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In decision from experience, the source of probability information affects how probability
is distorted in the decision task. Understanding how and why probability is distorted is a
key issue in understanding the peculiar character of experience-based decision. We con-
sider how probability information is used not just in decision-making but also in a wide
variety of cognitive, perceptual, and motor tasks. Very similar patterns of distortion of prob-
ability/frequency information have been found in visual frequency estimation, frequency
estimation based on memory, signal detection theory, and in the use of probability informa-
tion in decision-making under risk and uncertainty. We show that distortion of probability
in all cases is well captured as linear transformations of the log odds of frequency and/or
probability, a model with a slope parameter, and an intercept parameter. \We then consider
how task and experience influence these two parameters and the resulting distortion of
probability. We review how the probability distortions change in systematic ways with task
and report three experiments on frequency distortion where the distortions change sys-
tematically in the same task. We found that the slope of frequency distortions decreases
with the sample size, which is echoed by findings in decision from experience. We review
previous models of the representation of uncertainty and find that none can account for
the empirical findings.
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Estimates of the frequency of events by human observers are typi-
cally distorted. In Figure 1A we re-plot data from one of the earliest
reports of this phenomenon (Attneave, 1953). Attneave asked par-
ticipants to estimate the relative frequency of English letters in
text and Figure 1A is a plot of their frequency estimates versus
actual frequency. Although participants had considerable expe-
rience with English text, the estimates were markedly distorted,
with the relative frequency of rare letters overestimated, that of
common letters, underestimated.

Such S-shaped distortions' of relative frequency and probabil-
ity are found in many research areas including decision under risk
(for reviews see Gonzalez and Wu, 1999; Luce, 2000), visual per-
ception (Pitz, 1966; Brooke and MacRae, 1977; Varey et al., 1990),
memory (Attneave, 1953; Lichtenstein et al., 1978),and movement
planning under risk (Wu et al., 2009, 2011).

Figure 1B shows an example from decision under risk (Tversky
and Kahneman, 1992). Different participants in the same experi-
ment can have different distortions (Gonzalez and Wu, 1999; Luce,
2000) and a single participant can exhibit different distortion pat-
terns in different tasks (Brooke and MacRae, 1977; Wu et al., 2009)

'We use the term “distortion” to cover transformations in probability or relative
frequency implicit in tasks involving probability or relative frequency. We use “S-
shaped” to refer to both S-shaped and inverted-S-shaped. Precisely, Attneave’s (1953)
case is an inverted-S-shaped distortion.

or in different conditions of a single task (Tversky and Kahneman,
1992). We currently do not know what controls probability distor-
tion or why it varies as it does. Gonzalez and Wu (1999) identified
this issue as central to research on decision under risk.

We use a two-parameter family of transformations to char-
acterize the distortions of frequency/probability. This family of
distortion functions is defined by the implicit equation,

Lo (m (p)) = v Lo (p) + (1 —y) Lo (po) 1)

where p denotes true frequency/probability, nt(p) denotes the

corresponding distorted frequency/probability estimate and,

Lo(p) = log —— @)
l—p

is the log odds (Barnard, 1949) or logit function (Berkson, 1944).

The transformation is an S-shaped curve (examples shown in both

panels of Figure 2).

The two parameters of the family are readily interpretable. The
parameter v in Eq. 1 is the slope of the linear transformation and
the remaining parameter py is the “fixed point” of the linear trans-
formation, the value of p which is mapped to itself. To show this,
we need only set p = py and simplify to get,

Lo(m(po)) = yLo(po) + (1 —v)Lo(po) = Lo(po).  (3)
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FIGURE 1 | S-shaped distortions of frequency estimates. (A) Estimated
relative frequencies of occurrence of English letters in text plotted versus
actual relative frequency from Attneave (1953). (B) Subjective probability of
winning a gamble (decision weight) plotted versus objective probability
from Tversky and Kahneman (1992). R? denotes the proportion of variance
accounted by the fit.
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FIGURE 2 | Demonstration of the effects of varying the parameters y
and p,. The parameter p, in the LLO function is the “fixed point” of the
transformation, the value of p which is mapped to itself. The parameter vy, is
the slope of the linear transformation on log odds scales, and on linear
scales, is the slope of the curve at the crossover point p,. Left: p, fixed at
0.4 and y varied between 0.2 and 1.8. Note that the line at y=1 overlaps
with the diagonal line, i.e., no distortion of probability. Right: y fixed at 0.6
and p, varied between 0.1 and 0.9.

Since Lo() is invertible, m(pg) =po. We refer to py as the
crossover point.

In Figure 2 we illustrate more generally how the two parame-
ters affect the shape of the distortion function, plotting 1 against
p on linear scales. The transformation maps 0-0, 1-1, and py to
Po- At point (pg, po), the slope of the curve equals y. When y=1,
1t(p) = p, the curve overlaps with the diagonal line, that is, there is
no distortion at all. When y > 1 and 0 < py < 1 we see an S-shaped
curve. When 0 <y < land 0 < py < 1 we see an inverted-S-shaped
curve. When the crossover point py is set to either 0 or 1, the curve
is no longer S-shaped but simply concave or convex.

This family of functions, with a slightly different parameteriza-
tion, has been previously used to model frequency distortion (Pitz,
1966). In decision under risk or uncertainty, it has been used to
model probability distortion (Goldstein and Einhorn, 1987; Tver-
sky and Fox, 1995; Gonzalez and Wu, 1999). A one-parameter form

without the intercept term was first used by Karmarkar (1979) to
explain the Allais paradox (Allais, 1953). Following Gonzalez and
Wu (1999) we refer to this family of functions as “LLO.”

The LLO function we use is just one family of the functions that
can capture the S-shaped transformations. Prelec (1998) proposed
another family of functions, which, in most cases, are empirically
indistinguishable from the LLO function (Luce, 2000). We return
to this point below.

The present paper is organized into four sections. In
Section “Ubiquitous Log Odds in Human Judgment and Deci-
sion,” we demonstrate good fits of the LLO function to fre-
quency/probability data in a wide variety of experimental tasks.
We retrieved data for p and = from tables or figures of published
papers and re-plotted them on the log odds scales. The parameters
(y and po) and goodness-of-fit (R?) of the LLO fit are shown on
each plot. We see dramatic differences in y and pg across tasks
and individuals. We are concerned with two questions: how can
we explain the LLO transformation? What determines the slope
y and crossover point po? We address these two questions in the
following sections.

