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Whether induction of low-level neurogenesis in normally non-neurogenic regions of the
adult brain mimics aspects of developmental neurogenesis is currently unknown. Previ-
ously, we and others identified that biophysically induced, neuron subtype-specific apop-
tosis in mouse neocortex results in induction of neurogenesis of limited numbers of
subtype-appropriate projection neurons with axonal projections to either thalamus or spinal
cord, depending on the neuron subtype activated to undergo targeted apoptosis. Here,
we test the hypothesis that developmental genes from embryonic corticogenesis are
re-activated, and that some of these genes might underlie induction of low-level adult neo-
cortical neurogenesis. We directly investigated this hypothesis via microarray analysis of
microdissected regions of young adult mouse neocortex undergoing biophysically activated
targeted apoptosis of neocortical callosal projection neurons. We compared the microar-
ray results identifying differentially expressed genes with public databases of embryonic
developmental genes. We find that, following activation of subtype-specific neuronal apop-
tosis, three distinct sets of normal developmental genes are selectively re-expressed in
neocortical regions of induced neurogenesis in young adult mice: (1) genes expressed by
subsets of progenitors and immature neurons in the developing ventricular and/or sub-
ventricular zones; (2) genes normally expressed by developmental radial glial progenitors;
and (3) genes involved in synaptogenesis.Together with previous results, the data indicate
that at least some developmental molecular controls over embryonic neurogenesis can
be re-activated in the setting of induction of neurogenesis in the young adult neocortex,
and suggest that some of these activate and initiate adult neuronal differentiation from
endogenous progenitor populations. Understanding molecular mechanisms contributing
to induced adult neurogenesis might enable directed CNS repair.

Keywords: induced adult neocortical neurogenesis, developmental molecular controls, cortex

INTRODUCTION
There is increasing evidence that elements of the molecular con-
trols over developmental neurogenesis during brain formation
also control homologous aspects of constitutive neurogenesis in
the hippocampal dentate gyrus and olfactory bulb (Magavi et al.,
2005; Sohur et al., 2006; Steele et al., 2006; Alvarez-Buylla et al.,
2008; Suh et al., 2009; Ma et al., 2010; Kempermann, 2011), but
whether the same is true of induction of neurogenesis in nor-
mally non-neurogenic regions is unknown. Substantial progress
has recently been made in understanding molecular controls over
corticogenesis and neocortical neuron subtype-specific neuroge-
nesis during development (Molyneaux et al., 2007; Leone et al.,
2008; Shoemaker and Arlotta, 2010; Fame et al., 2011; MacDon-
ald et al., 2012). It is increasingly being identified that there is
remarkable heterogeneity and diversity of partially fate-restricted
progenitors in the developing CNS (Chambers et al., 2001; Hack
et al., 2005; Kohwi et al., 2005; Molyneaux et al., 2005; Wu et al.,
2005; Gal et al., 2006; Costa et al., 2007; Merkle et al., 2007;
Mizutani et al., 2007; Lai et al., 2008; Lledo et al., 2008; Azim et al.,

2009a) and that there are lineage- and subtype-specific molec-
ular controls over the specification, differentiation, and ultimate
function of broad classes and distinct subtypes of cortical projec-
tion neurons (Arlotta et al., 2005; Chen et al., 2005; Molyneaux
et al., 2005, 2007; Ozdinler and Macklis, 2006; Sohur et al., 2006;
Alcamo et al., 2008; Britanova et al., 2008; Joshi et al., 2008; Lai
et al., 2008; Azim et al., 2009a,b; Bedogni et al., 2010; Tomassy
et al., 2010; Han et al., 2011; McKenna et al., 2011). Collectively,
these studies are beginning to identify the complex molecular
controls over developmental neurogenesis within the mammalian
neocortex.

