown and Braver, 2005). Here we
use fMRI to ask whether and how the ACC may signal the non-
rewarded action likelihood of imagined responses, as distinct from
the alternative hypothesis that ACC is activated only by impending
actions. We use a simple task that isolates the outcome prediction
by asking subjects to imagine performing an action and experienc-
ing its consequences, while controlling for the subsequent action
execution.

MATERIALS AND METHODS
PARTICIPANTS
Data from 22 right-handed participants were collected (mean
age = 23.42, SD = 2.80). Data from two participants were dis-
carded due to insufficient reward outcomes and data from one
participant was excluded due to a scanning artifact, leaving 19

www.frontiersin.org November 2011 | Volume 5 | Article 128 | 1

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Decision_Neuroscience/10.3389/fnins.2011.00128/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=38164&d=1&sname=AndrewJahn&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=34232&d=1&sname=DerekNee&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=6056&d=1&sname=JoshuaBrown&name=Science
mailto:jwmbrown@indiana.edu
http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Jahn et al. Action outcome predictions

usable participants (11 female). Participants reported no history
of psychiatric or neurological disorder, and reported no current
use of psychoactive medications. Participants were compensated
$25/h for their time. Participants were trained on the task on a
computer outside of the scanner until they gave verbal confirma-
tion that they understood the task. The experimenter observed the
participant’s performance and judged whether they demonstrated
sufficient understanding of the task.

Participants were informed that they would receive compen-
sation based on their performance, although they were unaware
of how much they would receive for rewarding feedback. They
received $0.05 for each reward outcome (described in further detail
below in section Experimental Paradigm).

Participants gave informed consent prior to participating in
the experiment. The experiment was approved by the Indiana
University Institutional Review Board.

EXPERIMENTAL PARADIGM
The task consisted of two phases: an imagine phase and a response
phase. During the imagine phase, participants were instructed to
imagine making particular responses and experiencing the corre-
sponding consequences. During the response phase, participants
were instructed to choose one of two possible responses. The
appropriate response was determined by feedback history. When a
particular response was rewarded, participants were instructed to
make that response again. If a response was not rewarded, partici-
pants were instructed to make the alternate response. Hence, prior
to each trial, participants had a belief about the response that
would most likely result in a reward outcome, and could there-
fore imagine the consequences of a response that matched that
belief (i.e., imagine rewarded action) or violated it (i.e., imagine
non-rewarded action).

On each trial, the imagine phase began with the sequential
presentation of two white arrow cues on a black background,
with one pointing left and the other pointing right (Figure 1).
The order of presentation of the arrow cues was counterbalanced.

Participants were instructed to simply imagine themselves press-
ing the corresponding left or right buttons with the left or right
index finger, along with the corresponding outcome they would
expect if they were to actually press the button. Both left and right
responses were imagined separately on each trial, so the probabil-
ities of imagining each event were equal. After a variable delay, the
response phase was signaled by an exclamation mark (“!”) which
cued them to respond with either a left or right actual button
press. Crucially, the responses that they imagined were indepen-
dent of the actual response that they made. Participants would
then be presented with a “$” or a “0” as feedback. A “$” would
mean that they had gained a point, while a “0” would mean that
they had gained nothing. Participants were informed that if they
were rewarded on a trial (i.e., if they received a“$”as feedback) that
they should make the same button response on the next trial, but
a “0” indicated that they should switch. The appropriate button
response (left vs. right) switched across trials with a relatively low
probability resulting in a high likelihood of reward outcome. With
this design, subjects could predict the outcome of each possible
button press with good confidence. This allowed us to examine
neural activity related to imagining distinct non-rewarded actions
and rewarded actions without confounding the results with a par-
ticular effector. The probability of an underlying switch was 0 for
the first two trials following a switch, then 0.33 per trial for trials
three through seven, and 1.0 after eight trials. This distribution
ensured that switches occurred but were unpredictable and less
likely than chance. After receiving feedback, participants were pre-
sented with a blank screen that lasted either 1, 3, 5, or 7 s, based on
an exponential distribution function (Dale, 1999).