We conducted three experiments to investigate the factors that
influence y and pg. We report them in Section “What Controls
the Slope and the Crossover Point?” The task we used was to
estimate the relative frequency of a category of symbols in a
visual display. We observed systematic distortions of relative fre-
quency consistent with the LLO function and identified several
factors that influence y and pg. We discuss the results in the
light of recent findings in decision under risk, especially those
in the name of “decision from experience” (Hertwig et al., 2004;
Hau et al., 2010).

Although no attempts have been made to explain the various
S-shaped distortions of frequency/probability in one theory, there
are quite a few accounts for the distortion in one specific task
or area. In Section “Previous Accounts of Probability Distortion,”
we review these theories or models and contrast them with the
empirical findings summarized in Sections “Ubiquitous Log Odds
in Human Judgment and Decision” and “What Controls the Slope
and the Crossover Point?”

In Section “LLO as the Human Representation of Uncertainty,”
we argue that log odds is a fundamental representation of fre-
quency/probability used by the human brain. The LLO transfor-
mation in various areas is not coincidence but reflects a common
mechanism to deal with uncertainty.

UBIQUITOUS LOG ODDS IN HUMAN JUDGMENT AND
DECISION

We now demonstrate that the subjective frequency/probability in
a wide variety of tasks can be fitted by the LLO function with two
parameters y and py. In the accompanying figures, we plot sub-
jective frequency/probability versus true frequency/probability on
log odds scales. On these scales the LLO function is a straight line
with slope y and crossover point pg. Black dots denote data points.
The blue line denotes the LLO fit. When you read the plot, note
how different y and pg can be for different tasks or individuals.
These plots pose quantitative tests for any theory that is aimed at
accounting for probability distortions.
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FIGURE 3 | Linear in log odds fits: frequency estimates. The two data
sets in Figures 1A,B are re-plotted on log odds scales as (A,B),
respectively. The blue line is the best-fitting LLO fit. R? denotes the
proportion of variance accounted by the fit. The S-shaped distortions of
frequency/probability on linear scales in Figures 1A,B are well captured by
the LLO fits.

FREQUENCY ESTIMATION

We introduced Attneave (1953) earlier as an example of overesti-
mation of small relative frequency and underestimation of large
relative frequencies. In his experiment, participants estimated the
relative frequency of each letter in written English (Figure 1A).
While a linear fit could only account for 63% of the variance, the
LLO function fitted to the same data transformed in Figure 3A
accounts for 77% of the variance.

Note that the relative frequency of even the most common letter
“e”) is less than 0.15. Intriguingly, the estimated crossover point
Do, 0.044, for Attneave’s (1953) data is not far from 1/26 (=0.039),
the reciprocal of the number of letters in the alphabet. We return
to this point later.

Another impressive example is Lichtenstein et al. (1978). Par-
ticipants were given a list of 41 possible causes of death in the US,
such as flood, homicide, and motor vehicle accidents (MVA). Par-
ticipants were asked to estimate the frequencies of the causes. The
true frequency of one cause was provided to participants as a refer-
ence. One group of participants was provided with the frequency
of Electrocution (1000) as the reference and a second group, the
frequency of MVA (50000). We divided the true frequencies and
estimated frequencies (averaged across participants) by the US
population (2.05 x 10%) to obtain the relative frequencies, p and
1t. We noticed that although some specific causes were unreason-
ably overestimated relative to others (e.g., floods were estimated
to take more lives than asthma although the latter is nine times
more likely), the overestimation or underestimation of relative
frequency of all causes as a whole can be satisfactorily accounted
by the LLO function. Figure 4A shows the LLO fits for the two
groups.

In the above two examples, participants’ estimation of fre-
quency was based on their memory of events (e.g., reading of
a case of lethal events on the newspaper). To show the LLO trans-
formation is not unique to memory nor to sequential presentation
of events, our third example is Varey et al. (1990), which demon-
strates an LLO transformation in frequency estimation from one
visual stimulus. The task was to estimate the relative frequency of

either black or white dots among an array of black and white dots.
White dots were always less than half of the total number of dots.
Eleven levels of relative frequency were used. Participants reported
the relative frequency immediately after they saw the visual dis-
play. Varey et al. (1990) found considerable distortion of relative
frequency. Figure 4B shows the LLO fits separately for participants
who estimated the relative frequency of white dots and those who
estimated black dots.

CONFIDENCE RATING
Confidence rating refers to the task where participants estimate
the probability of correctness or success of their own action. For
example, in Gigerenzer et al. (1991), participants answered forced-
choice questions like “Who was born first? (a) Buddha or (b)
Aristotle” and then chose for each question how confident they
were to be correct: 50,51-60, 61-70, 71-80, 81-90, 91-99, or 100%
confident. Participants choosing 51-60% were counted to be 55%
confident about the answer, and so on. Converted to proportion,
the rated confidence is a counterpart of estimated probability, .
The true probability, p, in the confidence rating task is defined
as the relative frequency to be correct for a specific choice of
confidence level. We re-plot the representative set condition of
Gigerenzer et al. (1991) Figure 6 in Figure 5A. The slope y of
the LLO fit is greater than one. That is, an underestimation of
small probability (the probability of the harder task) and overes-
timation of large probability (the probability of the easier task). A
qualitative description of this phenomenon is usually referred as
a hard—easy effect. This pattern is the reverse of that of the above
examples of frequency estimation tasks. We discuss this difference
later.

Gigerenzer et al. (1991) is an example of human confidence on
a cognitive task. Similar LLO transformations are found in confi-
dence ratings in motor tasks. McGraw et al. (2004) required par-
ticipants to attempt basketball shots and give a confidence rating
before each attempt. Their results are re-plotted as Figure 5B.

DECISION UNDER RISK OR UNCERTAINTY
A classical task of decision under risk is to choose between two
gambles or between one gamble and one sure payoff. Kahne-
man and Tversky (1979) proposed that the subjective probability
used in decision-making, a.k.a. the decision weight function?, is a
non-linear function of the probability stated in the gamble.

Based on their choices between different gambles and different
sure payoffs, participants’ decision weight (a counterpart of ) for
any specific stated probability (p) can be estimated. In Figures 1B
and 3B, we re-plot the decision weight for gains of Tversky and
Kahneman (1992) against stated probability on linear scales and
log odds scales. The LLO fit explains 97% of the variance, with
vy = 0.60 and py = 0.40.

