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We expand our existing spiking neuron model of decision making in the cortex and basal
ganglia to include local learning on the synaptic connections between the cortex and stria-
tum, modulated by a dopaminergic reward signal. We then compare this model to animal
data in the bandit task, which is used to test rodent learning in conditions involving forced
choice under rewards. Our results indicate a good match in terms of both behavioral learn-
ing results and spike patterns in the ventral striatum. The model successfully generalizes
to learning the utilities of multiple actions, and can learn to choose different actions in
different states. The purpose of our model is to provide both high-level behavioral predic-
tions and low-level spike timing predictions while respecting known neurophysiology and
neuroanatomy.
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INTRODUCTION
The basal ganglia has been widely studied as a decision making sys-
tem. Originally thought of as a system for motor control, it is now
widely believed (e.g., Redgrave et al., 1999) to be a generic action
selection system, receiving input from a broad range of other brain
areas, and producing output that selects particular cognitive or
motor actions to perform. While numerous studies exist correlat-
ing neural behavior within the basal ganglia with various aspects
of reinforcement learning algorithms (e.g., Schultz et al., 1997),
our goal is to produce a detailed computational model using spik-
ing neurons whose properties and connectivity match those of the
real neurological system.

In previous work (Stewart et al., 2010a,b), we have presented a
basic basal ganglia model implemented using spiking neurons, and
have shown that it is capable of performing complex action selec-
tion. That is, it could reliably trigger different actions depending
on state representations in cortex. These actions involved rout-
ing information between different areas of cortex, allowing for the
implementation of basic problem solving behaviors such as the
Tower of Hanoi task (Stewart and Eliasmith, 2011). However, these
initial models involved no learning at all: all synaptic connections
were fixed. For this paper, we add a biologically plausible learn-
ing rule that is modulated by phasic dopamine levels, along with
a set of neural structures in the ventral striatum and substantia
nigra pars compacta (SNc), which compute the reward prediction
error and control phasic levels of dopamine. The result is an action
selection model that learns to perform different actions based on
the current state, and matches neurological data in terms of neural
properties, connectivity, neurotransmitters, and spiking patterns.

DECISION MAKING
Arguably, every part of the brain can be thought of as being a part
of the decision making process. The complete sensory system is

needed to observe the environment and form internal representa-
tions, the motor system is needed to produce behavior, and the rest
of the brain forms the complex state-dependent mapping between
input and output, all of which can be thought of as “decision mak-
ing.” While a laudable goal, a complete model of the whole system
is well outside the scope of this paper, and the topic of our ongoing
research.

Decision making can be broken down into five aspects (see,
e.g., Rangel et al., 2008): representation, valuation, action selec-
tion, outcome evaluation, and learning. In this paper, we present
a neural model that provides a mechanistic explanation of val-
uation (estimating the value of various actions, given the cur-
rent state), action selection (choosing a particular action, given
the predicted values), and learning (updating the valuation sys-
tem based on received rewards). While we do not provide a
mechanism for how brains learn to represent internal and exter-
nal states, we do present a method for distributed represen-
tation of arbitrary state variables that is consistent with what
is known about the cortex. We do not cover outcome eval-
uation here, and rather make the common assumption that
some sort of reward signal is produced elsewhere in the brain.
We also currently assume that there are a fixed set of actions
available to be taken, rather than providing an explanation of
where those actions come from, either developmentally or via
learning.

More formally, we assume that there are neurons representing
the current state s. This state can include both external and inter-
nal state, and can be arbitrarily complex. We also assume there are
a set of actions a1, a2, a3, etc. The decision making systems we
are concerned with here work by computing the value of various
actions given the current state, Q(s, a), and selecting one particular
action based on its Q-value (usually going with the largest Q, for
example).
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EXISTING MODELS
Learning to choose actions based on reward (i.e., reinforcement
learning) is an extensive and well-studied field (e.g., Sutton and
Barto, 1998). While aspects of reinforcement learning have been
used to try to understand the structure of the basal ganglia (e.g.,
Barto, 1995), it is unclear exactly how close this mapping can be
made without detailed neurological models such as the one we
present here. In a review of these basal ganglia models, it has been
noted that researchers need to “model the known anatomy and
physiology of the basal ganglia in a more detailed and faithful
manner” (Joel et al., 2002).

While the neurological detail of basal ganglia models has
improved, it is still the case that the majority of existing models
of the basal ganglia do not use spiking neurons. Instead, they are
composed of idealized rate neurons which use continuous scalar
values as input and output. The general idea is that one“neuron”in
the model can be thought of as a population of actual spiking neu-
rons, so as to not have to worry about the complexities introduced
by a detailed spiking implementation. Frank (2005) presents such
a model of the basal ganglia capable of reinforcement learning
and shows that damaging the model in various ways can produce
behaviors similar to Parkinson’s disease and other basal ganglia
disorders. Stocco et al. (2010) use a similar approach to model
the ability of the basal ganglia to route information between cor-
tical areas, based on the current context. While these models do
choose parameter settings to be consistent with neural findings,
the use of non-spiking neurons limits how closely this match can
be made. Furthermore, these rate neuron models assume that the
only important information passed between neurons is the mean
firing rate, and that all neurons within a population are identi-
cal. One of the goals of our modeling effort is to show that these
assumptions are not necessary.