On 20% of the trials, a question mark (“?”) was presented
instead of arrow cues. During this condition, participants were
instructed to recall the last response they had made and the corre-
sponding outcome they had received, whether it was an outcome
signaling a reward or not gaining a reward. When the excla-
mation mark cue was presented, participants were to make the
same response they had made on the previous trial, whether it

FIGURE 1 | Imagine condition. In the Imagine condition, participants
saw a sequence of two arrows, one facing left and the other facing right
(order randomized across trials). As each arrow appeared, participants
were instructed to imagine performing the corresponding button press
response (left or right) and the outcome associated with it. An
exclamation mark (“!”) cued the subjects to make a response of their

choice. One of the two options was rewarded action, and the other would
be unrewarded action. The rewarded action response in the preceding trial
was more likely to be rewarded action in the current trial. Participants
received either rewarded (“$”) or non-rewarded (“0”) feedback as a result
of their choice. The response cue and outcome cues were identical to the
Imagine condition.
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FIGURE 2 | Red: regions showing increased activation in response to

imagining a non-rewarded action contrasted with imagining a rewarded

action response, depicted at p < 0.01, uncorrected. Green: areas showing

greater activation for non-rewarding feedback contrasted with rewarding
feedback, depicted at p < 0.001, uncorrected. Yellow: regions common to
both contrasts.

was rewarded or not. These trials were included for purposes not
relevant here and were modeled separately.

fMRI ACQUISITION AND DATA PREPROCESSING
The experiment was conducted with a 3 T Siemens TIM Trio scan-
ner using a 32-channel head coil. Foam padding was inserted
around the sides of the head to increase participant comfort
and reduce head motion. Imaging data was acquired at a 30˚
angle from the anterior commissure–posterior commissure line
in order to maximize signal-to-noise ratio in the orbital and ven-
tral regions of the brain (Deichmann et al., 2003). Functional T2∗
weighted images were acquired using a gradient echo planar imag-
ing sequence (30 mm × 3.8 mm interleaved slices; TE = 25 ms;
TR = 2000 ms; 64 × 64 voxel matrix; 220 mm × 220 mm field of
view). Three runs of data were collected with 240 functional scans
each. High resolution T1-weighted images for anatomical data
(256 × 256 voxel matrix) were collected at the end of each session.

SPM5 (Wellcome Department of Imaging Neuroscience, Lon-
don, UK; www.fil.ion.ucl.ac.uk/spm) was used for preprocessing
and data analysis. The functional data for each run for each par-
ticipant was slice-time corrected and realigned to each run’s mean
functional image using a 6 degree-of-freedom rigid body spatial
transformation. The resulting images were then coregistered to the
participant’s structural image. The structural image was normal-
ized to standard Montreal Neurological Institute (MNI) space and
the warps were applied to the functional images. The functional
images were then spatially smoothed using an 8-mm Gaussian
kernel.

fMRI ANALYSIS
Functional neuroimaging data were analyzed using a general lin-
ear model (GLM) with random effects. Feedback for rewarded
actions and non-rewarded actions responses were modeled with
a canonical hemodynamic response function (HRF) at the time
of feedback. Two regressors modeled each imagine event. A delta
regressor locked to the onset of stimulus presentation was included
to capture initial perceptual activation. An epoch regressor onset-
ting 1 s after stimulus presentation and spanning the duration
of the imagine event was included to capture the act of imagin-
ing itself. These epoch regressors are the regressors of interest for
present purposes. Separate regressors were included for imagining
non-rewarded action and imagining rewarded action events. These

regressors were subdivided into imagining rewards associated with
left button responses (ImagineLeftReward) and imagining rewards
associated with right button responses (ImagineRightReward),
as well as non-rewards associated with both button responses
(ImagineLeftNon-Reward, ImagineRightNon-Reward).

Additional regressors modeled left vs. right button presses.
Contrasts were conducted on imagining a potential non-rewarded
action outcome (ImagineLeftNon-Reward, ImagineRightNon-
Reward) compared to imagining a potential rewarded action
outcome (ImagineLeftReward, ImagineRightReward). This con-
trast would reveal whether there was significantly more activity
for merely imagining a non-rewarded action outcome as opposed
to a rewarded action outcome. Separate contrasts were computed
for each subject, and results are based on a group-level random
effects analysis on these contrasts.

Unless otherwise stated, all whole-brain results were thresh-
olded at p < 0.01 uncorrected at the voxel-level with a 238 voxel
cluster extent providing a corrected p < 0.05 threshold according
to AlphaSim.

