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The beneficial stress–protective effect of adaptogens is related to the regulation of home-
ostasis via mechanisms of action associated with the hypothalamic–pituitary–adrenal axis
and the regulation of key mediators of the stress response, such as molecular chaperones,
stress-activated c-Jun N-terminal protein kinase, forkhead box O transcription factor, cor-
tisol, and nitric oxide (NO). However, it still remains unclear what the primary upstream
targets are in response to stimulation by adaptogens. The present study addresses this
gap in our knowledge and suggests that an important target for adaptogen mediated
stress–protective effector functions is the stress hormone neuropeptide Y (NPY). We
demonstrated that ADAPT-232, a fixed combination of adaptogens Eleutherococcus senti-
cosus root extract, Schisandra chinensis berry extract, Rhodiola rosea root extract SHR-5,
and its active constituent salidroside, stimulated the expression of NPY and 72 kDa heat
shock protein (Hsp72) in isolated human neuroglia cells. The central role of NPY was val-
idated in experiments in which pre-treatment of human neuroglia cells with NPY-siRNA
and HSF1-siRNA resulted in the significant suppression of ADAPT-232-induced NPY and
Hsp72 release. Taken together our studies suggest that the stimulation and release of the
stress hormones, NPY and Hsp72, into systemic circulation is an innate defense response
against mild stressors (ADAPT-232), which increase tolerance and adaptation to stress.

Keywords: ADAPT-232, adaptogen, Eleutherococcus senticosus, heat shock proteins, neuropeptide Y, salidroside,

Schisandra chinensis, Rhodiola rosea

INTRODUCTION
Adaptogens were initially defined as substances that enhance the
“state of non-specific resistance” in stress (Brekhman and Dard-
ymov, 1969; Panossian, 2003), a physiological condition that is
linked with various disorders of the neuroendocrine–immune
system (Stratakis and Chrousos, 1995). This definition has been
updated as “a new class of metabolic regulators which increase the
ability of an organism to adapt to environmental factors and to avoid
damage from such factors” (Panossian et al., 1999). The term adap-
togen was used as a functional claim for certain botanicals and
herbal medicinal products in Europe and the USA and the adapto-
gen concept is now a generally accepted concept (Samuelsson and
Bohlin, 2009). A number of clinical trials clearly demonstrated
that adaptogens exert an anti-fatigue effect that increases mental
work capacity against a background of stress and fatigue, partic-
ularly in tolerance to mental exhaustion and enhanced attention
(Panossian and Wikman, 2010). Studies on animals and isolated
cells have revealed that adaptogens exhibit neuroprotective, anti-
fatigue, antidepressive, anxiolytic, nootropic, and CNS stimulating
and tonic effects (Panossian and Wagner, 2005; Panossian and
Wikman, 2010). In contrast to conventional stimulants such as

Abbreviations: APC, antigen presenting cells; CFS, chronic fatigue syndrome; JNK1,
c-Jun N-terminal protein kinase; FoxO, forkhead box O; HPA, hypothalamic–
pituitary–adrenal; NO, nitric oxide; NPY, neuropeptide Y; siRNA, short interfering
RNA.

sympathomimetics (e.g., ephedrine, fenfluramine, phentermine,
prolintane) and general tonics, adaptogens do not possess addic-
tion, tolerance and abuse potentials, or impair mental function,
or lead to psychotic symptoms with long term use (Panossian
and Wikman, 2010). Recent pharmacological studies of a number
of adaptogens have provided a rationale for these effects also at
the molecular level (Panossian and Wikman, 2010). The stress–
protective activity of adaptogens is associated with regulation of
homeostasis via several mechanisms of action which are linked
to the hypothalamic–pituitary–adrenal (HPA) axis and the regu-
lation of key mediators of the stress response, including cortisol,
nitric oxide, stress-activated protein kinase c-Jun N-terminal pro-
tein kinase (JNK; Panossian et al., 2007), forkhead box O (FoxO)
transcription factor (DAF-16; Wiegant et al., 2009), and molecular
chaperones (Chiu and Ko, 2004; Panossian and Wikman, 2010).
However, it still remains unclear what the primary upstream tar-
gets are in response to stimulation by adaptogens. In this study,
we investigate whether heat shock factor 1 (HSF1) and Neuropep-
tide Y (NPY) might be one of the primary upstream targets of
adaptogens in neuroglia cells.

Neuropeptide Y is a stress–responsive hormone widely distrib-
uted in the central and peripheral nervous system (Tatemoto et al.,
1982; Irwin, 2008). In the brain the concentrations of NPY are sig-
nificantly higher than other neuropeptides, and is found mainly
in the limbic system, including the amygdala and the hypothal-
amus, which are areas of the brain involved in the regulation of
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emotional behaviors and stress response (Dumont et al., 1993;
Smialowska et al., 2007). In the peripheral nervous system, NPY
is concentrated in sympathetic nerve endings (Irwin, 2008). Sym-
pathoadrenal activation during the stress response results in NPY
release from the sympathetic nerve endings either alone or with
catecholamines (Morris et al., 1986). NPY release follows stressors
including strenuous exercise (Karamouzis et al., 2002), panic dis-
orders (Boulenger et al., 1996), cold exposure (Kellogg, 2006), and
chronic fatigue syndrome (CFS; Fletcher et al., 2010). The eleva-
tion of NPY in blood of CFS patients is associated with severity of
stress,negative mood,and clinical symptoms (Fletcher et al., 2010).
On the other hand, psychological stress elevated plasma NPY in
healthy subjects (Morgan et al., 2001). In the periphery, sympa-
thetic nerve- and platelet-derived NPY act in a stimulatory fashion;
synergizing with glucocorticoids and catecholamines to potentiate
the stress response, induce vasoconstriction and increase vascular
smooth muscle cell proliferation. However, in the brain NPY acts
as an anxiolytic and inhibits sympathetic activity which results in
lowering blood pressure and heart rate (Morris et al., 1986; Kuo
et al., 2007), and inhibiting the production of cortisol in human
adrenal cells (Kempna et al., 2010). NPY can regulate both immune
cells and neuronal cells, e.g., NPY strongly inhibits NO synthesis
through Y(1) receptor activation, which prevents IL-1β release and
thus inhibits nuclear translocation of NF-κB in microglia (Fer-
reira et al., 2010). NPY plays a protective role in viral infections
associated with glial cell activation and the production of pro-
inflammatory cytokines in the CNS (Du et al., 2010). It has been
suggested that the stimulation of NPY gene expression is related to
food deprivation and its overexpression causes disordered energy
balance leading to increased eating (Yang et al., 2009). Within cells,
NPY decreases the expression of mitochondrial uncoupling pro-
tein, thereby promoting ATP formation (Billington et al., 1994).
NPY stimulates the corticotrophic axis (Small et al., 1997), mod-
ulates the secretion of various hypothalamic neuropeptides and
cognition (Redrobe et al., 1999). Administration of NPY reduced
cortisol secretion during night hours in healthy subjects (Antoni-
jevic et al., 2000). In addition, NPY is known to play a role in the
pathophysiology of depression (Heilig et al., 1988). It has been
shown that NPY displayed antidepressant-like activity in the rat
forced swimming test (Stogner and Holmes, 2000; Redrobe et al.,
2002). Human studies have revealed a role for NPY in adaptation
to stress (“buffering” the harmful effects of stress; Morgan et al.,
2000, 2001; Morales-Medina et al., 2010). There is a plethora of
pre-clinical and clinical evidence suggesting a mood and cogni-
tive performance improving action for NPY (Morgan et al., 2000;
Fletcher et al., 2010). Higher levels of NPY have been observed
in soldiers who either present with reduced psychological dis-
tress or belong to the elite Special Forces branch (Morgan et al.,
2000, 2001). In contrast, decreased levels of NPY were observed in
depression and in brain tissues of suicide victims (Morales-Medina
et al., 2010).