For spiking models, Shouno et al. (2009) present a basal gan-
glia model that does use spiking neurons, however, it does not
involve learning in any way. Izhikevich (2007) looks at spiking
and learning, but not in the context of the basal ganglia. Instead,
his models emphasize forming pattern associations across time
and are more focused on conditioning-type situations rather than
reinforcement learning. Potjans et al. (2009) have developed a
spike-based reinforcement learning model, but it does not map
onto the basal ganglia. Our model is the first to combine a realistic
spike-based learning rule with a spiking model of the basal ganglia,
such that it is possible for the model to use reinforcement learning
to choose actions.

As is described in more detail in the next section, we base
our basal ganglia model on an existing non-spiking basal gan-
glia model by Gurney et al. (2001). These researchers have further
developed their model, including producing a spiking version
(Humphries et al., 2006) and using it to control a mobile robot
(Prescott et al., 2006). However, they do not include learning in
these models, bypassing the question of how the inputs to the
basal ganglia manage take the state s (represented in cortex) and
compute the estimated utility Q of the various actions.

ACTION SELECTION WITHOUT SPIKES
While it is widely believed that a set of mid-brain structures known
as the basal ganglia are involved in action selection, there is little

consensus as to exactly how this process occurs. For our model,
we adapt a non-spiking model by Gurney et al. (2001), which pro-
vides a precise set of calculations that must be performed in order
to choose an action. Importantly, this model only considers how
to choose an action once we have estimated utility values Q for
each action: we extend the model later in this paper (see Learning
Action Utilities) to learn these utility values from experience. For
now, the input is set of Q-values for all the actions in the current
state, which may be written as [Q(s, a1), Q(s, a2), Q(s, a3), . . .,Q(s,
an)].

The basic calculation required is to find the maximum out of
a set of utility values. For example, if there are three actions, the
input might be [0.4, 0.9, 0.6]. The output consists of another set
of values, one for each action, and all of these values should be
non-zero except for the one action which is chosen. For example,
an output of [0.4, 0, 0.2] would indicate that the second action
is chosen. The reason for this approach is that in the real basal
ganglia, the output is inhibitory, so the idea is that all the actions
except for the chosen one will be inhibited.

To compute this function, the model makes use of the major
components and connections of the basal ganglia, as shown in
Figure 1. Each basic component stores a set of values, one for
each action. The striatum component of the model consists of the
medium spiny neurons which are divided into two groups based
on the proportion of D1 and D2 dopamine receptors. They rep-
resent u and v, which are scaled versions of the value input Q.
The other components in the model are the subthalamic nucleus
(STN), the globus pallidus external (GPe), and the globus pallidus
internal (GPi), which represent x, y, and z, respectively.

The connections between components define particular calcu-
lations, as indicated, where R is the ramp function. For a fixed
input, the output y will converge to a set of values, with one value
at (or near) zero, and the others positive. Importantly, this model

FIGURE 1 | A model of action selection in the basal ganglia (Gurney

et al., 2001). Each area stores N scalar values where N is the number of
actions (for this diagram, N = 3). Inputs are Q(s, a): the utility values for
each action, given the current state. The values affect each other by
performing the computations shown on each connection (where R is the
ramp function), and adding together all their inputs. Given a set of Q-values
for input, the output y should be zero for the action with the largest
Q-value, and positive for the other actions.
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will work for a very broad range of input Q-values and hundreds
of actions. It should also be noted that this model converges very
quickly (generally tens of iterations). A more complete discus-
sion of the dynamics and capabilities of this model can be found
elsewhere (Gurney et al., 2001).

We base our work on this model for three reasons. First, it
provides precise information about the values being stored in the
different areas of the basal ganglia, and the computations that are
needed. Second, the activity of various parts of the model correlate
well to the patterns of activity seen in the basal ganglia of rats in
various conditions (Gurney et al., 2001). Third, the connections
used in the model match well with the real basal ganglia. Striatal
D1 neurons project primarily to GPi, and are known as the“direct”
pathway. Striatal D2 neurons project primarily to GPe, which then
connects to both the STN and the GPi, forming the “indirect”
pathway. The STN also projects directly to the GPi, forming the
“hyper-direct” pathway.

Furthermore, all of these connections are inhibitory, except for
the ones from the STN which are excitatory. This fact is reflected
in the model via the signs of the calculations performed in the
equations: x is always added, and u, v, and z are always subtracted.
All of the inhibitory connections are also highly selective in the
basal ganglia: connections from one group of neurons tend to
only affect a small group of neurons in the next component. This
is also seen in the equations, as z1 affects x1, but not x2. Conversely,
the excitatory connections from the STN are very broad, affecting
large areas of their target components. This is again reflected in the
equations, as x1 will affect all of z1, z2, z3, and so on. Indeed, the
only major connectivity in the basal ganglia which is not covered
by this model is that medium spiny neurons with dominant D1
receptors have been found to project to the GPe as well as the GPi
(Parent et al., 2000). We thus feel that this model is a good starting
point for constructing a more realistic spiking neuron model that
respects the neurological constraints of the basal ganglia.

MATERIALS AND METHODS
Our goal is to produce a computational model of behavior learn-
ing that uses realistic spiking neurons in a neurologically plausible
manner. This requires the specification of a model of individ-
ual neurons, their connectivity, and how the strengths of those
connections change over time.