RESULTS
BEHAVIORAL RESULTS
Behavioral data were analyzed in order to confirm that subjects
performed the task appropriately. If participants successfully fol-
lowed instructions on either switching or repeating their response
on the next trial, participants would on average receive 17 reward
outcomes per run, or 51 reward outcomes over all three runs. How-
ever, participants could also commit errors if the instructions were
not successfully followed, which resulted in an incorrect switch or
an incorrect stay (e.g., switching the button response when the
previous trial had yielded a reward outcome). Failure to follow
the instructions resulted in fewer reward outcomes and increased
the probability of receiving a non-reward outcome. On average,
participants performed the task at a high level (mean number
of reward outcomes per run = 15.95, SD = 1.02; mean number
of errors committed per run = 1.05, SD = 1.11). Participants who
received 12 or fewer reward outcomes for two or more runs were
excluded from further analysis.

A subset of participants (N = 10) were given a debriefing sur-
vey after scanning asking whether they were able to visualize the
motor response associated with each arrow, whether they were able
to imagine the outcome associated with each button press, and
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whether they felt motivated to respond to gain the bonus money.
Ratings were made on a Likert scale from 1 to 5, with 1 being
the lowest confidence in the given response and 5 being the high-
est. In general, participants rated that they were able to visualize
the motor response (mean rating = 4.3) and able to imagine the
outcome associated with each button press (mean rating = 4.7).
Participants also appeared to be motivated to perform the task
well (mean rating = 4.6). A Wilcoxon Signed-Rank test showed
that all ratings were significantly different from an average score
of 3, which would represent indifference toward each of the ques-
tions (all P ’s < 0.01). Hence, the behavioral data indicated that
subjects understood and performed the task as instructed.

IMAGING RESULTS
We began by confirming that non-reward feedback produced
heightened activation in the ACC compared to reward feedback
as would be expected by prior literature (Hohnsbein et al., 1989;
Gehring et al., 1990). Confirming these activations, the contrast of
FeedbackNon-Rewarded–FeedbackReward produced robust acti-
vations in the dorsal ACC and pre-SMA, as well as lateral frontal
and parietal regions. These results indicate that the paradigm
appropriately elicited non-reward signals in the ACC.

Next, we examined the neural correlates of imagining non-
rewarded actions. A whole-brain contrast of ImagineNon-
Reward–ImagineReward revealed significant activations in bilat-
eral dorsal ACC (MNI −10, 8, 46; k = 360 voxels; peak voxel
z-value = 4.21), left precuneus (MNI −12, −62, 42; k = 264 vox-
els; peak voxel z-value = 3.66), right precuneus (MNI 14, −64,
24; k = 434 voxels; peak voxel z-value = 3.27), and left superior
frontal sulcus gyrus (MNI −26, −2, 42; k = 263 voxels; peak voxel
z-value = 3.41; see Figure 2). We have proposed that ACC activity
signals in part the likelihood of an error in a particular condi-
tion (Brown and Braver, 2005, 2007), as part of a more general
function of predicting the outcome of an action (Alexander and
Brown, 2010). Our finding here of greater activity for imagining
non-rewarded actions relative to imagining rewarded actions is
consistent with this possibility (Refer to Table 1 for a summary of
these activations.).

Another possibility is that activation in the ACC represents
response conflict (Botvinick et al., 2001). By this account, even
when subjects imagine a non-rewarded action, they also maintain
an active representation of the rewarded action as they subse-
quently intend to execute it. Thus, even though subjects were
informed of the button response which would likely be rewarded –
and therefore presumably were prepared for execution of this
response – the presentation of an arrow cue for imagining a
non-rewarded action would lead to preparation of the rewarded
response. This would lead to greater summed motor cortex activ-
ity when imagining non-rewarded actions relative to imagining
rewarded actions. This idea is consistent with previous research
demonstrating that conflict activation in the ACC can precede
actual response execution as forthcoming actions are anticipated
(Sohn et al., 2007).