In contrast, almost nothing is understood about molecular
controls that might be mechanistically involved in activation
and/or regulation of induced neurogenesis in the adult mam-
malian neocortex (Wang et al., 1998; Magavi et al., 2000; Chen
et al., 2004; Brill et al., 2009). Based on the similarities and con-
served mechanisms identified by many groups between develop-
mental and adult neurogenesis in the hippocampal dentate gyrus
and olfactory bulb, we hypothesized that there might potentially
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be recapitulation of at least some molecular controls over nor-
mal embryonic neocortical neurogenesis during induced adult
neurogenesis. We directly investigated this hypothesis via microar-
ray analysis of microdissected regions of young adult mouse
neocortex undergoing biophysically activated targeted apoptosis
of neocortical callosal projection neurons (CPN; Macklis, 1993;
Sheen and Macklis, 1995; Hernit-Grant and Macklis, 1996; Wang
et al., 1998; Leavitt et al., 1999; Magavi et al., 2000; Scharff et al.,
2000; Fricker-Gates et al., 2002; Chen et al., 2004). We targeted
CPN as the most abundant projection neuron class maximally
enabling optimal gene expression analysis. These conditions were
previously identified to result in induction of low-level neuro-
genesis in the neocortex of young adult mice (∼100 newborn
neurons/mm3, 2 weeks after induction) by our lab and others
(Magavi et al., 2000; Chen et al., 2004; Brill et al., 2009) and in
the zebra finch forebrain song system (Scharff et al., 2000). Other
groups have reported complementary results in other normally
non-neurogenic regions – e.g., the hippocampus outside of the
dentate gyrus (Nakatomi et al., 2002) and striatum (Arvidsson
et al., 2002; Parent et al., 2002) – following controlled hypoxia to
produce selective vulnerability and apoptosis in targeted neuron
subtypes. We compared the microarray results identifying dif-
ferentially expressed genes with public databases of embryonic
developmental genes. Our experiments enable direct investigation
of potential re-expression of molecular controls from embry-
onic neurogenesis in the setting of induction of adult neocortical
neurogenesis.

MATERIALS AND METHODS
ANIMALS AND EXPERIMENTAL DESIGN
All animal studies were approved by the Massachusetts General
Hospital Institutional Animal Care and Use Committee, and per-
formed in accordance with institutional and federal guidelines.
We focused on the sensorimotor cortex (in the area ∼+1 mm
anterior to −1.5 mm posterior from bregma – exact start location
depended on blood vessel anatomy), and we biophysically targeted
CPN, cortical pyramidal neurons that connect the two cerebral
hemispheres, by unilateral injection of chlorin e6-conjugated flu-
orescent latex nanospheres between postnatal days 1 and 3 inbred
C57/Bl6 mice of either sex (P1–P3; day of birth P0) based on
established protocols (e.g., Magavi et al., 2000). After 8 weeks,
subtype-specific targeted apoptosis of contralateral CPN was ini-
tiated in the experimental mice by near-infrared laser activa-
tion, as previously described (Figures 1A,B). Six-hundred seventy
nanometers laser energy was applied to the contralateral sensori-
motor cortex through an ∼2-mm diameter craniotomy directly
contralateral to the initial nanosphere injection site, to induce
synchronous apoptotic degeneration of nanosphere-containing
CPN (Macklis, 1993; Sheen and Macklis, 1995; Magavi et al.,
2000; Chen et al., 2004). Control mice were injected under
the same surgical conditions at the same neonatal age, except
with targeting nanospheres that were not conjugated with chlo-
rin e6; allowed to survive for the same period of time until
8 weeks of age; then treated with the same procedural, anesthetic,
and surgical conditions for a photo-exposure step (including
use of the same fiberoptic, timing of procedure, and laser light
exposure).