SPIKING NEURONS
There are an extremely wide variety of models of individual neu-
rons, depending both on the type of neuron and the amount of
detail that is desired. The techniques we use here will work for
any choice of neural model, but for simplicity we use the leaky-
integrate-and-fire (LIF) neuron. This is widely used since not only
is it a limiting case of more complex models such as the Hodgkin–
Huxley model (Partridge, 1966), but it is also flexible enough to
be an excellent approximation of a wide variety of neural models
(Koch, 1999).

The dynamics of the LIF neuron model are given in Eq. 1.
The voltage V changes in response to the input current I, and
is dependent on the resistance R and capacitance C of the neu-
ron. The product RC is known as the membrane time constant
τRC and is a widely studied physiological value. For neocortical

neurons, it is approximately 20 ms (McCormick et al., 1985; Plenz
and Kitai, 1998) and for medium spiny neurons it has been found
to be 13 ± 1 ms. These values are used in our model, for the cor-
responding neurons. We also note that C merely scales the input,
and so can be ignored for the purposes of describing the model’s
behavior.

dV (t )

dt
= I (t )

C
− V (t )

RC
(1)

An LIF neuron model generates a spike when its voltage V
crosses a threshold. The voltage is then reset to its initial value,
and held there for a fixed amount of time τref (the neuron’s refrac-
tory period). This is generally on the order of a few milliseconds.
Given a fixed input current I, adjusting the two parameters τRC

and τref results in changes to the neuron’s firing rate.
In real neurons, when a spike occurs neurotransmitter is

released, affecting the flow of ions at the synapse. This is mod-
eled by injecting current into the post-synaptic neuron whenever
a spike occurs. This current injection, however, is not instanta-
neous. Instead, its effect is dependent on the neurotransmitter
receptors and how quickly the neurotransmitter is reabsorbed by
the pre-synaptic neuron. This neurotransmitter re-uptake rate τS

widely varies for different neurotransmitters and neuron types,
from hundreds of milliseconds for neocortical NMDA-type gluta-
mate receptors (Flint et al., 1997) to 2 ms for AMPA-type glutamate
receptors (Spruston et al., 1995; Smith et al., 2000). We model the
post-synaptic current resulting from a spike via Eq. 2. For the
excitatory connections in the basal ganglia (from STN to GPi and
GPe), we use AMPA receptors with τS = 2 ms (Spruston et al.,
1995). For the inhibitory connections (all others), we use GABA
with τS = 8 ms (Gupta et al., 2000).

h (t ) = e−t/τS (2)

It should be noted that, while we are using simple LIF neurons
in this model, the techniques we describe can also be used for more
complex neural models. For example, we are currently investigat-
ing the effects of using the Gruber et al. (2003) model of medium
spiny neurons, which exhibit bistability modulated by the level of
dopamine.

REPRESENTATION
In the basic basal ganglia action selection model discussed in
Section “Action Selection Without Spikes,” numerical values are
represented in the various different components. A standard prac-
tice in non-spiking neural models is to simply assume that each
value is represented by one “neuron” in the model, so if there were
three actions then there would be three neurons in each compo-
nent, representing the three values. The activity of this neuron
would be a single numerical value – perhaps the average level of
activity of that neuron. However, when modeling using spiking
neurons, a more nuanced approach is necessary, using a popula-
tion of neurons to represent the value. While this might be done
by simply assuming that all the neurons in that population are
identical and that the average firing rate over all the neurons rep-
resents the value, this approach does not match what is observed
in the brain.
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Instead, we note that real neurons in the sensory and motor
systems exhibit a wide variety of tuning curves when representing
a single value. That is, given a set of neurons which fire quickly for
a strong stimulus and slowly for a weak stimulus, the actual firing
rates for these neurons will vary considerably, as in Figure 2. We
achieve this in our model by adding two new parameters to each
neuron: a fixed background input current I bias and a fixed neuron
gain factor α, which scales the neurons’ inputs. These values are
randomly chosen to produce a highly heterogeneous population
of neurons. The input current I is thus given by Eq. 3, where x is
the value being represented.

I = αx + Ibias (3)

Importantly, by adjusting the distributions of the gain and
background current, different groups of neurons can have dif-
ferent maximum and background firing rates. For example, to
model medium spiny neurons in the striatum, we choose I bias to
be slightly negative to give a background firing rate near zero, and
the gain α to be such that the maximum current (occurring when
x = 1) provides a firing rate between 40 and 60 Hz.

COMPUTATION
Here we adopt the spiking network construction method called
the neural engineering framework (NEF; Eliasmith and Ander-
son, 2003). In this section we focus on the second principle of the
framework, which provides a method for analytically determin-
ing connection weights to compute arbitrary functions in such
networks. In particular, we derive a special case of this method
that is sufficient to capture the computations needed for this basal
ganglia model.

In the basal ganglia action selection model presented by Gurney
et al. (2001), particular scalar computations must be performed
between areas of the basal ganglia. For example, the population of
neurons in GPe representing zi needs to have a value based on the
values stored in STN and the striatum as per Eq. 4 [where R(x)
is the ramp function, vi is the value represented by the ith group
of striatal D2 neurons, and xi is the value represented by the ith
group of STN neurons]. This must be accomplished entirely via

FIGURE 2 |Typical randomly generated tuning curves for a population

of 20 neurons. Each neuron has a different gain and background current,
resulting in a different firing rate when representing the same value x.

the synaptic connections between these groups of neurons.

zi = 0.9
∑

j

R
(
xj + 0.25

)− R (vi − 0.2) (4)

The idea here is to create connections between these groups
such that the total input current to the individual neurons in the
population corresponds to our desired input current as per Eq. 3.
To simplify this task, we note that Eq. 3 is linear. This means that
we could cause the neurons to represent y + z by having two sets
of inputs: one for y and one for z, as in Eq. 5.