The 72 kDa heat shock protein (Hsp72) plays an important role
in pharmacological effects of adaptogens (Panossian et al., 2010).
Hsp72 functions both as a chaperone by binding important anti-
genic peptides for delivery to antigen presenting cells (APC), and as
a cytokine by stimulating pro-inflammatory cytokine release. This
dual function of Hsp72 is termed the chaperokine activity (Asea,

2003, 2006, 2007, 2008; Hecker and McGarvey, 2011). Recently,
we demonstrated the stimulating effect of ADAPT-232, a fixed
combination of extracts of three most efficient adaptogens (Rho-
diola rosea, Eleutherococcus senticosus, and Schisandra chinensis),
is associated with significant increase of circulated Hsp72 in rats
(Panossian et al., 2009). However, the target cells for ADAPT-232-
induced effects or the cells releasing Hsp72 have not yet been
identified.

MATERIALS AND METHODS
TEST ARTICLE
ADAPT-232 forte is a proprietary name of a fixed combina-
tion of three genuine (native) extracts of E. senticosus (Rupr. et
Maxim) Harms root, S. chinensis (Turcz.) Baill. root, R. rosea
L., root, characterized for the content of eleutherosides E and
B (0.17%), schisandrin and γ-schisandrin (0.85%), salidroside
(0.33%), tyrosol (0.07%), rosavin (0.37%), triandrin (0.01%;
Panossian et al., 2009). The amounts of the active markers salidro-
side, rosavin, tyrosol, triandrin, eleutheroside B, eleutheroside E,
schizandrin, and γ-schizandrin were determined by analytical
RP-HPLC using an acetonitrile–water gradient system as mobile
phase. Peaks were detected by UV-PAD and analytes quantified
at 221 nm (rhodioloside and tyrosol), 252 nm (rosavin), 262 nm
(triandrin), 220 nm (eleutheroside B), 210 nm (eleutheroside E,
schizandrin, and γ-schizandrin). Analytical methods were vali-
dated for selectivity, peak purity, precision (RSD < 5%), and accu-
racy in the range 50–150% of the target amounts of analytes in the
tablets in accordance with ICH guidelines using Effi Validation 3
software (version 1.03) for testing and calibration laboratories sub-
ject to EN ISO/IEC 17 025:2001. Samples used in experiments were
prepared by dilution of stock solutions of ADAPT-232 (10 mg/ml)
or salidroside (3 mg/ml, 10−2 M) with PBS. Fifty microliters of
working solutions were added to 10 ml of cell culture in order to
obtain final concentrations of 0.5, 1, 5, and 10 μM salidroside and
0.005, 0.05, 0.5, and 5 μg/ml of ADAPT-232 (containing 0.05, 0.5,
5, and 50 nM salidroside) in culture media.

REAGENTS
Control peptide, PB1 is a synthetic peptide containing an
N-terminal cysteine (CTRSRHSSYPNEYEEDEEMEEEL); the
sequence is derived from mouse Bad (New England Biolabs,
Ipswich, MA, USA). The NPY peptide (Sequence H-Tyr-Pro-Ser-
Lys-Pro-Asp-Asn-Pro-Gly-Glu-Asp-Ala-Pro-Ala-Glu-Asp-Met-
Ala-Arg-Tyr-Tyr-Ser-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu-Ile-Thr-
Arg-Gln-Arg-Tyr-NH2 acetate salt) was purchased from Bachem
(Torrance, CA, USA). NPY-siRNA and HSF1-siRNA were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Hsp72-siRNA and control-siRNA were purchased from Dharma-
con RNA Technologies (Lafayette, CO, USA).

CELL LINES AND CULTURE CONDITIONS
The human neuroglia cell line T98G (ATCC, CRL-1690) has a
hyperpentaploid chromosome count that was derived from a 61-
year-old Caucasian male with glioblastoma multiforme. Human
neuroglia T98G cells were cultured from ATCC-formulated Eagle’s
Minimum Essential Medium (Catalog No. 30-2003) with fetal
bovine serum to a final concentration of 10%, 100 U/ml peni-
cillin, 100 μg/ml streptomycin (ICN, Aurora, OH, USA). To avoid
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stress induced by cell overgrowth, cultures were maintained in a
37˚C incubator in humidified air with 5% CO2 atmosphere. Cells
were maintained at a density of 2 × 105 cells/ml and passaged with
fresh complete medium every 3–4 days. Cell viability was assessed
using trypan blue exclusion test and routinely found to contain
<5% dead cells.