PREPARATION OF TISSUE AND RNA EXTRACTION AND HYBRIDIZATION
Based on previous experiments where we had determined when
maximum induced transcriptional activity occurs in situ after
initiation of biophysical degradation (e.g., Wang et al., 1998),
8 days after chlorin e6-mediated CPN apoptosis, mice were deeply
anesthetized, the craniotomy site was exposed, and a 2-mm × 2-
mm × 0.5-mm sample (enriching for layers II/III, and thus exclud-
ing the VZ/subventricular zones, SVZ) of cortex was microdis-
sected from the center of each of the regions of targeted apoptosis
(Figure 1C). Subsequently, mice were euthanized by additional
anesthesia. For each of three biological replicates, microdissected
samples from eight experimental neocortical hemispheres were
collected and pooled, and compared with matched samples pooled
from eight control mice (total of 24 experimental and 24 con-
trol mice). Each sample was placed in RNAlater (Ambion, Inc.)
immediately after microdissection, and stored at −80˚C.

RNA was extracted using the StrataPrep Total RNA Mini
Kit (Stratagene, La Jolla, CA, USA), and RNA quality was
assessed using a bioanalyzer (Agilent Technologies, Palo Alto,
CA, USA). RNA (10 μg of RNA per biological replicate) was
hybridized to Affymetrix GeneChip Murine Genome U74 Version
2 [MGU74Av2; contains probes for more than 12,400 transcripts,
coding for 7,000 mouse genes and 5,000 expressed sequence tags
(ESTs)] according to the manufacturer’s protocol (Affymetrix;
Santa Clara, CA, USA) and as previously described (Figure 1D;
Arlotta et al., 2005).

TRANSCRIPTOME ANALYSIS OF REGIONS UNDERGOING INDUCED
NEUROGENESIS IN THE YOUNG ADULT MOUSE
We combined two statistical approaches, and integrated the results
to optimize rigor, and raise confidence in gene expression changes
that were identified.

Statistical analysis of microarrays
To identify genes that are differentially expressed in regions under-
going induced adult neurogenesis with very high confidence, we
used two different approaches to analyze the Affymetrix data. In
the first, we applied the robust multi-array average (RMA) func-
tion within Bioconductor (Irizarry et al., 2003), and the “Error
Model” method within Rosetta Resolver (version 5.0, Rosetta
Biosoftware, Seattle, WA, USA). Statistical significance of gene
expression differences between control and experimental tissue
expression was determined using statistical analysis of microar-
rays (SAM; Tusher et al., 2001). We used a P-value of <0.05 as a
filter for differentially expressed genes.

Multivariate analysis of variance (linear modeling; MANOVA)
To even more stringently analyze the results, we subjected the
six .CEL files to GC-content-based robust multi-array average
(GCRMA) normalization (Irizarry et al., 2003). Expression levels
were log (base 2) transformed. The number of genes was reduced
from 12,488 to 4,349 by requiring a “presence call” for at least 50%
in a group of samples classified by experimental treatment. All
calculations were done using R and Bioconductor computational
tools (Gentleman, 2005). To identify differentially expressed genes
between groups of samples, we applied the multivariate analysis
of variance approach (also known as linear modeling; MANOVA)
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to fit gene expression levels (log2 transformed) according to the
defined groups of samples and Bayesian posterior error analysis
(Smyth, 2004). Genes that exhibited a P-value ≤ 0.05 and fold
change greater than 1.5 were considered significantly differentially
expressed.

COMPARING THE INDUCED ADULT NEUROGENESIS DATASET WITH
DEVELOPING NEOCORTEX TRANSCRIPTOME DATA
Gene expression in neural progenitors from developing mouse
cortex has been profiled by other groups (Pinto et al., 2008;
Sanosaka et al., 2008). The deposited .CEL files of the
Affymetrix raw data from these publications were accessed at the
National Center for Biotechnology Information’s Gene Expression
Omnibus (GEO)1.

Genes differentially expressed between early- and mid-neocortical
neurogenesis
The Nakashima laboratory previously compared expression pro-
filing in neural stem/progenitor cell cultures (“NSC”) of the telen-
cephalon from mouse embryonic day (E) 11.5 (early neocortical
neurogenesis) and E14.5 (mid-neocortical neurogenesis; Sanosaka
et al., 2008; GEO Accession Number: GSE10796).