I = αy + αz + Ibias (5)

This allows us to break down the complex calculation in Eq.
4 into its linearly separable components. If we find connection
weights that will compute those individual components, we can
then simply combine all of them to arrive at connection weights
that will compute the overall function. The basic component
needed for computing all of the operations in the action selec-
tion model is given in Eq. 6, where b is a constant, R(x) is the
ramp function, and x is a value represented by some other group
of neurons.

y = R (x − b) (6)

To find these connection weights between the pre-synaptic
population representing x and the post-synaptic population rep-
resenting y, consider the neuron tuning curves shown in Figure 2.
These show the firing rates of individual neurons for different val-
ues of x. Since each spike on a given connection produces roughly
the same amount of input current, we can think of a synaptic
connection strength as a scaling factor that converts a tuning curve
into input current. What we want, then, is to take the tuning curves
from Figure 2, scale each one by a different amount di, and add
them together to produce the function given in Eq. 6. These scal-
ing factors di then give us the synaptic connection weights ωij

between the two neural populations, as shown in Eq. 7, where ai

is the activity of the ith neuron in the pre-synaptic population.

Ij =
∑

i

wij ai + Ibias wij = αj di (7)

Our final step is to find the scaling factors di that will take the set
of tuning curves and find the best way to approximate the desired
function f(x). This is a well-defined least-squares minimization
problem: we want to minimize the error E between f(x) and the
weighted sum of the tuning curves a(x), as in Eq. 8. This is done by
the standard method of taking the derivative and setting it equal
to 0.

E =
∫ (

f (x) −
∑

i

diai (x)

)2

dx

∂E

∂di
=
∫

ai (x) f (x) dx +
∫ ∑

j

ai (x) aj (x) dj dx = 0

∫
ai (x) f (x) dx =

∑
j

(∫
ai (x) aj (x) dx

)
dj

(8)
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To solve this for dj, we convert to matrix notation, arriving
at Eq. 9.

define: Υi =
∫

ai(x)f (x)dx Γij =
∫

ai(x)aj(x)dx

Υ = Γd

d = Γ−1Υ

(9)

The vector d has one element for each neuron, which is that
neuron’s appropriate scaling factor. Since ωij = αjdi (Eq. 7), this
result allows us to find synaptic connection weights that will
approximate any desired function, given a set of neurons with
varying tuning curves. For this particular case, Figure 3 shows
that even just three neurons can be used to closely approximate
the R(x − b) function needed here. As the number of neurons used
increases, the error decreases (Figure 4). Furthermore, networks
resulting from this method are highly robust to random noise
and destruction of individual neurons (Eliasmith and Anderson,
2003).

The NEF methodology generalizes to representing multiple
dimensions, functions, and vector fields, as well as other neu-
ron models and more complex non-linear functions (Eliasmith
and Anderson, 2003). It has been used to construct large-scale

FIGURE 3 | Approximating a desired function by weighted sums of

tuning curves. The three neurons in (A) fire at different rates when
representing different x values. To approximate the desired function shown
in (B), we weight each tuning curve ri by a different value di and add them
together (C). These weighting factors di can be calculated with Eq. 9 and
used to find synaptic connection weights with Eq. 7.

models of inductive reasoning (Rasmussen and Eliasmith, 2011),
serial recall (Choo and Eliasmith, 2010), path integration (Con-
klin and Eliasmith, 2005), and many others. It provides a general
method for building models with realistic spiking neurons and
directly solving for connection weights that will compute partic-
ular desired functions. As such, it is ideally suited for converting
models such as the basal ganglia action selection model into a
more realistic detailed neural simulation.

ACTION SELECTION
Given the neural representation approach described in Section
“Representation” and the ability to solve for connection weights
to compute particular functions given in Section “Computation,”
we can implement the complete action selection model from Gur-
ney et al. (2001) using spiking neurons. We replace each variable
in the original model with a population of 40 LIF neurons with
randomly selected background currents (I bias) and gains (α), pro-
ducing a wide variety of tuning curves (as per Figure 2). We
compute connection weights between populations using Eqs 7
and 9, such that the particular calculations in the original model
are faithfully reproduced. The result is a spiking neuron model of
action selection.

We can send input into this model by driving current into the
striatal and STN neuron populations as per Eq. 3, and read the
output from the spiking activity of the GPi neurons. Figure 5
shows that the model successfully selects the action with the high-
est utility, as does the original non-spiking model. However, since
this is now a spiking model, we can also analyze other factors of
its behavior, such as the amount of time needed for it to make this
selection. This value will be dependent on the neurotransmitter
time constants involved (see Eq. 2). As we have previously shown
(Stewart et al., 2010b), the timing behavior of this model matches
well to that of the rat basal ganglia, where it takes 14–17 ms for a
change in activity in the cortex to result in a selection change in
GPi (Ryan and Clark, 1991).

STATE REPRESENTATION
The components of the model so far are sufficient to allow us to
take a set of utility values Q (the inputs to the basal ganglia model)
and produce an output which identifies the largest of these inputs.
However, for this to be a more complete model of action selection,
we also need to compute these utility values themselves.