PROTEIN SEPARATION AND WESTERN BLOT ANALYSIS
Following various treatment protocols cells were washed once with
complete medium, centrifuged, and pellets lysed with 100 μl of
lysing buffer containing a cocktail of protease inhibitors (antipain,
bestain, chymostatin, E-64, pepstatin, phosphoramidon, pefabloc,
EDTA, aprotinin; Complete Protease Inhibitor Cocktail Tablets®,
Roche Diagnostics). Cells were then incubated for 30 min on ice
and sonicated (Brandson 1510) for 15 min. The cell suspension
was passed through a 26-gage needle and protein quantification
was performed using the Bradford method. Proteins were sepa-
rated in a precast 10% SDS-PAGE Novex® Tricine gel (Invitrogen)
by carefully placing 3 μg of protein in each lane. Nitrocellulose
membrane (GIBCO BRL) was used to transfer the proteins and
the membrane blocked with 5% skim milk (in TBS 1% pH 7.4 and
0.01% Tween-20) and incubated for 1 h at room temperature with
appropriate primary antibody; anti-Hsp72 (Stressgen Biotech-
nologies, BC, Canada), anti-NPY (Assay Design, BC, Canada), or
anti-β-actin (Oncogene, San Diego, CA, USA). Blots were incu-
bated 50 min at room temperature with 0.5 μg of appropriate
species matched anti-peroxidase and the reaction was detected
using the Luminol reagent for chemiluminescence (Santa Cruz
Biotechnology). The intensity of the bands were analyzed by
densitometry with a video densitometer (Chemilmager™ 5500;
Alpha Innotech, San Leandro, CA, USA) using the AAB software
(American Applied Biology).

MEASUREMENT OF LACTATE DEHYDROGENASE RELEASE
Lactate dehydrogenase (LDH) is a stable cytosolic enzyme that is
released upon cell lysis. LDH released into cell culture media by
dead cells and total LDH contained in living cells was measured
using the CytoTox 96 Non-Radioactive Cytotoxicity Assay accord-
ing to the manufacturer’s instructions (Promega, Madison, WI,
USA). Briefly, after various treatment protocols, culture medium
(500 μl) was removed and the remaining cells lysed by adding
500 μl of 5% Triton X-100 solution. After 30 min at room tem-
perature, cell lysate was recovered and incubated for an additional
30 min in the dark with a buffer containing NAD+, lactate, and
tetrazolium. LDH converts lactate to pyruvate, generating NADH
which reduces tetrazolium (yellow) to formazan (red), which is
detected by fluorescence (490 nm). LDH release, a marker for cell
death was expressed as a percentage of the LDH in the medium
over the total LDH (lysate).

ENZYME LINKED IMMUNOSSORBANT ASSAY
After treatment the human neuroglia cell line T98G was cen-
trifuged to discard floating cells and cellular debris and the total
protein content was determined by Bradford analysis using bovine
serum albumin as a standard. The supernatant was aliquoted
and treated with or without 1% Triton X-100 or 1% Lubrol
WX or 0.5% Brij 98 for 10 min at 4˚C with gentle rocking and

Hsp72 content measured by standard sandwich Enzyme linked
immunossorbant assay (ELISA). Briefly, 96-well microtiter plates
(Nunc Immunoplate Maxisorp; Life Technologies) were coated
with murine monoclonal anti-human Hsp72 (clone C92F3A-5;
Stressgen) in carbonate buffer, pH 9.5 (2 μg/mL) overnight at 4˚C.
Plates were then washed with PBS containing 1% Tween-20 (PBS-
T) and blocked by incubation with 1% bovine serum albumin in
PBS-T. Supernatant was added and bound Hsp72 was detected
by the addition of rabbit polyclonal anti-Hsp72 antibody (SPA-
812; Stressgen). Bound polyclonal antibody was detected with
alkaline phosphatase-conjugated murine monoclonal antibody to
rabbit immunoglobulins (Sigma Chemical Co), followed by p-
nitrophenyl phosphate substrate (Sigma Chemical Co). The resul-
tant absorbance was measured at 405 nm with a Bio-Rad Benmark
Plus plate reader. Standard dose–response curves were generated in
parallel with Hsp72 (0–20,000 ng/mL; Stressgen), and the concen-
trations of Hsp72 were determined by reference to these standard
curves with ASSAYZAP data analysis software (BIOSOFT). The
interassay variability of the Hsp72 immunoassays was <10%.

NPY ENZYME IMMUNOASSAY
Human neuroglia cells were grown to 75% confluence. Twenty-
four hours prior to measuring NPY release, cell culture medium
was replaced with serum-free DMEM, then incubated with
ADAPT-232, or salidroside, or exposed to heat shock (41˚C,
60 min) and incubated for 24 h in a 37˚C incubator. Supernatant
was recovered in quadruplicates, centrifuged to clear cellular debris
and NPY concentration was measured using the NPY enzyme
immunoassay kit (assay sensitivity of 0.09 ng/ml) according to the
manufacturer’s instructions (Phoenix Pharmaceuticals, CA, USA).
Briefly, cleared supernatant was added to 96-well plates contain-
ing primary antibody and biotinylated peptide and incubated at
room temperature for 2 h. Plates were washed and SA–HRP solu-
tion was added to the well and incubated for a further 1 h at room
temperature. After washing the plates TMB substrate was added
and incubated for an additional 1 h at room temperature. The
test was terminated by adding 2 N HCl to the wells. The resultant
absorbance was measured at 450 nm with a Bio-Rad Benmark
Plus plate reader. The concentration of NPY was determined by
reference to these standard curves with ASSAYZAP data analy-
sis software (BIOSOFT). The interassay variability of the NPY
enzyme immunoassays was <10%.

siRNA-MEDIATED GENE SILENCING ASSAYS
The hsp72 gene silencing was achieved by using a vector-based sys-
tem to produce hairpin RNA. The criteria that were used to silence
the hsp72 gene have previously been established. To design the
siRNA duplexes a search for 23-nucleotide motif with AA (N19)
TT was performed in which the target sites were selected from a
gene sequence beginning at 50–100 nucleotides downstream of the
start codon. Hits with ∼50% G/C-content were selected and anti-
sense RNA was synthesized as the complement to position 1–21 of
the 23-nucleotide motif. Finally, symmetric 3′-overhangs that help
to ensure that siRNA are formed with approximately equal ratios
of sense and anti-sense target RNA-cleaving siRNA. The 21-base
pair product, Hsp72-siRNA was cloned into the pSuper vector
under the restriction of BglII and HindIII. This construct was
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then co-transfected with a green fluorescent protein (GFP) plas-
mid into the THP1 human monocytic cells. Splicing of the hairpin
resulted in 21-mer long dsRNA. Psuper vector (Oligoengine, Seat-
tle, WA, USA) was used to introduce a 64-base oligomer to form
the hairpin with Hsp72 specific sequence. A chemically synthe-
sized 21-mer-nucleotide DNA to silence the hsp72 gene was used
and cloned into the pSuper vector-based silencing (Oligoengine).
The primers were designed using web-based proprietary soft-
ware from Oligoengine and three 21-mer gene sequences were
selected that predicted it would successfully silence the hsp72
gene. The sequence used in this study was Hsp72 sequence 5′-
AGCCCGAGCTGGGAACCATT-3′ (GenBank Accession Number
LO7577). This 21-base was synthesized with defined sequences to
provide two restriction sites (BglII and HindIII) and on transcrip-
tion form a hairpin, in order to initiate gene silencing. The total
length of the primer was 64-mer including the specific sequences
of Hsp72. A complementary oligonucleotide was also synthesized
from Oligoengine (Seattle,WA, USA). The primers were incubated
in annealing buffer (100 mM potassium acetate, 30 mM HEPES–
KOH pH 7.4, 2 mM magnesium acetate) at 95˚C for 5 min and
incubated overnight at room temperature. After digesting double
stranded oligo and pSuper vector with HindIII and BglII restric-
tion enzymes, primers were annealed and cloned into the pSuper
vector. Positive clones were sequenced.