Genes differentially expressed in radial glia subtypes
Gotz and colleagues used a mouse line that expresses green fluores-
cent protein (GFP) driven by a human glial fibrillary acidic protein
(hGFAP) promoter to profile gene expression by radial glial sub-
types (Pinto et al., 2008; GEO Accession Number: GSE8034). At
E14.5, during the mid-neurogenic phase in the neocortex, essen-
tially all GFAP positive cells are radial glia. Two subtypes of radial
glia were isolated in the cortical prominin positive (CD133+;

1http://www.ncbi.nlm.nih.gov/gds

ventricular neural cell precursors) population by FACS: those
that expressed high levels of GFAP (i.e., CD133 + GFAPhi), and
those that expressed low levels of GFAP (CD133 + GFAPlow).
Because these experiments investigated gene expression in high-
level GFAP-expressing cells, we added Gfap to this dataset as a
“differentially” expressed gene.

A gene list for each individual dataset was generated using
MANOVA/linear modeling analysis approach.

IN SITU HYBRIDIZATION IMAGES
From the analysis above, we searched established databases of gene
expression to identify representative patterns of expression for tar-
get genes, primarily using the Eurexpress/Genepaint consortium2

(Visel et al., 2004). Sagittal E14.5 mouse in situ hybridization
images are shown in Figure 2: Cry2 (T50260); Litaf (T31645);
Myo10 (T36658); Nelf (T5943).

RESULTS
We identified genes differentially expressed in regions of induced
neurogenesis in the neocortex of young adult mice. Specifically, we
find that regions of young adult neocortex undergoing induction
of neurogenesis differentially express genes that are active dur-
ing normal development in neural precursors and radial glia, and
during synaptogenesis. These data suggest that some normal neo-
cortical developmental molecular controls are re-activated during
induced young adult neocortical neurogenesis.

We identified differentially expressed genes by comparative
transcriptional profiling and analysis between microdissected
regions undergoing induction of young adult cortical neuroge-
nesis and matched control regions. The two analysis and statistical
approaches employed both indicated that genes previously identi-
fied as specifically expressed during normal forebrain development

2http://www.eurexpress.org/ee/intro.html

FIGURE 1 | Genes involved in developmental neocortical neurogenesis

are differentially expressed in regions of induced young adult neocortical

neurogenesis. (A–E) Approach to identify differentially expressed genes in
regions of induced young adult neurogenesis. (A) Coronal representation of a
mouse brain, indicating site of injection (red arrows) of chlorin e6-conjugated
nanospheres into mice at postnatal day 1–3 (P1–P3; day of birth P0) to label
callosal projection neurons (CPN; red somas in right cortex). Dashed box
represents the area of focus in (B,C). (B) Photoactivation of chlorin
e6-conjugated nanospheres within the lysosomes of CPN to induce apoptotic

CPN degeneration at 8 weeks of age. (C,D) Microdissection and microarray
comparative differential gene expression analysis of regions of induced young
adult neurogenesis and control tissue. (E) 107 genes were identified as
differentially expressed in regions of induced young adult neurogenesis. (F)

Genes differentially expressed in regions of induced young adult neurogenesis
in common with genes expressed in mid-neurogenesis in neural progenitor
cell culture. (G) Genes expressed in regions of induced young adult
neurogenesis in common with genes expressed by developmental radial glia.
The genes indicated in purple are those shown in Figure 2.
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FIGURE 2 | Genes differentially re-expressed in regions of induced young

adult neurogenesis previously not specifically identified to be expressed

during neocortical development. (A–D) Sagittal sections of in situ
hybridization of embryonic day (E) 14.5 mouse obtained from the publicly
available Genepaint/Eurexpress consortium (data presented with permission).
Insets to the right in each panel are higher magnification views of the boxed

areas in the main images; these are denoted by the corresponding lower-case
letter. (A) Cry2 is predominantly expressed in the developing cortical plate.
Litaf (B) and Myo10 (C) are expressed strongly in the ventricular zone. (D)