Utility values are generally based on a currently represented
state. Our approach is to assume that this state is represented
in the cortex, and the connections between the cortex and the
basal ganglia compute the utility. To start this process, we need
to define how state information is represented in cortex. We
follow a similar approach as taken in Section “Representation,”
but we generalize to multidimensional state. That is, we want to
represent x where x is some vector of arbitrary length, rather
than a single scalar value. As before, we have a large popula-
tion of neurons, each of which has a randomly chosen gain and
background current. However, since x is not a scalar, we mul-
tiply it by p, a randomly chosen state vector for each neuron,
giving Eq. 10.

I = α (p · x) + Ibias (10)
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FIGURE 4 | Accuracy of approximating R (x − 0.2) using varying numbers of random neural tuning curves. Gray area shows ±1 SD of 100 samples for
each point.

FIGURE 5 | Behavior of the original Gurney et al. (2001) model (middle)

for a varying input (top). Spiking output from the GPi neurons in our
model is also shown (bottom). Varying input corresponds to changing the
utilities Q of the three actions a1, a2, and a3 as the current state s changes
over time. Since the output from the GPi is inhibitory, the neurons
corresponding to the chosen action should stop firing when that action’s
Q-value is larger than that of the other two.

This vector p can be thought of as a preferred state vector : the
state for which this particular neuron will be most active. The

result is a highly distributed multidimensional state representa-
tion that produces firing patterns that match closely to those seen
throughout sensory and motor cortex (e.g., Georgopolous et al.,
1986). We discuss the implications of this method of representa-
tion in more detail elsewhere (Stewart et al., 2011; Eliasmith and
Anderson, 2003).

Given this method of representing state, it would be possible
to compute connection weights using Eq. 9, if we also knew the
function Q mapping state to utility. We have used this approach
in previous models, most recently in a model of the Tower of
Hanoi task, where at each moment 1 of 19 different actions must
be chosen, based on the current state (Stewart and Eliasmith,
2011). However, here we instead want to learn the utility based
on reinforcement feedback from the environment.

LEARNING ACTION UTILITIES
Since the utility of different actions must be learned based on
interaction with the environment, we need a learning rule that
will adjust synaptic connections between cortex and basal gan-
glia. A standard approach to learning in neural networks is the
delta rule, where the weight is changed based on the product of
the activity of the pre-synaptic neuron and an error signal. For
our model, we use a spike-based rule given in Eq. 11, where κ is
a learning rate and e is an error term: the difference between the
actual utility and the currently predicted utility (as before, ai is
the activity of the pre-synaptic neuron, and αj is the gain of the
post-synaptic neuron).

Δwij = kαj ai e (11)

This is a local learning rule: all of the information used is avail-
able local to the synapse, and no synapse needs to communicate
to other synapses. Furthermore, for ai and e we use the instan-
taneous measure of the level of neurotransmitter at the synapse,
rather than any sort of long-term average firing rate, which would
be difficult for the molecules at the synapse to estimate. It is a spe-
cial case of a more general rule derived by MacNeil and Eliasmith
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FIGURE 6 | Our spiking model of reward-based learning and action

selection in the cortex and basal ganglia. Dotted lines show
dopaminergic connections from the substantia nigra pars compacta
(SNc) which modulate the local synaptic strengths using the equations

shown. Raw reward signal is input into the ventral striatum, which also
computes an estimate of Q(s, a) using connections from the cortex.
The difference between these values is fed to the SNc, which produces
the error signal.

(2011), and has been shown to be useful in a variety of supervised
learning situations (Bekolay, 2011).

To make use of this rule, however, we need the error signal e.
The simplest approach is to take the difference between the actual
reward r received for performing action k and subtract the current
estimate Q of the value for performing action k in the current state
s, as shown in Eq. 12.

ek = rk − Q (s, ak) (12)

For our model, we take this prediction error calculation to be
performed by the ventral striatum. This is a somewhat contro-
versial statement, given that there are a broad range of proposed
suggestions as to how reward, expected reward, and reward predic-
tion error could be represented in the basal ganglia (see Schultz,
2006 for an overview). However, we do note that while some fMRI
results show activation in the ventral striatum is more correlated
to reward than to reward prediction error, it is also the case that
the activation measured by fMRI is indicative of the neural inputs
to an area, not the spiking behavior of the neurons in that area
(Logothetis et al., 2001). This is consistent with our model.

We construct this component in the same manner as the other
calculations: a group of neurons represents the error value and the
connections to these neurons can be computed using Eqs. 7 and
9. For our model, we do not consider where the reward signal r
comes from; rather we directly inject the appropriate current into
the ventral striatum neurons using Eq. 3.

To model the effects of this reward prediction calculation, we
need to convert the error signal e into a form that can be used by the

synapses to adjust their connection strengths. It is widely believed
that the neurotransmitter dopamine can modulate synaptic con-
nection weights, and dopamine levels corresponding to reward
prediction errors have been widely observed (e.g., Schultz et al.,
1997). Dopamine is produced by neurons in the part of the basal
ganglia known as the SNc, so we form corresponding connec-
tions from the ventral striatum to the SNc, using Eqs. 7 and 9
where f(x) = x (since we are merely passing information between
these components, not performing any calculation). We then form
connections back to the striatum [also using f(x) = x]. However,
instead of having a spike in the SNc produce current that goes
into the cells in the striatum, we have these connections merely
affect the level of dopamine near those neurons, which we treat as
e in Eq. 11. The result is a biologically plausible calculation of the
required learning rule.