TRANSFECTION AND CELL SORTING
THP1 cells were transfected with pSuper-Hsp72 and pGFP using
the lipid transfection reagent, Effectene, according to the manufac-
turer’s instructions (Qiagen, Valencia, CA, USA). Briefly, 3 × 105

exponentially growing cells were seeded in 60 mm tissue culture
plates and a mixture of 1 μg GFP plasmid DNA and 1 μg pSuper-
Hsp72 plasmid in Effectene was added to the cells and incubated
for 18 h at 37˚C. After 48 h cells were harvested and immedi-
ately sorted into GFP positive and negative subpopulations using
a MoFlow cytometer (Dakocytomation, Carpinteria, CA, USA).
Briefly, individual cells were gated on the basis of forward scatter
(FSC) and orthogonal scatter (SSC). The photomultiplier (PMT)
for GFP (FL1-height) was set on a logarithmic scale. Cell debris
was excluded by raising the FSC-height PMT threshold. The flow
rate was adjusted to <200 cells/s and at least 105 cells were sorted
for each sample group.

STATISTICAL ANALYSIS
Data obtained from Western blot was analyzed according to the
relationship between the signal intensity and the area and pre-
sented as optical density (OD). Data from flow cytometry was
shown as histograms and fluorescent arbitrary units and the mean
fluorescent intensity was obtained to compare between groups.
Data management and statistical analyses were performed using
GraphPad (San Diego, CA, USA) and Prism software (version 3.03
for Windows). The significance of the between-group differences
(at 95% confidence intervals) were determined using one-way
parametric analysis of variance (ANOVA) with Tukey’s multiple
comparison post test. The F test statistic was found by dividing
the between-group variance by the within group variance (mean
squared deviations from the mean, MSB/MSW, obtained by divid-
ing of the Sum of Squares on the degrees of freedom (df) for the

between group and within group). Data were shown in absolute
(ng/ml, μM) or normalized (as percentages) values, mean and SD,
and p values < 0.05 were considered statistically significant.

RESULTS
In this study, we demonstrate that neuroglia cells are one pos-
sible target cell that mediates ADAPT-232-induced effects. We
further demonstrate that ADAPT-232 stimulates the expression
of NPY and Hsp72 release from neuroglia cells in a concentration-
dependent fashion. Our present study suggests NPY might be
one of the primary upstream targets of adaptogens. Our present
study suggests that HSF1 and NPY might be the primary upstream
targets of adaptogens.

ADAPT-232 STIMULATES THE EXPRESSION OF NPY AND HSP72 IN
HUMAN NEUROGLIA CELLS
Human neuroglia cells were treated with ADAPT-232 and the
expression of Hsp72 and NPY was measured by Western blot
analysis. We demonstrated that treatment of human neuroglia cells
with ADAPT-232 or salidroside dose-dependently increased NPY
expression and the expression the stress protein, Hsp72. Maxi-
mum effect of ADAPT-232 required 0.5 μg/ml of the genuine
plant extracts containing salidroside in the final concentration
of 5.5 nM (p < 0.01) (Figure 1). Interestingly, the treatment of
human neuroglia cells with salidroside induced a similar dose–
response curves, albeit, requiring 1,000 times higher concentra-
tion of salidroside (5 μM) to achieve maximum NPY expression
(p < 0.01; Figure 2).

HUMAN NEUROGLIA CELLS RELEASE NPY AND HSP72 IN RESPONSE TO
STIMULATION WITH ADAPT-232
We previously demonstrated that ADAPT-232 strongly augments
endurance of mice in a forced swimming experiment (a model
that combined physical and emotional stresses), and that there

FIGURE 1 | ADAPT-232 dose-dependently increases NPY and Hsp72

expression in human neuroglia cells. ADAPT-232 and salidroside was
admixed with 106 human neuroglia cells at the indicated concentrations and
incubated for 24 h at 37˚C in 5% CO2 atmosphere. Cells were lysed and
NPY Hsp72 protein expression was determined using Western blot analysis
as described in detail in the Section “Materials and Methods.” The intensity
of the bands were analyzed by densitometry with a video densitometer
(Chemilmager™ 5500; Alpha Innotech, San Leandro, CA, USA) using the
AAB software (American Applied Biology). Data are the percentage (%)
change in protein density expression as compared to control (± SD).
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FIGURE 2 | Salidroside dose-dependently increases NPY expression in

human neuroglia cells. Salidroside was admixed with 106 human
neuroglia cells at the indicated concentrations and incubated for 24 h at
37˚C in 5% CO2 atmosphere. Cells were lysed and NPY expression was
determined using Western blot analysis as described in detail in the Section
“Materials and Methods.” The intensity of the bands were analyzed by
densitometry with a video densitometer (Chemilmager™ 5500; Alpha
Innotech, San Leandro, CA, USA) using the AAB software (American
Applied Biology). Data are the percentage (%) change in protein density
expression as compared to control (± SD).

was a concomitant increase in serum Hsp72 levels (Panossian
et al., 2009). To test our working hypothesis that human neu-
roglia cells release Hsp72, cells were treated with ADAPT-232 or
salidroside for 24 h in a 37˚C incubator and the concentration
of NPY and Hsp72 in the supernatant was measured by Hsp72
ELISA. We demonstrated a dose-dependent release of NPY and
Hsp72 into the supernatant of cultured human neuroglia cells
(p < 0.0001; Table 1). To negate the possibility that the adaptogens
were inducing Hsp72 release by stimulating necrotic cell death,
in the same experiment supernatant was subjected to LDH assay
for the determination of cell death. We demonstrated that there
was no significant increase in cell death at the concentrations of
0.005–0.5 mg/L of ADAPT-232, as compared to control (0 mg/L;
PBS only) or exposure of cell to non-lethal heat shock treatment
(41˚C, 60 min; Table 1).