The data presented in most decision-making studies are aver-
aged across participants. As an exception, Gonzalez and Wu (1999)
elicited decision weights for each individual participants. We

2We use the generic term “probability distortion” to refer to non-linear transfor-
mations of probability in different kinds of task. In decision under risk, the term
“probability weight function” or “decision weight function” would coincide with
what we refer to as probability distortion.
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FIGURE 4 | Linear in log odds fits: frequency estimates from memory
or perception. Estimated relative frequency is plotted against true relative
frequency on log odds scales and fitted by the LLO function. Black dots
denote data. The blue line denotes the LLO fit. R? denotes the proportion
of variance accounted by the fit. (A) Estimated frequency of lethal events
from Lichtenstein et al. (1978). Participants were asked to estimate the
number of occurrences of different causes of death per year in the US. The
actual frequency of one cause was provided as a reference for participants
to estimate the frequencies of the other causes. The relative estimated
and actual frequencies in the plot were the frequencies divided by the

B Varey, Mellers, & Birnbaum (1990)
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then US population. Left: when the frequency of Electrocution (1000) was
given as reference. Right: when the frequency of MVA (motor vehicle
accident, 50000) was given as reference. (B) Estimated frequency of
visual stimuli from Varey et al. (1990). The task was to estimate the relative
frequency of black or white dots among a visual array of black and white
dots. The proportion of black dots was larger than the proportion of white
dots. Two groups of participants respectively estimated the relative
frequency of white dots (small p) and black dots (large p). Left: the white
dots group (p < 0.5) was estimated. Right: the black dots group (p > 0.5)
was estimated.

re-plot their results on log odds scales in Figure 6A. Each panel
is for one participant. The large individual differences are impres-
sive. The slope y ranges from 0.17 to 0.82, with a median of 0.30.
The crossover point pg ranges from 0.26 to 0.98, with a median of
0.46. The only common point across participants seems to be that
all the slopes are lesser than one.

When the probabilities of possible consequences of a decision
are known, it is decision under risk. When the probabilities are
unknown, it is decision under uncertainty. Tversky and Fox (1995)
compared probability distortions in decision under risk versus
uncertainty. We re-plot their Figures 7-9 on log odds scales in
Figure 6B. In the left panel (decision under risk), the probability
associated with a gamble, p, was explicitly stated. In the middle
and right panels (decision under uncertainty), the probability p

was the probability of a specific event in Super Bowl or Dow-Jones
and came from participants’ own judgments. Similar probability
distortions are revealed in the three panels.

SIGNAL DETECTION THEORY

Signal detection theory (Green and Swets, 1966/1974) is an appli-
cation of statistical decision theory (Blackwell and Girshick, 1954)
to deciding whether a signal is present. In each trial, the observer
makes the decision based on her perception of the stimulus. There
are four possible outcomes: hit (correctly say “yes” at signal pres-
ence), miss (incorrectly say “no” at signal presence), false alarm
(FA, incorrectly say “yes” at signal absence), and correct rejection
(CR, correctly say “no” at signal absence). If each outcome is asso-
ciated with a specific payoff and the prior probability of a signal
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FIGURE 5 | Linear in log odds fits: confidence rating for cognitive and
motor responses. Estimated probability of being correct or successful is
plotted versus the actual probability on log odds scales and fitted by the
LLO function. Black dots denote data. The blue line denotes the LLO fit. R?
denotes the proportion of variance accounted by the fit. (A) Estimated
probability of being correct in general-knowledge questions from
Gigerenzer et al. (1991). Participants first chose an answer for two
alternative general-knowledge questions and then indicated the probability
that the answer was correct. (B) Estimated probability of success in
basketball shooting from McGraw et al. (2004). Participants rated their
probability of success before each basketball shot.

is known, there exists an optimal decision criterion, maximizing
expected gain. This decision criterion is determined by the prior
probability of signal and the specified rewards.

Based on the relative frequencies of hit, miss, FA, and CR, the
actual decision criterion used by the observer can be measured
and the experiment can compare the subject’s decision criterion
with the optimal criterion. Systematic deviations from the opti-
mal decision criterion have been found in many studies (Green
and Swets, 1966/1974; Healy and Kubovy, 1981). It is as if par-
ticipants overestimate the prior probability when it is small and
underestimate the prior probability when it is large.

In Figure 7, we plot Tanner etal.’s (Green and Swets, 1966/1974)
data from an auditory signal detection task for one participant on
log odds scales. Each data point is obtained from a block of 600
trials with a specific probability of signal present. The straight line
is the LLO fit. The slope y of the probability distortion is 0.36.

In a cognitive signal detection task where participants were
asked to classify a number into two categories with different means
(Healy and Kubovy, 1981), a similar slope, 0.30, was found.

SUMMARY

At this moment, you are probably intrigued by the same two ques-
tions as the authors are: why does probability distortion in so
many tasks conform to an LLO transformation? What determines
the slope y and crossover point py?

The plots we present here reflect only part of the empirical
results we have reviewed. To provide a more complete picture, we
clarify the following two points.

First, the slope yof the LLO transformation is not determined
by the type of task. The slope y of the same task can be less than
one under some conditions and greater than one under others, not
to mention the quantitative differences. For example, the typical
distortion in relative frequency estimation is an overestimation

of small relative frequency and underestimation of large relative
frequency, corresponding to y < 1. But in a visual task that resem-
bles Varey et al. (1990), Brooke and MacRae (1977) found the
reverse distortion pattern: an underestimation of small relative
frequencies and overestimation of large relative frequencies.

In decision-making under uncertainty, a reversal is reported
in Wu et al. (2009), where the probability of a specific outcome is
determined by the variance of participants’ own motor errors. The
reverse distortion pattern is also implied in a variant of the clas-
sical task of decision under risk called “decision from experience”
(Hertwig et al., 2004; Ungemach et al., 2009), in which partici-
pants acquire the probability of specific outcomes by sampling the
environment themselves. We will go into more details in the next
section.

Second, the crossover point of the LLO transformation is not
determined by the type of task, either. See the difference between
Attneave (1953) and Lichtenstein et al. (1978).

Luce (2000, Section 3.4.1-3.4.2) discusses the form of the prob-
ability weighting function noting that it is not always S-shaped but
can be a simple convex or concave curve. As we noted above, LLO
with the crossover point set to 0 or 1 can generate such shapes.

While the LLO family provides good fits to all of the data we
have obtained, a two-parameter form of Prelec’s model of the
probability weighting function (Prelec, 1998; Luce, 2000, Section
3.4) also provides good fits (not reported here). We concentrate
on LLO primarily because of the ready interpretability of its para-
meters and its links to current work on the neural representation
of uncertainty discussed below. As Luce (2000) notes, it is difficult
to discriminate competing models of the probability weighting
function in decision under risk by their fits to data.