The effect of this system is that the output from the SNc neurons
provides different levels of dopamine to the different neural groups
representing the various actions in the striatum. This dopamine
level e for each group indicates whether the currently predicted
utility Q is too high or too low. Given the learning rule from Eq.
11, we can start with random connections between the cortex and
basal ganglia, and over time the system should learn connection
weights that make correct estimates of utility. The resulting model
is shown in Figure 6.

It should be noted that this model does not use a sin-
gle, global dopamine signal. Instead, the neurons for differ-
ent actions in the striatum will receive different levels of
dopamine. While it is often assumed that dopamine levels are the
same everywhere, Aragona et al. (2009) have shown that phasic
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dopamine levels vary across different regions of the striatum.
Our approach of having the error signal broken down into
prediction errors for each candidate action is not a standard
interpretation in the field. However, we believe our model pro-
vides one possible interpretation of these results. Furthermore,
there is considerable evidence that the strength of connections
between cortex and striatum is modulated by the presence of
dopamine, consistent with our learning rule (Calabresi et al.,
2000).

BANDIT TASK
The bandit task is a standard experimental paradigm where the
subject is given a choice between two or more actions, each of
which results in rewards randomly drawn from a probability dis-
tribution specific to that action. The subject’s goal is to maximize
the amount of reward it receives over time. Stated differently, the
subject must determine which action’s associated probability dis-
tribution is the most rewarding in the long-term. The probability
distributions may remain the same (static bandit task) or change
over time (dynamic bandit task).

The number of possible actions determines the number of
“arms” in the bandit task. This terminology results from one real-
ization of the bandit task, in which the subject chooses to pull a
lever on a slot machine with two or more levers (“arms”). Ani-
mal experiments are either done with lever presses or mazes with
decision points.

We chose Kim et al.’s (2009) study of rats performing a dynamic
two-armed bandit task to test our basal ganglia model. In this

study, rats run a small maze with only one decision point, with
two possible choices at that decision point. Each choice leads
to a reward site with a certain probability of water reward. The
probability of reward changed every 40 trials. Most importantly
for our purposes, this study couples behavioral data with mea-
surements of spiking activity in the striatum. This allows us to
evaluate our model at both the behavioral level and the neural
spiking level.

RESULTS
To validate our model, we examined three different scenarios based
on the rat bandit task described in the previous section. We start by
replicating the experiment by Kim et al. (2009), and then examine
whether the model continues to function when given more actions
to choose between, or more states on which the decision can be
based.

THE TWO-ARM BANDIT TASK
The model successfully replicates the rat behavior seen by Kim
et al. (2009). Initially, the model chooses randomly between the
two branches of the maze. During the first 40 trials, it gradu-
ally chooses the right side more and more often, as it receives
a reward 63% of the time. After this block the rewards switch,
and the model learns to prefer the left branch. In the final two
blocks, these rewards switch again. Average behavior over 200
simulated rats is shown in Figure 7, along with the a sample
empirical data and the closest fitting model data for that run
(RMSE = 0.182).

FIGURE 7 | Model performance compared to sample empirical data from Kim et al.’s (2009). Black lines show a single run, plotting the proportion of time
the rat or the model chose to go left over 160 trials, averaged with a 10-trial window. The gray area gives the mean performance of the model over 200 runs,
with 95% bootstrap confidence interval.
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While the rats performed the choice experiment, spiking activ-
ity in the ventral striatum was also measured. This activity was
shown to be sensitive to the decision being made. In Figure 8,
we compare the activity seen in the rats (Kim et al., 2009) to that
seen in the model for decisions involving turning to the left. The
activity of the model matches that of the rats.

To quantify the accuracy of the model, Figure 9 shows this
same data plotted with 95% bootstrap confidence intervals. In the
bottom of Figure 9, we compute the maximum likely difference
(MLD; Stewart and West, 2010) between the model and rat data.
The black line shows the average difference, and the gray area gives
the 95% confidence interval of the difference between the models.
Whenever they gray area touches zero, the model data is not sta-
tistically significantly different from the empirical data (p > 0.05).
This indicates that there is a small discrepancy between the model
and the rats at the end of the reward phase. At that time (t = 0.4),
the error in terms of number of spikes is between 1 and 5. For the
rest of the time, the model is not statistically different from the
empirical data. However, this does not mean that the model is a
perfect predictor of performance – as with any model, if more data
were gathered, then we would eventually find some level of dis-
crepancy. However, the MLD measure is shown as the top of the
gray area and provides an upper bound on the prediction error
from the model (with 95% confidence). This indicates that the
model usually produces predictions that we can be 95% confident
are within two spikes of the actual measurement, except for during
the reward phase where the error may increase up to 5 (or possi-
bly stay as low as 1). More empirical measurements are needed to
further compute the accuracy of this model.

THE THREE-ARM BANDIT TASK AND MULTIPLE STATES
The two-arm bandit task is extremely simple. There is only a sin-
gle state s, and there are only two choices that can be made. To
determine if our model can handle more complex situations, we
made two modifications to the experimental situation. The first
of these was to simply add a third action (choosing a center path,
rather than left or right), demonstrating that the action selection
system can learn to successfully choose between three separate
actions (Figure 10).