ADAPT-232-INDUCED RELEASE OF HSP72 AND NPY FROM HUMAN
NEUROGLIA CELLS IS DEPENDENT ON THE TRANSCRIPTION FACTOR
HSF1
We next explored the mechanistic basis for the induction of Hsp72,
to determine if it was primary or secondary to the ADAPT-232
response. This is important since, if the induction of Hsp72 is
a secondary event, upstream events would be of the primary
interest. The treatment of human neuroglia cells with ADAPT-
232 or salidroside significantly increased the expression of HSF1
as judged by Western blot analysis (Figure 3A). To prove that
the adaptogens stimulate Hsp72 release by a mechanism depen-
dent HSF1, the expression of HSF1 was significantly silenced
using siRNA directed against hsf-1 gene (HSF1-siRNA) before
treatment with the adaptogens, as compared to neuroglia cells
pre-treated with control-siRNA (Figure 3A). Control-siRNA is

a non-targeting 20–25 nucleotide siRNA designed as a negative
control, with sequences that do not target any gene product nor
has any significant sequence similarity to mouse, rat, or human
gene sequences, and has been tested in cell-based screens and
proved to have no significant effect on cell proliferation, viabil-
ity, or morphology, according to the manufacturer (Dharmacon
RNA Technologies, Lafayette, CO, USA). We further demonstrated
that pre-treatment of human neuroglia cells with HSF1-siRNA
strongly suppressed the expression of Hsp72 (Figure 3B) and
release of Hsp72 and NPY (Figure 5) stimulated by ADAPT-
232 and salidroside, as compared to neuroglia cells pre-treated
with control-siRNA (Figures 3B and 5A). The possibility that the
release of Hsp72 from human neuroglia cells was due to cell death
was negated by results showing that adaptogens increased signifi-
cant release of Hsp72 as judged by ELISA (p < 0.05), but there was
no similar increase in cell death, as confirmed by the LDH assay.

NPY PEPTIDE STIMULATES HSP72 RELEASE FROM HUMAN NEUROGLIA
CELLS IN AN AUTOCRINE LOOP
To determine if NPY peptide itself can stimulate Hsp72 expression,
human neuroglia cells were treated with NPY peptide and Hsp72
release measured in the supernatant 24 h post treatment. We
demonstrated that treatment of human neuroglia cells with NPY
peptide dose-dependently increased the expression (Figure 4A)
and significant release of Hsp72 (p < 0.05; Figure 6). We further
demonstrated that silencing the expression of intracellular NPY
by pre-treating human neuroglia with NPY-siRNA effectively sup-
pressed the expression of Hsp72 (Figure 4A). The pre-treatment of
human neuroglia cells with NPY-siRNA significantly suppressed
the expression of ADAPT-232- and salidroside-mediated upreg-
ulation of intracellular Hsp72 expression (Figure 4B) and con-
comitantly resulted in a significant suppression of Hsp72 release,
as compared to neuroglia cells pre-treated with control-siRNA
(Figure 6). Cell death was excluded as a possible reason for
increased Hsp72 release by experiments in which culture super-
natant was probed for signs of cell death using LDH assay. We
demonstrated that the significant increase in Hsp72 release in
response to NPY was not followed by a similar increase in cell death
(Figure 6). To determine the role of NPY in ADAPT-232- and
salidroside-mediated responses, we demonstrated that silencing
NPY expression in human neuroglia cells by pre-treatment with
NPY-siRNA strongly suppressed ADAPT-232- and salidroside-
induced increase in Hsp72 expression, as compared to neuroglia
cells pre-treated with control-siRNA (Figure 4C). Taken together,
these findings are consistent with a recent study which reports that
NPY promotes the expression of intracellular Hsp72 in rat renal
vascular smooth muscle (Zhong et al., 2003).

DISCUSSION
ADAPT-232 is a combination of extracts of three well studied
and efficient adaptogenic plants – R. rosea, E. senticosus, and S.
chinensis (Panossian and Wikman, 2008; Panossian et al., 2011).
Their effects on CNS have been recently reviewed (Panossian and
Wikman, 2010). Clinical efficacy of single and repeated doses of
ADAPT-232 on cognitive functions and mental performance of
healthy volunteers, cosmonauts (Bogatova et al., 1997; Aslanyan
et al., 2010), and patients with pneumonia (Narimanian et al.,
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Table 1 | Human neuroglia cells release NPY and Hsp72 in response to treatment with ADAPT-232 and its active constituent salidroside.

Treatment (concentration)a Mean Hsp72 conc. (ng/ml ± SD)b Mean NPY conc. (ng/ml ± SD)c Mean cell death (% ± SD)d

ADAPT-232 (μg/ml) Salidroside (μM)†

0 0 35 ± 9 1.2 ± 0.2 8 ± 5

0.005 (0.00005)† 65 ± 11 3.6 ± 0.1* 9 ± 4

0.05 (0.0005)† 95 ± 10** 5.7 ± 0.3** 7 ± 6

0.5 (0.005)† 124 ± 15** 9.5 ± 0.5** 12 ± 7

5.0 (0.05)† 165 ± 12** 9.8 ± 1.6** 36 ± 10**

F = 76.2 F = 94.2 F = 9.9

df = 19(4/15) df = 19(4/15) df = 14(4/10)

P < 0.0001 P < 0.0001 P = 0.0017

Salidroside (μM)

0 40 ± 9 1.1 ± 0.3 10 ± 5

0.5 57 ± 6* 6.8 ± 0.5** 9 ± 3

1.0 145 ± 9** 11.9 ± 0.8** 13 ± 4

5.0 189 ± 12** 21.4 ± 0.9** 15 ± 5

10.0 209 ± 13** 18.9 ± 2.1** 35 ± 11**

F = 228.5 F = 227.3 F = 9.2

df = 14(4/15) df = 14(4/15) df = 14(4/10)