Nelf is highly expressed in the developing cortical plate, and also diffusely
throughout the thickness of the cortex. cp, cortical plate; vz, ventricular zone.
Scale bars, 100 μm. See text for details.

are re-activated during induced young adult neocortical neuro-
genesis. These include genes previously identified as expressed
by developmental neural progenitors (Sanosaka et al., 2008) and
developmental radial glia (Pinto et al., 2008). We then accessed
publicly available in situ hybridization expression databases to
identify which of these genes are regionally expressed in the
germinal zone (VZ, SVZ) of the developing neocortex.

DIFFERENTIALLY EXPRESSED GENES IN REGIONS UNDERGOING
INDUCED YOUNG ADULT NEOCORTICAL NEUROGENESIS
The SAM method identified 83 genes differentially expressed in
regions of induced young adult neocortical neurogenesis, while
the MANOVA method identified 55 differentially expressed genes;
31 genes were common to both analyses. Together, the results of
both transcriptome analyses identified 107 genes as differentially
expressed (either over- or under-expressed) in regions of induced
young adult neocortical neurogenesis (Figure 1E; Table A1 in
Appendix). These genes likely have relatively high degrees of dif-
ferential expression that can be detected even from heterogeneous
tissue. This very focused set of differentially expressed genes rein-
forces the specificity of gene activation in this system, and suggests
that many are likely critical in induced young adult neurogenesis.

GENES DIFFERENTIALLY EXPRESSED IN REGIONS OF INDUCED YOUNG
ADULT NEOCORTICAL NEUROGENESIS IN COMMON WITH MURINE
DEVELOPING NEOCORTICAL TRANSCRIPTOME DATABASES
Radial glial genes are expressed in regions of induced young adult
neurogenesis
We first analyzed the previously published datasets for
CD133 + GFAPhi vs. CD133 + GFAPlow murine radial glia at
E14.5 (Pinto et al., 2008) and identified over 1,200 genes
differentially expressed between these populations (data not
shown). Nineteen genes were common between those differen-
tially expressed in regions of induced young adult neocortical neu-
rogenesis and this radial glia dataset (Figure 1G); this represents

Table 1 | Genes differentially expressed in regions of induced young

adult neurogenesis that are associated with and expressed by

developmental radial glia.

Gene Description Fold change P -value

Fabp7 Lipid transporter 1.53 0.02

Gfap Cytoskeletal protein 3.93 2.98 × 10−3

∼ 20% of the differentially expressed genes in regions of induced
adult neocortical neurogenesis. Two well-known radial glia genes
stand out: Fabp7 (also known as Blbp; Rousselot et al., 1997; Hart-
fuss et al., 2001; Zimmerman and Veerkamp, 2002; Anthony et al.,
2004; Arai et al., 2005) and Gfap (Leavitt et al., 1999; Shapiro
et al., 2005; Emsley and Macklis, 2006; Chojnacki et al., 2009;
Table 1). These results reinforce that radial glial-like progenitors
likely contribute to induced neocortical neurogenesis.

Developmental synaptogenic genes are expressed in regions of
induced young adult neurogenesis
Sanosaka et al. (2008) compared neural progenitor cell cultures
generated from mouse telencephalon at E11.5 vs. E14.5. Our analy-
sis of their raw Affymetrix dataset revealed over 1,300 genes as
differentially expressed between these two types of cultures (data
not shown). Twenty-three of the differentially expressed genes
in regions of induced young adult neocortical neurogenesis are
common to this developmental progenitor dataset (Figure 1F):
∼23% of our dataset of differentially expressed genes in regions
of induced young adult neocortical neurogenesis. Of these, it is
interesting to note that several genes are known to be involved
in synaptogenesis and/or maintenance of synapses, e.g., Abca1
(Hirsch-Reinshagen et al., 2004; Kim et al., 2008; Karasinska
et al., 2009); Apoe (Masliah et al., 1995; Hirsch-Reinshagen et al.,
2004; Wahrle et al., 2004); C1qa, C1qb, and C1qc (Stevens et al.,
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2007); Ctsd (Mariani et al., 2006; Partanen et al., 2008); Syngr1
(Belizaire et al., 2004; Verma et al., 2004), and Tyrobp (a.k.a.
Dap12/Karap; Roumier et al., 2004; Nataf et al., 2005; Table 2).
These results strongly suggest that induced young adult neuroge-
nesis involves active plastic changes of synapse formation, pruning,
and/or reorganization.