The other manipulation we added to is to have different states.
In the original experiment, every time the rat made a choice, it was
in the same state. This was represented in the model by having the
cortex neurons firing with a particular pattern, caused by choos-
ing a random vector x to represent that state, and injecting current
into each neuron using Eq. 10. This resulted in each neuron firing
with a different pattern (since each neuron had a different pre-
ferred state p, gain α, and background current I bias), forming a
distributed representation of that state. Thus, during the first 40
trials in the original task (Figure 7), the rat learned to associate
that state with turning right. In the next 40 trials, it then had to
change that association because it was suddenly being rewarded
more often for turning left instead.

While Figure 7 shows that the model is capable of changing a
learned utility value, we also want to show that the model can learn
that different states have different utilities for the different actions.
That is, Q(s1,a1) may be different than Q(s2,a1). We test this by
creating three separate randomly chosen vectors for the states, and
having the input current (Eq. 10) to the cortex neurons change
depending on which state the agent is in. This can be thought of as

FIGURE 8 | A comparison of spike patterns in the ventral striatum of the rat (from Kim et al.’s, 2009) and our model. The top area shows spike counts,
with a Gaussian filter of 15 ms. All data is from runs where the rat (or model) turned to the left.
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FIGURE 9 | Ninety five percentage bootstrap confidence intervals for

the spike counts of the model and the empirical data. Bottom graph
shows the difference between these models, where the black line is the
average difference and the top of the gray area shows the maximum likely
difference (MLD; Stewart and West, 2010). MLD indicates that we can be
95% confident that the model produces behavior that is accurate to within
this value, thus placing an upper bound on the error in the model. The
bottom of the gray area indicates the lower bounds on the model error, such
that whenever the gray area does not include zero we can find a statistically
significant difference between the model and the empirical data.

having three visually distinct environments, and in environment
1 the rat is most rewarded for turning right, in environment 2 it
is most rewarded for the center, and in environment 3 it should
choose the left.

Importantly, when the state information allows the model to
distinguish which choice is best, it does not need to unlearn pre-
vious utility values. That is, instead of being surprised when the
rewards suddenly change between blocks, the state representation
also changes. As expected, the model is faster at switching to the
correct action when it has state information, as opposed to the
condition where there is a fixed state for all blocks (Figure 10).
This indicates it is successfully learning that Q(s1,a1) �= Q(s2,a1).

STOPPING LEARNING
To further test our model, we can observe its actions with learn-
ing disabled. That is, we can train it in two separate environ-
ments where in each environment the neurons in cortex represent

a different randomly chosen state vector. For environment 1,
choosing to turn right is rewarded 72% of the time, and choosing
to turn left is rewarded 12% of the time. For environment 2, the
probabilities are swapped. These rewards are the same as those
in the final block of the rat experiments. Figure 11 shows what
happens when the model is exposed to 40 trials of the first envi-
ronment followed by 40 trials of the second environment, and then
has learning disabled. The model is able to successfully respond
correctly in the second environment, but is only slightly above
chance at the first environment.

The fact that the model forgets what to do in the first environ-
ment is the common “interference” problem of any neural-based
learning system. We can improve its performance by changing the
training regime to alternate more quickly. Figure 12 shows the
model performance when exposed to the same number of total
trials in each environment, but alternating every 10 blocks. Here,
the model is considerably more accurate.

DISCUSSION
The model we have presented here provides a mechanistic explana-
tion of many aspects of reward-based decision making via the basal
ganglia. The model consists entirely of LIF neurons whose para-
meters have been matched to the neurologically observed values in
corresponding areas of the basal ganglia. These neurons produce
realistic heterogeneous firing patterns, and we have shown that
the spike pattern seen in the ventral striatum of rats performing a
two-arm bandit task closely matches that seen in our model. The
connections between the various groups of neurons in our model
correspond to the major known connections in the basal ganglia
and cortex, including whether they are excitatory or inhibitory,
their neurotransmitter re-absorption rate, and how broad or selec-
tive their connections are. We are aware of no other model that
provides this level of neurological detail and is capable of flexi-
bly learning to select different actions in different states based on
reward. While non-spiking models exist that can produce similar
behavior, they achieve this at the cost of abstracting away details
that can help constrain models. Furthermore, our spike-based
approach opens the door to using highly detailed neural models,
such as Gruber et al.’s (2003) medium spiny neuron model.

This model does not, of course, explain all of decision making.
While we allow for the representation of arbitrarily complex states
in cortex, we make no claims about how the brain develops and
maintains these representations. The only assumption we make is
that different states correspond to different patterns of activation
in cortex. However, our model does explain how the brain can start
with an initially random set of connections between the cortex and
the striatum, and then use the local level of dopamine to modulate
the strength of these connections to compute the expected utility,
Q, of performing different actions given this state. Furthermore,
we show how neurons in the ventral striatum and SNc can use a
reward input to correctly adjust that level of dopamine. We do not
consider, however, how this reward input is generated. Once the
utility is computed in the striatum, we use our previously pub-
lished spiking model of the rest of the basal ganglia (based on the
non-spiking model of Gurney et al., 2001) to select one particular
action. It should also be noted that we do not consider here how the
connections in the basal ganglia develop – all learning in our model
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FIGURE 10 | Model performance on a three-arm bandit task with fixed

state information (light gray) and with state that changes for each

block (dark gray). In both conditions, the model successfully learns to
choose the action which most often gives it a reward. When the state

information is fixed (i.e., when the pattern of spikes in the cortex does not
change to indicate which of the three environments it is in), the model takes
longer to switch actions. Shaded areas are 95% bootstrap confidence
intervals over 200 runs.