P < 0.0001 P < 0.0001 P = 0.0021

Heat shock (41˚C, 60 min) 2086 ± 276** 31.5 ± 10** 23 ± 15

†Concentration of salidroside released from ADAPT-232 in the cell culture.
aHuman neuroglia cells (106) were treated with various concentrations of ADAPT-232 or salidroside or exposed to heat shock (41˚C, 60 min) and incubated for 24 h in

a 37˚C incubator.
bTwenty-four hours after treatment protocols the supernatant from human neuroglia cells were recovered, centrifuged to clear cellular debris and Hsp72 concentration

was measured using the classical Hsp72 ELISA as described in detail in the Section “Materials and Methods.” Data are the mean concentration of Hsp72 (ng/ml ± SD)

and is the sum of four independent experiments performed in quadruplicates. *p < 0.05 vs control (0 μg/ml), **p < 0.001 vs control in Tukey’s multiple comparison

post test.
cHuman neuroglia cells were grown to 75% confluence.Twenty-four hours prior to measuring NPY release, cell culture medium was replaced with serum-free DMEM,

then incubated with ADAPT-232, or salidroside, or exposed to heat shock (41˚C, 60 min) and incubated for 24 h in a 37˚C incubator. Supernatant was recovered in

quadruplicates, centrifuged to clear cellular debris and NPY concentration was measured using the NPY enzyme immunoassay kit (assay sensitivity of 0.09 ng/ml)

according to the manufacturer’s instructions (Phoenix Pharmaceuticals, CA, USA). Data are the mean concentration of NPY (ng/ml ± SD) and is the sum of four

independent experiments performed in quadruplicates. *p < 0.05 vs control (0 μg/ml genuine extracts), p < 0.001 vs control inTukey’s multiple comparison post test.
dTwenty-four hours after treatment protocols the supernatant from human neuroglia cells and viability assayed using the CytoTox 96 Non-Radioactive Cytotoxicity Assay

according to the manufactures instructions (Promega), and the percentage of LDH released vs total LDH was calculated. Data are mean percentage cell death ± SD

and represent three independently performed experiments in quadruplicates. **p < 0.01 vs control (0 μg/ml genuine extracts) in Tukey’s multiple comparison post

test.

2005) have been studied. Interestingly, the long term treatment
of aged rats with ADAPT-232 diminished or prevented a range of
age-related disorders including malfunction of the central nervous
system, loss of memory, and loss of learning ability (Makarov et al.,
2007).

Recently, we demonstrated that ADAPT-232 significantly
increased tolerance to stress, augmenting the endurance of mice in
a swimming test model. This effect was associated with a dramatic
increase in the blood level of circulating Hsp72 (Panossian et al.,
2009). However, in that study the target cell was not identified. In
the present study, we demonstrated that ADAPT-232 and its active
constituent salidroside stimulate the expression (Figures 1, 2, 3B,
and 4B,C) and release (Table 1; Figure 5) of NPY and the stress
protein Hsp72 from isolated human brain glioblastoma T98G
cells. There is now strong evidence that NPY are synthesized in
astrocytes, oligodendrocytes, microglia, and Schwann cells in vivo
(Ubink et al., 2003). We speculate that human normal neuroglia

cells might be one of the target cells for ADAPT-232 (and its active
constituent salidroside) as well. Further studies supporting this
hypothesis are currently ongoing in our laboratory (Kaur et al., in
preparation).

Neuropeptide Y is known to perform a wide range of biological
functions through the interaction with distinct G-protein-coupled
receptors (Wahlestedt and Reis, 1993). Table 2 illustrates the
similarities in pharmacological profiles of NPY and adaptogens.
Table 3 exemplifies several NPY-mediated beneficial effects and
other potential effects of adaptogens in various disorders. Taken
together, the data presented in Tables 2 and 3 suggests that a stress–
protective activity of adaptogens is mainly associated with effects
of Hsp72, while stimulating activity of adaptogens – with NPY.

Neuropeptide Y is known to play an essential role in the
basic mechanisms of morphine tolerance and opioid dependence
(Woldbye et al., 1998). Morphine significantly decreases NPY levels
in the hypothalamus, the striatum, and the adrenal glands (Pages
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FIGURE 3 | Silencing HSF1 significantly suppresses ADAPT-232- and

salidroside-mediated Hsp72 expression. Human neuroglia cells (106)
were either pre-treated with PBS or transfected with either 10 μM
control-siRNA or 10 μM HSF1-siRNA or incubated for 48 h in a 37˚C
incubator. Cells were then treated with either PBS or 0.5 μg/ml ADAPT or
5 μM salidroside and incubated for a further 24 h at 37˚C. Cells were lysed
and (A) HSF1 protein expression or (B) Hsp72 protein expression was
determined using Western blot analysis as described in detail in the Section
“Materials and Methods.” β-Actin was used as a loading control. The
intensity of the bands were analyzed by densitometry with a video
densitometer (Chemilmager™ 5500; Alpha Innotech) using the AAB
software (American Applied Biology). Data are the percentage (%) change
in specific protein density as compared to control (normalized to 100%),
and are representative of three independently performed experiments with
similar results.

et al., 1991). Our study is in line both with reports on morphine
anti-withdrawal effect of NPY (Woldbye et al., 1998) and recent
studies in which the anti-narcotic effect of Rhodiola extract has
been demonstrated (Mattioli et al., 2009). Our study is also in
line with a recent finding that salidroside (but not rosavin) at
doses present in the Rhodiola extract, dose-dependently reduced,
or abolished binge eating (Cifani et al., 2010). The reason for this
is thus far not known. However, we hypothesize that this might be
associated with the stimulation of NPY, which plays an important
role in regulation of energy homeostasis, the imbalance of which
is associated with eating disorders anorexia and bulimia nervosa
(Sedlackova et al., 2011). This is in agreement with a study demon-
strating that NPY acts to stimulate behavior, which precedes the
food intake and actually inhibits the food intake per se (Nergardh
et al., 2007). In addition, the treatment with NPY increased phys-
ical activity and decreased food intake and caused a loss of body
weight (Sederholm et al., 2002).

Based on the results of this study we hypothesize that NPY,
being itself a kind of a “host adaptogen,” plays a key role in
modulation of adaptogenic activity of ADAPT-232 (and possi-
bly other plant adaptogens), increasing resistance of the organism
to stress.