WHAT CONTROLS THE SLOPE AND THE CROSSOVER POINT?
What controls the slope y and crossover point of the LLO trans-
formation in a specific task? In this section we report three new
experiments on frequency/probability distortions.

Gonzalez and Wu (1999) identified some of the factors that
make decision under risk a less than ideal paradigm for studying
distortions in probability. The most evident is that analysis of data
requires simultaneous consideration of probability distortion and
valuation of outcomes.

The task we consider here is estimation of the relative frequency
of one color of dot among a crowd of two or more colors of dots,
a task used by Varey et al. (1990) and other earlier researchers
(Stevens and Galanter, 1957). The task is illustrated in the two
displays on Figure 8A which consists of 200 (left) or 600 (right)
dots placed at random. In both cases, 20% of the dots are black.
The observer viewed briefly presented arrays like these and judged
the relative frequency of black dots (alternatively, white dots). We
varied the true relative frequencies from trial to trial and fit the
estimated relative frequencies against the true relative frequencies
with the LLO function to obtain y and py. We compared y and py
across conditions.

EXPERIMENT 1: SLOPE

In earlier studies on frequency estimation, some researchers found
that small relative frequencies are overestimated and large relative
frequencies underestimated (Stevens and Galanter, 1957; Erlick,
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FIGURE 6 | Linear in log odds fits: decision under risk or uncertainty.
Decision weight is plotted versus experimenter-stated probability (in decision
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by the LLO function. Black dots denote data. The blue line denotes the LLO
fit. R? denotes the proportion of variance accounted by the fit. (A) Decision
weights of individual participants from Gonzalez and \Wu (1999). Each panel is
for one participant. Participants chose between a two-outcome lottery and a
sure reward. The probability of winning the larger reward of the lottery was
stated as p. Decision weight, the counterpart of subjective probability &, was
inferred from each participant’s choices based on the Cumulative Prospect
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Theory. Re-plotted from Figure 6 of Gonzalez and Wu (1999). (B) Decision
weights from Tversky and Fox (1995). Participants chose between a lottery
offering a probability of a reward or otherwise zero and a sure reward. The
probability of winning the larger reward of the lottery p was stated (left panel),
or estimated by participants themselves as the probability of a specific Super
Bowl prospect (middle panel), or as the probability of a specific Dow-Jones
prospect (right panel). Decision weight, the counterpart of subjective
probability 7, was inferred from participants’ choices based on the Cumulative
Prospect Theory Re-plotted respectively from Figures 7-9 of Tversky and Fox
(1995).

1964; Varey et al., 1990) while others found no distortion or
even the reverse distortion (Shuford, 1961; Pitz, 1966; Brooke
and MacRae, 1977). Different researchers obtained contradictory
results even when the task they used was almost the same (e.g.,
Erlick, 1964; Pitz, 1966). Expressed in the language of LLO, it is a
controversy about the slope y. There is clue in the literature that
the numerosity of samples might play a role.

In Experiment 1, participants estimated the relative frequency
of either black or white dots among black and white dots. Each
participant completed eight blocks. We examined the effects of
two factors on y and pg: experience (block number) and sample
numerosity, N, the total number of dots in a trial, which could be
200, 300, 400, 500, or 600.

Methods

Participants. FEleven participants, seven female and four male,
participated. Six of them estimated the relative frequency of
black dots, the remaining five, white. One additional partici-
pant was excluded from the analysis because of marked inaccu-
racy. All participants gave informed consent and were paid $12/h
for their time. The University Committee on activities involving
human subjects (UCAIHS) at New York University approved the
experiment.

Apparatus and Stimuli. Stimuli were black and white dots dis-
played on a gray background. They were presented on a SONY
GDM-FW900 Trinitron 24” CRT monitor controlled by a Dell
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FIGURE 7 | Linear in log odds fit: signal detection theory. Estimated
probability of signal present is plotted against the true probability on log
odds scales for one participant. Black dots denote data. The blue line
denotes the LLO fit. R? denotes the proportion of variance accounted by
the fit. InTanner et al. (1956), c.f. Green and Swets (1966/1974), participants
were asked to report whether a sound signal was present or absent.
Estimated probability was inferred from the participant’s decision criterion
based on signal detection theory. Data are from Table 4-1 of Green and
Swets (1966/1974).

Pentium D Optiplex 745 computer using the Psychophysics Tool-
box (Brainard, 1997; Pelli, 1997). A chinrest was used to help
maintain a viewing distance of 40 cm. The dots were randomly
scattered uniformly within a 17° x 17° area at the center of screen.
Each dot had a nominal diameter of 0.26°.

Procedure. On each trial the display of black and white dots was
presented for 1.5s. Participants were asked to estimate the relative
frequency of black or white dots. Their estimates were numbers
between 1 and 999 interpreted as their estimate of relative fre-
quency out of as 1000. Each participant made estimates for only
one color of dots (black or white) and the color assigned to each
participant was randomized. Participants were encouraged to be
as accurate as possible. No feedback was given.

Trials were organized into blocks of 100 trials. In each block all
of the relative frequencies 0.01,0.02, . . ., 0.99 except 0.50 occurred
once and 0.50 occurred twice. The total number of dots (numeros-
ity, N) in a display could be 200, 300, 400, 500, or 600, with each
numerosity occurring in 20 trials of each block. Their order within
a block was randomized. Each participant completed two sessions
of four blocks on two different days, completing a total of two ses-
sions x four blocks x 100 trials = 800 trials. Before the first block
of each session there were five trials of practice.

Results
Effect of experience. The experimental blocks were numbered
from 1 to 8 in order. We refer to block index as experience. We
fitted the estimated relative frequency to Eq. 1 separately for each
participant and each block and then averaged the coefficients y
and pg across the 11 participants.

Starting from slightly less than one, the slope y became shal-
lower with experience (Figure 8B), dropping by 16% from Block

1 (0.91) to Block 8 (0.76). A repeated-measures ANOVA showed
a significant effect of experience on y, F(7,70) =5.59, p < 0.0001,
nlz, = 0.36. Post hoc analyses using Tukey’s honestly significant
difference criterion at 0.05 significance level indicated that Block
1 had a significantly larger y than all the other blocks except
Block 2.

The crossover point py fluctuated around 1/2 (0.5) in all
the blocks, ranging from 0.42 to 0.55. According to a repeated-
measures ANOVA, py did not vary significantly across blocks,
F(7,70) =0.69, p=0.68, nlz, = 0.06. We concluded that expe-
rience affected the slope parameter y but not the crossover
point pg.