To address this possibility, we examined whether greater
summed motor activation accompanied ImagineNon-Reward tri-
als relative to ImagineReward trials as predicted by response
conflict accounts. To do so, we identified regions in motor cortex

(Areas 4 and 6) that showed effects of executing particular
responses, i.e., RespondLeft > RespondRight (right motor cor-
tex, MNI 46, −28, 54, k = 2161 voxels; Extent: 14 < x < 63,
−39 < y < −6, 29 < z < 74) and RespondRight > RespondLeft
(left motor cortex, MNI −34, −32, 46, k = 3437 voxels; Extent:
−58 < x < −3, −48 < y < 9, 28 < z < 74) at a cluster corrected
threshold of P < 0.001. We then extracted parameter estimates
from these two regions for imagining rewarded and non-rewarded
outcomes associated with either left or right button presses. This
yielded 8 parameter estimates for each subject divided in a 2
(left/right motor cortex) × 2 (imagine left/right response) × 2
(imagine reward/non-reward) factorial design. These parameter
estimates were analyzed using a three-way ANOVA, with subjects
treated as a random factor. If ACC activation is driven by response
conflict, we would expect a main effect of imagined outcome.

In contrast to the conflict monitoring predictions, there was no
main effect of imagined outcome [F(1,18) = 0; p = 0.97]. Instead,
there was a significant three-way interaction between motor cor-
tex, imagined response, and imagined outcome; [F(1,18) = 45.23;
p < 0.0001]. As depicted in Figure 3, subjects only exhibited motor
cortex activity associated with the rewarded button press even
when presented with a cue instructing them to imagine making
a non-rewarded button press. This interaction suggests that the
observed activity in both motor cortices was not due to summed
motor activity for imagining non-rewarded outcomes associated
with both left and right button presses. Thus, it appears that the
present data cannot be explained by a conflict effect.

DISCUSSION
The present study sought to explore the neural mechanisms
involved in imagining possible actions and predicting their poten-
tial consequences, a concept variously referred as mentation
(Goldman-Rakic, 1996) or “dynamic evaluation lookahead” (Van
Der Meer and Redish, 2010) based on learned R–O predictions
(Colwill and Rescorla, 1990). We identified the mPFC as playing a
potential role in action outcome prediction. In prior studies, the
mPFC has been implicated in predicting action outcomes (Brown
and Braver, 2005;Valentin et al., 2007; Glascher et al., 2009; Krawitz
et al., 2011) or similarly learning the value of actions (Kennerley
et al., 2006; Rushworth et al., 2007), although previous studies
have not isolated R–O prediction from the actual execution of the
corresponding responses.

Because of the absence of explicit feedback and motor response
during the Imagine condition, our findings in mPFC are unlikely
to be accounted for by models assigning a role for error detection
(Gehring et al., 1993). Our findings of greater ACC activity for
imagining non-rewarded actions, combined with greater motor
cortex activity representing the rewarded action response while
subjects imagined non-rewarded actions, might initially seem con-
sistent with the response conflict model (Botvinick et al., 2001) as
extended to anticipation (Sohn et al., 2007). Nevertheless, mul-
tiple responses can lead to ACC activity even without response
conflict (Brown, 2009), which suggests that ACC may reflect the
anticipated responses and outcomes rather than conflict per se.
Furthermore, anticipatory effects in ACC likewise do not neces-
sarily entail response conflict (Aarts et al., 2008). Another possible
alternative account of ACC activity is that it correlates with time
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FIGURE 3 | Parameter estimates extracted from left and right motor cortex for Imagining Rewarded and Imagining Non-Rewarded outcomes

associated with left and right button presses. ImagineL, ImagineLeft; ImagineR, ImagineRight.

on task (Grinband et al., 2010). We attempted to control for this
by equalizing the duration period for imagining both rewarded
action and non-rewarded action outcomes. However, we cannot
entirely rule out the possibility that participants spent unequal
amounts of time imagining the rewarded action vs. non-rewarded
action options.

Imagining non-rewarded outcomes also produced activation
in the precuneus and superior frontal sulcus. Activations in
these regions might reflect increased imagery/working memory
demands when imagining non-rewarded outcomes while simul-
taneously keeping the rewarded outcome in mind. The precuneus
is a region that has been shown to be involved in various forms of
imagery, such as visuo-spatial imagery (Selemon and Goldman-
Rakic, 1988), episodic memory retrieval (Henson et al., 1999), and
self-processing (Kircher et al., 2000). More relevant to our cur-
rent study, experiments have revealed that the precuneus shows
greater activation to imagined motor actions as opposed to actual
motor executions, specifically in the case of imagined finger move-
ments (Gerardin et al., 2000; Hanakawa et al., 2003). Additionally,
the superior frontal sulcus is strongly related to working memory,

especially in the spatial domain (Courtney et al., 1998). Taken
together, the observed effect in the ACC may be part of a larger
network of brain regions involved in the predicting the outcomes
of imagined actions more generally.