FIGURE 4 | ADAPT-232-induced expression of Hsp72 from human

neuroglia cells is dependent on NPY. Human neuroglia cells (106) were
either pre-treated with PBS or transfected with various concentrations of
NPY-siRNA or 12 μM control-siRNA for 48 h in a 37˚C incubator. Cells were
then (A) treated with PBS or 5, 10, 15, or 20 μM NPY peptide or (B) treated
with PBS or 0.5 μg/ml ADAPT or 5 μM salidroside or (C) PBS or 0.5 μg/ml
ADAPT. All cells were then incubated for a further 24 h at 37˚C, at which
time cells were then lysed and the expression of Hsp72 protein was
determined using Western blot analysis as described in detail in the Section
“Materials and Methods.” β-Actin was used as a loading control. The
intensity of the bands were analyzed by densitometry with a video
densitometer (Chemilmager™ 5500; Alpha Innotech) using the AAB
software (American Applied Biology). Data are the percentage (%) change
in specific protein density as compared to control (normalized to 100%),
and are representative of three independently performed experiments with
similar results.
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FIGURE 5 | ADAPT-232 and its active constituent salidroside induce the

release of Hsp72 and NPY via a mechanism dependent on the

upregulation of HSF1. Human neuroglia cells (106) were either pre-treated
with PBS or transfected with either 10 μM control-siRNA (control) or 10 μM
HSF1-siRNA or 12 μM NPY-siRNA or exposed to heat shock (41˚C, 60 min)
and incubated for 48 h in a 37˚C incubator. Cells were then treated with
either PBS or 0.5 μg/ml ADAPT-232 (0.005 μM salidroside) or 5 μM
salidroside and incubated for a further 24 h at 37˚C. Twenty-four hours after
treatment protocols the supernatant from human neuroglia cells were
recovered, centrifuged to clear cellular debris and (A) NPY or (B) Hsp72
concentrations were measured using the NPY enzyme immunoassay kit
(assay sensitivity of 0.09 ng/ml) according to the manufacturer’s
instructions (Phoenix Pharmaceuticals, CA, USA), or the classical Hsp72
ELISA as described in detail in the Section “Materials and Methods.” Data
are the mean concentration of NPY (ng/ml ± SD), Hsp72 (ng/ml ± SD), and
is the sum of three independent experiments performed in quadruplicates.
*p < 0.05 vs control (control-siRNA). Twenty-four hours after treatment
protocols the supernatant from human neuroglia cells and viability were
assayed using the CytoTox 96 Non-Radioactive Cytotoxicity Assay according
to the manufacturer’s instructions (Promega), and the percentage of LDH
released vs total LDH was calculated. Data are mean percentage cell
death ± SD and represent four independently performed experiments in
quadruplicates. *p < 0.001 vs control (0 μg/ml genuine extracts).

FIGURE 6 | Effect of NPY on Hsp72 release from human neuroglia cells.

Treatment of human neuroglia cells with NPY peptide dose-dependently
increased the release of Hsp72. Human neuroglia cells (106) were
transfected with either 12 μM control-siRNA or 12 μM NPY-siRNA for 48 h
at 37˚C. Cells were then treated with either various concentrations of NPY
peptide or 40 μM PB1 (control peptide) and incubated for a further 24 h at
37˚C. Twenty-four hours after treatment protocols the supernatant from
human neuroglia cells were recovered, centrifuged to clear cellular debris,
and Hsp72 concentration was measured using the classical Hsp72 ELISA
as described in detail in the Section “Materials and Methods.” Data are the
mean concentration of Hsp72 (ng/ml ± SD) and is the sum of five
independent experiments performed in quadruplicate. *p < 0.05 vs
control-siRNA. Twenty-four hours after treatment protocols the supernatant
from human neuroglia cells and viability were assayed using the CytoTox 96
Non-Radioactive Cytotoxicity Assay according to the manufacturer’s
instructions (Promega), and the percentage of LDH released vs total LDH
was calculated. Data are mean percentage cell death ± SD and represent
three independently performed experiments in quadruplicates. *p < 0.001
vs PB1 (control peptide).‡p < 0.001 vs control-siRNA.

Table 2 | Similarities in pharmacological profiles of adaptogens and

NPY.

Activity NPY Adaptogens

Stress response modifying (protective and mimetic)

effect

+ +

Stimulation of HPA axis, modulation of cortisol

release

+ +

Stimulation of CNS system + +
Effect on endocrine system (via cortisol, insulin, etc.) + +
Stimulation of immune system (via Hsp72) + +
Effect on sympathetic and parasympathetic system + +
Effect on energy homeostasis + +
Anabolic effect + +
Effect on physical endurance, locomotor activity + +
Effect on cognitive function (attention, memory) + +
Cardiovascular effects, vasoconstrictor + +
Anti-narcotic effect + +
Cytoprotection (via Hsp72) + +
Anti-aging (via Hsp72 and FoxO) + +

+, See the references on relevant publications, reference list and the reviews on

adaptogens (Brekhman and Dardymov, 1969; Panossian, 2003; Panossian and

Wagner, 2005; Panossian and Wikman, 2008, 2009, 2010).

One of the active constituents of ADAPT is salidroside, which
also stimulates expression of NPY at concentrations approximately
100–1,000 times higher than in ADAPT. It might be speculated that
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Table 3 | NPY-mediated beneficial effects‡ and potential effects§ of adaptogens in various disorders.

Disorder/syndrome Effect Adaptogens reference NPY reference

Depression Antidepressive‡ Darbinyan et al. (2007), Panossian et al.

(2009)

Stogner and Holmes (2000), Redrobe et al.

(2002), Morales-Medina et al. (2010, 2012)

Anxiety Anxiolytic‡ Bystritsky et al. (2008) Boulenger et al. (1996), Trent and Menard

(2011). Morales-Medina et al. (2012)

Stress induced fatigue Anti-fatigue‡ Brekhman and Dardymov (1969), Olsson

et al. (2009), Panossian and Wikman (2009)

Morgan et al. (2001), Karamouzis et al.

(2002)

Chronic fatigue syndrome Relief of symptoms§ Panossian and Wikman (2009) Morgan et al. (2000), Fletcher et al. (2010)

Post-traumatic stress syndrome Relief of symptoms§ – Rasmusson et al. (2010)

Metabolic syndrome Relief of symptoms§ – Abe et al. (2010), Rasmusson et al. (2010)

Fibromyalgia Relief of symptoms§ – Crofford et al. (1996), Di Franco et al.

(2009), Sedlackova et al. (2011)

Anorexia nervosa Gain of body weight‡ – Nergardh et al. (2007), Himmerich et al.