Effect of sample numerosity. We used a similar procedure to
analyze the effect of sample numerosity as we used in the effect of
experience above.

As sample numerosity increased, the slope y declined
(Figure 8C). The vy for displays of 600 dots (0.73) was 18% smaller
than that of 200 dots (0.88). A repeated-measures ANOVA showed
a significant effect of sample numerosity on vy, F(4,40) =17.71,
p <0.0001, 7112) = 0.64. Post hoc analyses using Tukey’s honestly
significant difference criterion at 0.05 significance level indicated
significant decline from 200 to all the larger numerosities, and
from 300 to 500 and 600.

Moreover, the relationship of y to N can be best fitted with a
function with one-parameter C:

y = log C/logN (4)

A least-squares fit of Eq. 4 captured 99% of the variance of y
(Figure 8D). The estimate for the parameter C was 104.

The crossover point py was 0.50, 0.54, 0.51, 0.68, 0.68, respec-
tively for the numerosity of 200, 300, 400, 500, 600. Similar to
experience, the effect of sample numerosity failed to reach signifi-
cance, F(4,40) =2.17, p=0.08, 11127 = 0.18. To conclude, we found
that sample numerosity affected the y but found only a marginally
significant effect of sample numerosity on py.

EXPERIMENT 2: CROSSOVER POINT
What determines the crossover point pp? In Experiment 1, py was
around 0.5 and little affected by experience or sample numeros-
ity. But recall that the estimation of the relative frequency of the
26 English letters (Attneave, 1953) ends up with py = 0.044, very
different from 0.5 and coincidently not far from 1/26. Fox and
Rottenstreich, 2003; See et al., 2006) suggested that when there are
m categories, the crossover point should be pg = 1/m.
Experiment 2 was focused on testing the prediction of
po =1/m. The results of Experiment 1 were consistent with the
prediction where there were two categories of dots, black and
white. In Experiment 2, we set m=4 (participants were asked
to estimate the relative frequency of a specific color among four
colors of dots).

Methods

Participants. Ten participants, nine female and one male, par-
ticipated. None had participated in Experiment 1. All reported
normal color vision and passed a color counting test. All subjects
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FIGURE 8 | Slope of distortion in relative frequency estimation. The
methods and results of Experiment 1. (A) Examples of the relative frequency
task: what proportion of the dots are black? The left display contains 200 dots
in total, the right, 600. In both displays, 20% of the dots are black. (B) Effect
of experience. The mean slope y across 11 participants is plotted against block
index, one to four for the first session, five to eight for the second session.
Later blocks are supposed to be associated with more experience. More
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experience led to greater distortion (y further from 1). Error bars denote SEs
of the mean. (C) Effect of sample numerosity. The slope y across 11
participants is plotted as a function of sample numerosity N (the total number
of dots displayed in a trial). Larger sample numerosity resulted in greater
distortion (y further from 1). Error bars denote SEs of the mean. (D) The
function of the mean y to sample numerosity, N. Dots denote data. Solid line
denotes the fit of y as proportional to the reciprocal of log N.

gave informed consent and were paid $12/h for their time. The
UCAIHS at New York University approved the experiment.

Apparatus and stimuli. The same as Experiment 1, except that
dots could any of four colors, red, green, white, or black.

Procedure. In each trial a display of black, white, red, and green
dots were presented for 3s. Afterward one of the four colors was
randomly chosen and participants were asked to estimate the rel-
ative frequency of dots of this specific color. As in Experiment 1,
participants input a number between 1 and 999 as the numerator
of 1000 and no feedback was given.

In any trial, the relative frequencies of the four colors were
multinomial-like random distributions centered at (0.1, 0.2, 0.3,
0.4) and each relative frequency was constrained to be no less
than 0.02. The order of relative frequencies for different colors
was randomized. The total number of dots in a display could be
400, 500, or 600, each numerosity occurring in 32 trials of a block.
Each participant completed one session of five blocks. That is, five
blocks x 96 trials = 480 trials in total.

Results

Fox and Rottenstreich, 2003; See et al., 2006) suggested the
crossover point of 1/m but reasoned that it is because people are
using a “guessing 1/m” when they are totally ignorant of the relative
frequency. In our case, because the to-be-estimated color was indi-
cated after the display of dots, there is a good chance participants
might fail to encode the color in question.

In an attempt to further test the “guessing 1/m” heuristic, we
considered an additional measure. The preferred response of a
participant was defined as the value (rounded to the second digit
after the decimal point) that the participant used most often in
estimation. The actual relative frequencies in all trials were close
to uniformly distributed within the range of [0.06, 0.36] and had
a much lower density outside. If on some proportion of trials
observers defaulted to the fixed prior value 0.25, as suggested by the
heuristic, we would expect to find a “spike” in observers’ estimates
of relative frequency at that value.

For each participant, we left out the trials whose estimated rel-
ative frequencies were within preferred response & 0.04 and fit the
remaining trials to Eq. 1 to get the crossover point.
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FIGURE 9 | Evidence for log odds as an inherent representation of
uncertainty. Participants saw pairs of photos of faces. One group of
participants rated the similarity between the two faces in each pair. A second
group judged whether the two persons on each pair were related or not. (A)
The similarity rating of two children faces is a linear transformation of the log
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odds of the two children being judged to be related. Reproduced from
Maloney and Dal Martello (2006). (B) The similarity rating of two adult faces is
a linear transformation of the log odds of the two adults being judged to be
related. Reproduced from DeBruine et al. (2009). R? denotes the proportion
of variance accounted by the linear fit. See text for implications.

For the 10 participants, we computed the mean and 95% con-
fidence interval separately for crossover point and for preferred
response. The crossover point was 0.22 £ 0.07, indistinguishable
from 1/4 (0.25). Note that it was much lower than 0.5. If this were
the result of the “guessing 1/4” heuristic, we would expect a positive
correlation between crossover point and preferred response. How-
ever, no significant correlation was detected, Pearson’s r =0.29,
p=0.42. Moreover, the preferred response was 0.18 & 0.06, lower
than 1/4 (0.25).

We concluded that the prediction of py = 1/m, was supported,
but it was unlikely to be the result of the heuristics discussed above.