IDENTIFICATION OF GENES DIFFERENTIALLY EXPRESSED IN REGIONS
OF INDUCED YOUNG ADULT NEUROGENESIS THAT HAVE NOT
PREVIOUSLY BEEN STUDIED IN NEOCORTICAL DEVELOPMENT, BUT
ARE EXPRESSED IN DEVELOPING CORTICAL VENTRICULAR ZONE AND
CORTICAL PLATE
From our dataset of 107 genes, we identified genes (e.g., Cry2,
Litaf, Myo10, and Nelf; Table 3) previously not studied in the neo-
cortex, that are interestingly expressed regionally in the cortex
at E14.5 (Figures 2A–D). Litaf and Myo10 are expressed in the
ventricular zone, and Cry2 and Nelf are expressed in the corti-
cal plate. These results suggest homology of potential molecular
mechanisms between developmental neocortical neurogenesis and
induced young adult neocortical neurogenesis.

DISCUSSION
In this report, we provide evidence at the level of microarray analy-
sis that at least some developmental molecular controls over devel-
opmental neurogenesis are re-activated in the setting of induction
of neurogenesis in the young adult neocortex. Although mouse
strain differences in adult neurogenesis are present in details
of timing and magnitude of response (Schauwecker, 2006), the
results in our report are generalizable. Specifically, we find at the

Table 2 | Genes differentially expressed in regions of induced young

adult neurogenesis known to be involved in synaptic development,

function, and plasticity.

Gene Significance Fold change P -value

Abca1 Lipid transporter 3.40 1.04 × 10−3

Apoe Lipid transporter 1.20 4.00 × 10−4

C1qa Cell–cell signaling 2.77 0.01

C1qb Cell–cell signaling 2.48 1.50 × 10−3

C1qc Cell–cell signaling 2.23 0.01

Ctsd Protease 1.62 0.03

Syngr1 Presynaptic vesicle integral

membrane protein

2.71 3.30 × 10−4

Tyrobp Transmembrane signal trans-

ducing peptide

2.39 4.84 × 10−4

Table 3 | Genes differentially expressed in regions of induced young

adult neurogenesis not previously studied in the neocortex, but

expressed in the developmental neocortical ventricular zone,

subventricular zone, and cortical plate.

Gene Significance Fold change P -value

Cry2 Lipid metabolism 2.24 3.27 × 10−3

Litaf Transcription factor 1.57 0.01

Myo10 Cytoskeletal protein 1.96 3.11 × 10−3

Nelf Axon guidance 3.85 0.03

microarray level that genes normally expressed in the developing
ventricular and/or SVZ,radial glial progenitors, and genes involved
in synaptogenesis are selectively re-expressed at the microarray
level in neocortical regions of induced young adult neurogenesis.
In addition, we identify differential expression of several genes not
previously identified as expressed in the developing neocortex.

NINETEEN GENES CONNECTED TO RADIAL GLIA AND RADIAL GLIAL
PROGENITOR FUNCTION ARE DIFFERENTIALLY EXPRESSED BY
MICROARRAY ANALYSIS IN REGIONS OF INDUCED YOUNG ADULT
NEOCORTICAL NEUROGENESIS
Radial glia are critical components of the developing cerebral
cortex, both as cellular scaffolds along which newly born pro-
jection/pyramidal neurons migrate to their final positions, and
as neural progenitors during later stages of cortical development
(Hartfuss et al., 2001; Noctor et al., 2001; Gotz et al., 2002) and
in other regions of the telencephalon such as the ganglionic emi-
nences (Anthony et al., 2004; Chojnacki et al., 2009). Our analy-
sis identified the re-expression of multiple genes associated and
functionally connected with radial glial/progenitor and neuron
migration roles in cortical development.