Given the above, our results are consistent with a compre-
hensive computational model of mPFC as anticipating and then
evaluating the outcome of planned actions. We have recently devel-
oped a new model of mPFC, the predicted response–outcome
(PRO) model, according to which R–O predictions are gener-
ated and subsequently evaluated against actual outcomes in the
mPFC (Alexander and Brown, 2011). A key prediction of the
model is that mPFC (and especially ACC) signals a prediction
of the anticipated outcome of an action, which may be sub-
sequently compared against the actual outcome. In the model,
discrepancies between actual and predicted action outcomes form
the basis of the error effect in mPFC. These discrepancy signals
are not limited to errors; they also signal surprisingly good out-
comes (Jessup et al., 2010). There is ample evidence that surprising
action outcomes are detected in part by ACC in monkeys (Ito
et al., 2003; Hayden et al., 2011) and humans (Nee et al., 2011).
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Table 1 | Summary of activations for whole-brain analysis. Coordinates are reported in MNI space, and cluster size is given in number of contiguous

voxels. All reported activations pass a cluster-corrected threshold of p < 0.05.

Brain region (TD) (MNI) Z -score Cluster corrected p-value Cluster size

X Y Z

IMAGINENON-REWARD–IMAGINEREWARD

Left anterior cingulate cortex −10 8 46 4.21 <0.05 360

Left precuneus −12 −62 42 3.66 <0.05 264

Left superior frontal sulcus −26 −2 42 3.41 <0.05 263

Right precuneus 14 −64 24 3.27 <0.05 434

Nevertheless, two theoretical questions remained open. First, it
was unclear where the R–O predictions might originate from in
humans, though at least stimulus if not action value may be repre-
sented in the OFC of humans (Valentin et al., 2007; Glascher et al.,
2009), and actions may be simulated in the precuneus and supe-
rior frontal sulcus (Courtney et al., 1998; Gerardin et al., 2000).
Our results are consistent with the outcome predictions originat-
ing from within the mPFC, although these are likely derived from
component information in other regions such as the precuneus
and superior frontal sulcus. Second, it was unclear whether the
R–O predictions would be represented in the mPFC even when
action execution was not imminent. Our results are consistent
with the PRO model predictions and indicate that mPFC activ-
ity may reflect a subjective prediction of action outcomes. The
present results suggest that these action outcome predictions are
present even when action execution is merely imagined and not
imminent. The region that responds to imagined errors overlaps
with the region that responds to actual errors, which is consistent
with a partial overlap between regions that predict outcomes and
regions that evaluate actual outcomes. These findings, combined
with prior evidence that mPFC activity is key to risk avoidance
(Brown and Braver, 2005, 2007; Magno et al., 2006), are consistent
with proposals that mPFC is a region crucial to the ability to antic-
ipate and avoid adverse consequences even when a risky action is
not planned to be executed immediately. Indeed, over-activity of
the mPFC and especially ACC appears to be a key ingredient in

obsessive–compulsive disorder (Machlin et al., 1991), in which the
excessive urge to avoid potential dangers may be experienced even
when no action is otherwise imminent.

As a whole, the results are consistent with the PRO model
account of the mPFC as involved in predicting the potential out-
comes of an action. The results suggest that them PFC evaluates
potential outcomes with a view toward guiding decisions among
possible actions even when action is not imminent. Our results
provide a view of the networks involved in guiding decisions about
actions and especially how those networks function when dis-
sociated from action execution. These networks are central to a
number of clinical disorders, and a better understanding of their
role is urgent given that the impaired ability to think about and take
into account the outcomes or consequences of actions is a hallmark
of various clinical disorders such as obsessive–compulsive compul-
sive disorder, schizophrenia, and drug abuse (Petry and Casarella,
1999; Bechara et al., 2002). The identification of the neural mecha-
nisms involved in prospective decision-making has the potential to
inform more effective pharmacological and cognitive treatments
in patient populations.
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