EXPERIMENT 3: SLOPE AND DISCRIMINABILITY

Tversky and Kahneman (1992) and Gonzalez and Wu (1999) con-
jecture that the shape of the probability weighting function is
controlled by the “discriminability” of probabilities. In Experi-
ment 3, we tested the “discriminability hypothesis” for relative
visual numerosity judgments. We measured the just noticeable dif-
ference (JND) of relative frequency at 0.5 for the five numerosities
used in Experiment 1. If the shallower slope for a larger sample
numerosity is caused by a lower discriminability (as consistent
with the intuition that a larger numerosity makes the estimation
task more difficult), we would expect that the JND increases with
an increasing numerosity.

Methods

Participants. Ten participants, seven female and three male,
participated. None had participated in Experiment 1 or 2. One
additional participant was excluded for failing to converge in the
adaptive staircase procedures we used to measure JND. All subjects

gave informed consent and were paid $12/h for their time. The
UCAIHS at New York University approved the experiment.

Apparatus and stimuli. Same as Experiment 1.

Procedure. On each trial two displays of black and white dots were
presented, each for 1.5 s, separated by a blank screen of 1 s. Half of
the participants judged which display had a higher proportion of
black dots, and the other half, white dots.

Asin Experiment 1, the total number of dots (numerosity, N) in
a display could be 200, 300, 400, 500, or 600. The two displays in a
trial always had the same numerosity. To avoid participants com-
paring the number of black or white dots of the two displays rather
than judging the proportion, we jittered the actual numerosity of
each display randomly within the range of +4%.

The proportion of black or white dots of one display was fixed
at 0.5. The proportion of the other was adjusted by adaptive stair-
case procedures. For each of the five numerosity conditions, there
was one 1-up/2-down staircase of 100 trials, resulting in 500 trials
in total Each staircase had multiplicative step sizes of 0.175,0.1125,
0.0625, 0.05 log unit, respectively for the first, second, third, and
the remaining reversals. The five staircases were interleaved. Five
practice trials preceded the formal experiment.

Results

The 1-up/2-down staircase procedure converges to the 70.7% JND
threshold. For each participant and numerosity condition, we aver-
aged all the trials after the first two reversals to compute the thresh-
old. The mean threshold across participants was 0.57, 0.57, 0.56,
0.56, 0.55, respectively for the numerosity of 200, 300, 400, 500,
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600. According to a repeated-measures ANOVA, there was no sig-
nificant difference in the JND threshold for different numerosities,
F(4,36) =2.05, p=0.11, nf, = 0.18. Differences in discriminabil-
ity are not responsible for the differences in probability distortion
observed in Experiment 1.

DISCUSSION

As demonstrated in Section “Ubiquitous Log Odds in Human
Judgment and Decision,” the distortions of relative frequency
and/or probability in a variety of judgment and decision tasks are
closely approximated by a linear transformation of the log odds
with two parameters, the slope y and crossover point py (LLO,
the Eq. 1). We investigated in three experiments what determines
these two parameters of the distortion of relative visual frequency.

In Experiment 1 we found that slope y decreased with increas-
ing experience or larger sample numerosity. Intuitively, these
trends are surprising, because an accumulation of experience or
a larger sample size should reduce “noise” and thus lead to more
accurate estimation. Interesting, the slope y was proportional to
the reciprocal of log N. We cannot find a satisfactory explanation
for these effects in the literature. However, there is a parallel sam-
ple numerosity effect emerging in an area of decision under risk.
We explore the implications under the subtitles below.

In both Experiment 1 and 2 we found that the crossover point
po agrees with a prediction of pg = 1/m. Our results are consistent
with the category effect found in Fox and Rottenstreich, 2003; See
et al., 2006), but we also showed that this is unlikely to be due to
the “guessing 1/m” heuristic they suggested.

Decisions from experience

Recently, research on decision-making has begun to focus on how
the source of probability/frequency information affects probabil-
ity distortion. This new research area contrasts “decision from
experience” (Barron and Erev, 2003; Hertwig et al., 2004; Hadar
and Fox, 2009; Ungemach et al., 2009; for review, see Rakow and
Newell, 2010), to traditional “decision from description.”

What are the implications of our results for decision from
experience? A typical finding in decision from experience is an
underweighting of small probabilities (e.g., Hertwig et al., 2004),
as opposed to the overweighting of small probabilities in decision
from description (Luce, 2000). Several authors (Hertwig et al.,
2004; Hadar and Fox, 2009) conjectured that this reversal is due
to probability estimates based on small samples. Consistent with
their conjecture, Hau et al. (2010) found that the magnitude of
underweighting of small probabilities decreased as sample size
increased. With a very large sample size, Glaser et al. (in press)
even obtained the classical pattern of an overweighting of small
probabilities.

In the language of LLO, the larger the numerosity (sample size),
the shallower the slope of the probability distortion (underweight-
ing small probabilities corresponds to a slope of over one). Note
that this effect of sampling size on the probability distortion in
decision from experience qualitatively parallels to what is found in
Experiment 1. And according to Eq. 4, the empirical fit we found
for y, when N = C, there would be no probability distortion. We
conjecture that for decision from experience, there exists a specific
sample size at which there is no distortion of probability.

There is another hint in the literature that the highly ordered
changes in probability distortion that we observe in visual
numerosity tasks would also show up in decision-making tasks
where probability information is presented as visual numeros-
ity. Denes-Raj and Epstein (1994) asked participants to choose
between two bowls filled with jelly beans, one large (100 jelly
beans) and one small (10 jelly beans). Participants were explic-
itly told the proportion of winning jellybeans in both bowls by
the experimenters but they still showed a strong preference for
the large bowl with 60% of participants choosing a large bowl
with 9/100 winning jellybeans over a small bowl with 1/10 win-
ning jellybeans. This outcome suggests an effect of numerosity
qualitatively consistent with our results.

We have also shown that we can systematically manipulate
the crossover point py in a relative visual numerosity task. The
crossover point is often assumed not to vary in decision-making
under risk (Tversky and Kahneman, 1992; Tversky and Fox, 1995;
Prelec, 1998). Our results lead to the conjecture that, in decisions
with relative frequency signaled by displays with m > 2 categories,
the crossover point will vary systematically.

Confidence ratings

Gigerenzer (Gigerenzer et al., 1991; Gigerenzer, 1994) distin-
guished between human reasoning about single-event probability
and frequency. When asked to rate their confidence about one
event, people’s default response was to treat the event as a special
one that never occurred before and will never occur after, rather
than to group the event into a category of events whose frequency
is observable.

Probability distortion in confidence rating typically has a slope
of y>1 (see Figure 5), as reversed to the typical pattern in fre-
quency estimation and decision-making. We conjecture this to be
a special case of the sample numerosity effect. That is, y > 1 when
the sample numerosity is very small. It was as if people treat the
to-be-rated action as a single-event and sampled very few previous
events to making the confidence rating.