FIGURE 11 | Model performance when learning is turned off after the first 80 trials. Shaded area shows 95% bootstrap confidence intervals over 200 runs.
A different randomly chosen state vector is used for each of the two environments.

occurs between the cortex and striatum, leaving the connections
within the basal ganglia to be computed (Eqs. 7 and 9).

PARAMETER FITTING
A general problem with all computational modeling is the issue of
parameter fitting. However, since we are using a spiking neuron
model, the vast majority of our parameters can be set based on
known neurological measurements. This provides us with most
of the neural values in our model (τRC, τref , τS, I bias, α). For the
models presented here, we use τRC = 20 ms, τref = 2 ms, τS = 2 ms

for AMPA and 8 ms for GABA, and randomly vary I bias and α to
create heterogeneous populations with different mean and max-
imum firing rates for different regions of the brain. While these
values do affect the temporal performance of the basic basal gan-
glia model (Stewart et al., 2010b), they were not tuned in any way
for the results shown here.

The learning rate κ does have a significant effect on the perfor-
mance of this model. As expected, since it affects how quickly the
synaptic connections change strength, its behavioral effect is that
it leads to faster transitions when the reward structure changes.
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FIGURE 12 | Model performance when learning is turned off after the first 80 trials. During learning, the environment is swapped every 10 trials, rather
than every 40 as in Figure 11. Shaded area shows 95% bootstrap confidence intervals over 200 runs. A different randomly chosen state vector is used for each
of the two environments.

In future work, we will constrain this parameter value through
both behavioral and neurological data, but in this model we used
κ = 1.0 × 10−7, since values between 1.0 × 10−7 and 2.0 × 10−6

have been previously shown to work well with this learning rule for
other tasks (Bekolay, 2011). No parameter fitting was performed
for the results given here.

For the remaining parameters, we have not yet thoroughly
explored the effects of changing these parameters. In this model,
we used 40 neurons per population because previous work with
the basal ganglia model indicated that accuracy decreased with less
than 35 neurons, but no performance effects were seen for larger
values. The initial connection strengths between cortex and stria-
tum ωij were set randomly with a uniform distribution between
−0.0001 and 0.0001, but as long as these are sufficiently small, the
model performs as seen here.

It should also be noted that the gain α on neurons in the ven-
tral striatum has the effect of scaling the overall firing rate of those
neurons, but generally has no other effect (although as this value is
reduced, more neurons are needed in a group to produce accurate
decision making). As previously mentioned, the range of values
for the neurons in this area was tuned to match the maximum
firing rates seen in this area, so this has the effect of scaling along
the y-axis in Figure 8. However, this parameter does not affect the
overall shape of that graph.

LIMITATIONS
While our model is more physiologically accurate than other learn-
ing models of this type, there is certainly room for improvement.
More detailed models of the medium spiny neuron in the stria-
tum do exist (Gruber et al., 2003), and we are in the process of
integrating them into our model. Furthermore, a more detailed

model of the process whereby dopamine affects the long-term
strength of a synapse could modify our learning rule (Eq. 11) and
potentially provide neurological constraints on the learning rate
parameter κ.

One major component of decision making and reinforcement
learning that is not included in the current model is associating
states that occur sequentially in time, a problem typically solved
by temporal-difference learning methods. Our reward prediction
equation, Eq. 12, is notably missing an estimate of the next state’s
value. This is a difficult quantity to make available to a system
that operates continuously in time, as ours does. One approach
to including this would be to add a prediction module that pre-
dicts future states, actions, and their associated Q-values. Potjans
et al.’s (2009) spiking actor–critic model solves this by using a slow
activity trace of the Q-values, such that there is a critical point in
time in which the model represents the current Q-value and the
previous Q-value. We are currently investigating using this idea in
our model.

A feature seen in the biological basal ganglia that we do
not currently model is the reward system’s ability to make pre-
cise temporal predictions. As shown in Schultz’s (1997) original
experiments, the activity of dopamine neurons changes depend-
ing on the precise time that a reward is predicted. Our current
model is insensitive to the time that a reward is delivered (or
not delivered). Incorporating this may come as a result of the
network dynamics resulting from incorporating linking together
sequentially occurring states, or it may require a more rea-
soned approach to detecting the time elapsed since a stimulus.
We believe this sort of timing system may help reduce the dis-
crepancy between the model and the empirical data shown in
Figure 9.
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CONCLUSION
The model we have presented here is a generic neurologically accu-
rate spiking reward-based decision making system closely modeled
on the mammalian basal ganglia. While we have previously used
the core action selection aspect of the basal ganglia model to pro-
duce complex models of planning and problem solving (Stewart
and Eliasmith, 2011; Stewart et al., 2010a,b), our new model suc-
cessfully adds the ability to learn the utility of various actions in
different contexts based on external rewards, using a dopamine-
based prediction error signal. The results presented here show
that the model is capable of learning simple forced choice tasks

and producing accurate predictions of spike patterns in the ventral
striatum. Our ongoing project is to further evaluate the predictions
of this model and investigate its performance in more complex
tasks.
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