(2010), Sedlackova et al. (2011)

Bulimia Loss of body weigh‡ – Morris et al. (1986)

Asthenia Anti-fatigue‡ Brekhman and Dardymov (1969), Panossian

and Wagner (2005), Panossian and Wikman

(2008, 2009, 2010), Panossian et al. (2011)

–

ADAPT contains some other active compound(s) synergistically
increasing the expression of NPY. Interestingly tyrosol, salidro-
side, and NPY contain five tyrosine residues (Labelle et al., 1997),
and all have the same p-hydroxyl-methylene residue. The impor-
tance the tyrosine moieties for brain receptors binding and NPY
activity has been demonstrated (Martel et al., 1990). We hypoth-
esize that the p-hydroxyl-methylene residue of the tyrosine unit
(in polypeptide chain of NPY), and p-hydroxyl-ethylene residue of
tyrosol and salidroside (in ADAPT-232) can compete on the recep-
tor binding site. In support of this speculation, we demonstrated
that ADAPT-232 and salidroside dose-dependently stimulate the
expression (Figure 1) and release (Table 1) of Hsp72 in human
neuroglia cells. Again, salidroside alone is active in concentrations
significantly higher than it is in ADAPT-232 reviling a similar effect
on release of Hsp72 from neuroglia cells (Figure 5). In the next
series of experiments, we demonstrated that ADAPT-232 signif-
icantly activates HSF1, a protein known to initiate the synthesis
of Hsp72 (Wu, 1995), However, ADAPT-232 is inactive in “silent”
cells transfected by HSF1-siRNA which effectively inhibits baseline
levels of HSF1 expression (Figure 3A).

Interferences RNA technology (RNAi) was also used to abro-
gate the expression of HSF1 (using HSF1-siRNA) in order to clarify
what is upstream of NPY, HSF1, and Hsp72 activation. Figure 5
demonstrated that ADAPT-232 and an active constituent salidro-
side induce the release of Hsp72 via a mechanism dependent on
the upregulation of HSF1. Pre-treatment of human neuroglia cells
HSF1-siRNA, which silences/knock down the expression of intra-
cellular HSF1, before treatment with ADAPT-232 or salidroside,
resulted in a significant suppression of Hsp72 and NPY release
(Figure 5). We further demonstrated that pre-treatment of human
neuroglia cells with NPY-siRNA, which silences/knock down the
expression of intracellular NPY, before treatment with ADAPT-
232 or salidroside resulted in a significant suppression of Hsp72
expression and release (Figures 3A, 3B and 5).In a separate set

of experiments, we demonstrated that the treatment of human
neuroglia cells with NPY peptide dose-dependently increases the
expression and release of Hsp72 (Figure 6). These results are in
agreement with recent findings that NPY stimulates Hsp72 in rat
renal vascular smooth muscle (Zhong et al., 2003).

In this study we demonstrated that ADAPT-232-induced
expression and release of Hsp72 from glioma cells was dependent
of HSF1 or NPY. The general mechanism of activation and regu-
lation of Hsp72 by HSF1 in the brain and aging is well elucidated
(Asea and Brown, 2008; Calderwood et al., 2009). However, the
mechanism activation of Hsp72 by NPY still remains uncertain.
The expression of NPY receptors on glial cells has been demon-
strated (Canto Soler et al., 2002; Hashimoto et al., 2011). Recently,
the Y(1) receptor has been demonstrated to play an essential role
in mediating NPY-induced NO and IL-1β production in microglia
(Ferreira et al., 2010). However, further studies are required to elu-
cidate the exact mechanism of action and the signaling pathway
utilized by NPY receptors to transducer it beneficial effects.

Taken together our studies suggest that the ADAPT-232 and
its active constituent salidroside act on NPY expression via a
mechanism dependent on the upregulation of HSF1 expression,
which is upstream of Hsp72 expression, which is upstream of
Hsp72 release (Figure 7). Our hypothetical model suggest that
the release of Hsp72 take place via a mechanism dependent on
the upregulation of NPY, which is upstream of Hsp72 and all
other mediators of stress response involved in effects of ADAPT-
232 (Figure 7). ADAPT-232 stimulates secretion of NPY which is
known to play an important role in regulation of HPA axis and
energy homeostasis and secretion of Hsp72, playing an impor-
tant role in cytoprotection and innate immunity. Hsp72 in turn
inhibits FoxO transcription factor, playing an important role in
adaptation to stress and longevity (Lam et al., 2006; Senf et al.,
2010). These pathways contribute the anti-fatigue effect of ADAPT,
increase attention and the improvement in cognitive function.
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FIGURE 7 | Schematics representation of the hypothetical working

model for the effect of ADAPT-232 on neuroglia cells. ADAPT-232
(green star) and its active constituent salidroside activated the synthesis
and release of NPY and Hsp72 via a HSF1-dependent mechanism,
including the trimerization and nuclear translocation of HSF1 (blue
circles). Hsp72 functions intracellularly to enhance anti-apoptotic
mechanisms, protect proteins against mitochondria generated

oxygen-containing radicals, including nitric oxide (red star) and
superoxide anion (purple star). The released Hsp72 acts as an
endogenous danger signal and plays an important role in immune
stimulation. While released NPY plays a crucial role in the HPA axis and
maintains energy balance, both NPY and Hsp72 are directly involved in
cellular adaptation to stress, increased survival, enhanced longevity, and
an improvement in cognitive function.

The activation of NPY by ADAPT-232 initiates Hsp72 expres-
sion in human neuroglia cells, which are known to maintain
homeostasis of neuronal cells. Stimulation and release of these
stress hormones (NPY and Hsp72) into the blood circulating sys-
tem apparently is an innate defense response to mild stressors
(adaptogens), which increases tolerance and adaptation to stress.
This gives rise to adaptive and stress–protective effects via various
components of central nervous, sympathetic, endocrine, immune,
cardiovascular, and gastrointestinal systems. Both NPY and Hsp72
play important roles in stress, regulation of aging, and pathogen-
esis of age-related diseases (Kmiec, 2006; Calderwood et al., 2009;
Rasmusson et al., 2010). Taken together, the data presented in this
study suggests that adaptogenic activity of ADAPT-232, such as
increased mental performance, attention, endurance, tolerance to

stress, and beneficial effects on age-related disorders are associated
with activation of NPY and Hsp72 gene expression in neuroglia
cells and the release of NPY and Hsp72 into the systemic blood
circulation.
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