PREVIOUS ACCOUNTS OF PROBABILITY DISTORTION

Why do humans distort frequency/probability in the ways that
they do? The subjective probability may deviate from the true
probability for many reasons, but no simple reason can explain
the S-shaped patterns we have observed.

For example, people might overestimate the frequencies of
the events that attract more media exposure (Lichtenstein et al.,
1978) or are just more accessible to memory retrieval (Tversky
and Kahneman, 1974). But this would not cause a patterned
distortion of all events. People might be risk-averse in order to
maximize biological utility (Real, 1991), or just be irrationally risk-
seeking, but neither risk-averse nor risk-seeking tendencies could
explain the coexistence of overestimation and underestimation of
probabilities.

The S-shaped distortion has received much attention in quite
a few areas. Theories and models have been developed to account
for the S-shaped distortion in a specific area, although little efforts
have been made to build a unified theory for all the areas. In
this section, we briefly describe the representative theories and
models, organizing them by area. Their predictions, quantitative
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or qualitative, on slope, and crossover point of the distortion are
compared with the empirical results we summarized in Sections
“Ubiquitous Log Odds in Human Judgment and Decision” and
“What Controls the Slope and the Crossover Point?”

FREQUENCY ESTIMATION

Power models

Spence’s (1990) power model and Hollands and Dyre’s (2000)
extension of it, the cyclical power model, are intended to explain
the S-shaped patterned distortion in proportion judgment. Pro-
portion here refers to the ratio of the magnitude of a smaller
stimulus to the magnitude of a larger one on a specific physi-
cal scale, such as length, weight, time, and numerosity. Relative
frequency can be regarded as the proportion of numerosity.

The basic assumption is Stevens’ power law: the perceived mag-
nitude of a physical magnitude, such as the number of black dots
in a visual array of different colors of dots, is a power function
of the physical magnitude with a specific exponential. We apply
the power assumption to the estimation of relative frequency as
below. Suppose among N dots, there are n; black dots and n;
other colors of dots. The perceived numerosity would be #{ and
ng, respectively. Accordingly, the estimated relative frequency of
black dots is:

(o)
m= (5)

o o
ny+n,

Dividing both the numerator and denominator of the right side
by N®, we get the perceived relative frequency as a function of the
true relative frequencies:

p(l
It is easy to see this is a variant of LLO (substitute Eq. 6 into Eq. 1)
which predicts y =o and po=0.5. Thus an S-shaped distortion
follows the assumption of Stevens’ power law.

Hollands and Dyre (2000) assumed that the slope of the distor-
tion of the proportion of a specific physical magnitude depends
on the Stevens exponent of the physical magnitude. For instance,
length, area, and volume have different Stevens exponential but
the exponent of each of them is fixed. This prediction has some
difficulties in applying to the estimation of relative frequency. The
experiment we reported in Section “What Controls the Slope and
the Crossover Point?” would imply that the exponent is not fixed
and changes systematically with the total numerosity.

As to the crossover point, Hollands and Dyre (2000) treated it
as an arbitrary value, depending on the reference point available
to the observer at the time of judgment. This is not consistent
with our observation that pg = 1/m, where m is the number of
categories.

Support theory

Tversky et al.’s support theory (Tversky and Koehler, 1994; Rot-
tenstreich and Tversky, 1997) concerns how humans estimate
the probability of specific events. The term degree of support
refers to the strength of evidence for a hypothesis. The estimated

probability of an event is the degree of support for the presence
of the event divided by the sum of the degrees of support for the
presence and absence of the event.

To explain the inverted-S-shaped distortion of relative fre-
quency, Fox and Rottenstreich, 2003; See et al., 2006) added two
assumptions to support theory. First, they assumed that the orig-
inal degree of support for both the presence and absence of an
event are proportional to the corresponding frequencies. Second,
before transforming the degree of support into probability, the log
odds of degree of support is linearly combined with a prior log
odds and the coefficients of the two add up to 1. Following these
two assumptions, the resulting estimated probability has the same
form as the LLO function.

The value of the prior probability was the crossover point. Fox
and Rottenstreich, 2003; See et al., 2006) called this prior the
ignorance prior, echoing the human tendency for equal division
when in total ignorance of probability information. It follows that
Po= 1/m.

However, the weighted addition of a true log odds and a prior
log odds would lead to a y never greater than 1, unless the prior log
odds has a negative weight. Therefore, it cannot explain the y > 1
cases (Shuford, 1961; Pitz, 1966; Brooke and MacRae, 1977).

The slope of the distortion equals the weight assigned to the
true log odds in the combination. Fox and Rottenstreich, 2003;
See et al., 2006) suggested that it is positively correlated with the
confidence level of the individual who makes the estimation. We
consider next model of the distortion of confidence ratings.

CONFIDENCE RATINGS

Calibration model

The calibration model of Smith and Ferrell (1983) attributes the
probability distortion in confidence rating to a misperception of
one’s ability to discriminate between correct and incorrect answers,
or between successful and unsuccessful actions.

The calibration model borrows the framework of signal detec-
tion theory. Correctness and wrongness of an answer, or success
and failure of an action, are considered as two alternative states, i.e.,
signal present and absent. The observer’s confidence, is assumed
to be have a constant mapping to the perceived likelihood ratio
of the two states. If the discriminability between the two states
is perceived to be larger than the true value, small probabilities
would be underestimated and large probabilities overestimated,
amounting to y > 1 (as in Figure 5). If the discriminability were
underestimated, the reverse pattern would show up.

The calibration model does not necessarily lead to an LLO
transformation and does not have any specific predictions for the
selection of slope and crossover point.

Stochastic model

Erev et al., 1994; Wallsten et al., 1997) propose that the over-
and under-confidence observed in confidence ratings are caused
by stochastic error in response. They assume that at a specific
time for a specific event, the participant experiences a degree of
confidence and translates this experience into an overt report of
confidence level by a response rule. The experienced degree of
confidence is the log odds of the true judgment plus a random
error drawn from a Gaussian distribution. The larger the variance
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of the random error, the greater the slope of probability distortion
deviates from one.

With some specific response rules, the S-shaped distortion can
be produced. The predictions of the stochastic model are not
intuitive and are illustrated in their computational simulation.
One of the predictions states that the underestimation of small
probability and overestimation of large probability (i.e., the y > 1
pattern) widely identified in confidence rating tasks, a seemingly
reverse pattern of regression-to-the-mean, is actually a kind of
regression-to-the-mean phenomenon disguised by the way how
the true probability is defined. The true probability in the confi-
dence rating task is usually defined as the actual success rate of
a specific confidence level. That is, successful and unsuccessful
actions are grouped by participants’ confidence rating. Wallsten
etal. (1997) re-analyzed previous empirical studies and show that
if, instead, the true probability of success is computed for each
action as an average across participants, the y > 1 pattern would
be obtained.

However, we doubt this effect of true probability definition can
apply to the confidence rating data of McGraw et al. (2004), in
which the y > 1 pattern holds even when the success rate of bas-
ketball shot is grouped by the distance to the basket rather than by
participants’ confidence rating (not shown in Figure 5B).

DECISION UNDER RISK OR UNCERTAINTY

Adaptive probability theory

Martins (2006) proposed an adaptive probability theory model to
explain the inverted-S-shaped distortion of probability in deci-
sion under risk. The observed distortions, under this account,
reflect a misuse of Bayesian reference. In everyday life, people
observe the frequency of a specific event in finite samples of events.
The observed relative frequency of the event, even in the absence
of observation errors, may deviate from the true probability of
the event due to the random nature of sampling. To reduce the
influence of sampling error, Martin assumes that people intro-
duce a prior sample and combines it with the observed sample by
Bayes’ rule. The resulting estimated probability would be a linear
combination of the observed frequency and the prior probability,
determined by three parameters: the size of the imagined sample
n, the frequency of the event in the prior sample g, the frequency
of the other events in the prior sample b. But Martins (2006) did
not characterize what controls these parameters or motivate the
choice of prior. Martins (2006) further argued that, in the exper-
imental condition, in front of a lottery, e.g., a probability of 0.1
to win $100, participants treat the probability stated by the exper-
imenter not as a true probability, but as an observed frequency
from an imagined sample. The decision weight was the result of
the Bayesian inference for the true probability.

The involvement of a prior could explain why the estimated
probabilities shrink toward a center. However, for any specific n,
instead of a S-shaped transform, the estimated probability would
be a linear function of the observed relative frequency, To over-
come this difficulty, Martins (2006) assumes that sample size n
changes with the observed relative frequency, greater for extreme
probabilities and less for smaller probabilities. Thus, the parame-
ter n is actually not one-parameter and is chosen arbitrarily to
make theory conform to data.

Another difficulty that adaptive probability theory encounters
is the underweighting of small probability observed in studies of
decision from experience (e.g., Hertwig et al., 2004). Although
Martins (2006) did not suggest the theory could be applied to
decisions where the probability information comes from sam-
pling, there is no obvious reason that people would not make
the Bayesian inference with a real sample.

FUTURE DIRECTIONS

In this article we examined probability distortion in human judg-
ment and the factors that affect it. An evident direction for future
research is to develop process-based models of human use of
probability and frequency information. The theories and mod-
els we reviewed above are among those that use specific cognitive
processes to explain the emergency of the S-shaped distortion of
probability (other examples include Stewart et al., 2006; Gayer,
2010, to name a few). While a full treatment of them is beyond
the scope of the current paper, it would be interesting to see
whether any existing process-based models can be modified to
account for the changes in slope and crossover point we have
summarized.

LLO AS THE HUMAN REPRESENTATION OF UNCERTAINTY
We conjecture that log odds to be a fundamental representation
of frequency/probability used by the human brain. Here are a few
pieces of evidence.

PEOPLE ARE LESS BIASED WHEN RESPONDING IN LOG ODDS

Phillips and Edwards (1966) asked participants to estimate the
probability of one hypothesis to be correct among two alternative
hypotheses. There were two types of bags of poker chips, differing
in their proportions of red chips and blue chips. Participants were
informed the proportions. They were given random draws from
one bag and were asked to estimate the probability of each type of
bag the sample came from. Participants responded with devices in
the format of probability, log probability, or log odds. Phillips and
Edwards found that when responding in log odds, participants had
the least deviation from the correct answer.

SIMILARITY RATING AMOUNTS TO READING OUT LOG ODDS

Maloney and Dal Martello (2006) provided evidence of the
involvement of log odds in kinship perception. Participants saw
pairs of photos of children faces. The task of one group of partici-
pants was to judge for each pair whether the children were siblings
or not. The task of the other group was to rate the similarity
between the two faces shown in each pair. The similarity rating of
a pair proved to be proportional to the log likelihood ratio of the
pair to be and not to be sibling (Figure 9A). It is as if participants
were reading out the log likelihood ratio when required to rate the
similarity of two faces. DeBruine et al. (2009) replicated this result
several times using young adult faces (Figure 9B).

A PLAUSIBLE NEURAL REPRESENTATION OF LOG ODDS

Gold and Shadlen (2001, 2002) propose a computational mecha-
nism for neurons to represent the likelihood ratio of one hypothe-
sis against another. Consider the binary decision whether hypoth-
esis h; or hypothesis hy is true. Assume there is a pair of sensory
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neurons: “neuron” and “antineuron.” The firing rate of “neuron,” x,
is a random variable whose distribution is conditional on whether
hy or hyg is true. So does the firing rate of “antineuron,” y. The
random distribution of y conditional on h; is the same as the
random distribution of x conditional on hg, and vice versa. For
many families of random distributions, such as Gaussian, Poisson,
and exponential distributions, Gold and Shadlen prove that the
log likelihood ratio of h; to hy, is a linear function of the firing
rate differences between “neuron” and “antineuron,” x — y. While
Gold and Shadlen were concerned with making a decision between
two alternatives, their proposed neural circuit can potentially be
taken as a representation of uncertainty of frequency in log odds
form. That is, the log odds can be encoded by two neurons as the
difference between their firing rates.

CONCLUDING REMARKS

Log odds has been independently developed to fit psychophysical
data in many areas of perception and cognition over the course of
many years. As early as 1884, Peirce and Jastrow (1885) speculated
that the degree of confidence participants gave to their sensation
difference judgments was proportional to the log odds of their
answers being right. Pitz (1966) used the linear log odds function
as a convenient way to fit the data of estimated frequency to true
frequency.

In the decision area, Karmarkar (1978, 1979) used a one-
parameter linear log odds function to model decision weights.
Goldstein and Einhorn (1987) modified Karmarkar’s equation
to include the intercept parameter, which was followed by later
researchers (Tversky and Fox, 1995; Gonzalez and Wu, 1999; Kilka
and Weber, 2001).
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