For example, fatty acid binding protein 7 (Fabp7 )/brain lipid
binding protein (Blbp; Zimmerman and Veerkamp, 2002) and glial
acidic fibrillary protein (Gfap) were both identified as differentially
expressed in regions activated to undergo induced neurogenesis.
Fabp7 /Blbp is expressed during development exclusively by radial
glia and astrocytes (Anthony et al., 2004). It has been proposed
that Fabp7 /Blbp has a role in adult neurogenesis, since it is heavily
expressed in the adult canary brain, which exhibits high levels of
neurogenesis (Rousselot et al., 1997). Prior work from our lab-
oratory (Hernit-Grant and Macklis, 1996) identified that stellate
astroglia partially de-differentiate into ∼150 μm long radial glia in
the setting of targeted apoptosis and migration of immature neu-
rons, potentially a cellular population re-expressing Fabp7 /Blbp.
Expression by activated radial glial-like progenitors is another pos-
sibility. GFAP is a major intermediate filament protein expressed
by radial glia and astroglia; it is used as a marker for astroglia dur-
ing development and when activated. It is also expressed in the
adult SVZ where GFAP-expressing “SVZ astrocytes” are multipo-
tent neural progenitors (Doetsch et al., 1999; Alvarez-Buylla et al.,
2001; Seri et al., 2001; Chojnacki et al., 2009). Upregulation of
Gfap might represent activation or proliferation of radial glia or
radial glia-like neural progenitors in regions of induced adult neu-
rogenesis. Our previous work (e.g., Macklis, 1993) indicates that
Gfap expression is unlikely to be due to gliosis in this biophysically
activated targeted apoptosis leading to induction of neurogenesis.
Also of note, the U74Av2 Affymetrix microarray we utilized does
not contain the probe sets for Glast, another important marker
for radial glia; in this microarray analysis, it would have been
interesting to investigate its expression in the experimental tissue.

INCREASED EXPRESSION BY MICROARRAY ANALYSIS OF
SYNAPSE-RELATED GENES IN REGIONS OF INDUCED YOUNG ADULT
NEUROGENESIS
Our analysis also identified the increased expression of mul-
tiple genes associated with formation and maintenance of
synapses during initial cortical development. Development and
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stabilization of new synapses is predicted in regions of induced
adult neurogenesis, and is consistent with much prior work in
the field (Magavi et al., 2000, 2005; Scharff et al., 2000; Fricker-
Gates et al., 2002). As examples, we highlight three differentially
expressed genes/gene groups involved in synapse development and
maintenance.

Barres and colleagues identified that C1q, in addition to its
known role in the immune complement cascade, is also impor-
tant in eliminating and shaping synapses (Stevens et al., 2007). All
of the three components of C1q (C1qa, C1qb, C1qc) are differ-
entially over-expressed in regions of induced adult neurogenesis
(Figure 1F).

Synaptotagmin 1 (Syt1) is also differentially over-expressed in
regions of induced young adult neurogenesis. It is a member of
the synaptotagmin family of integral membrane proteins that are
located on synaptic vesicles, and is important for neurotransmit-
ter release. These data are consistent with the generation of new
synapses onto and by newly incorporated neurons.

Tyrobp (Karap/Dap-12), a gene related to the CD3ζ signaling
polypeptide associated with the T-cell receptor, is also differentially
expressed in regions of induced young adult neurogenesis. Tyrobp
is critical to synaptic function through its action in microglia,
in which it is expressed (Roumier et al., 2004). Mice deficient in
Tyrobp have decreased postsynaptic AMPA receptor GluR2 expres-
sion, with substantial effects on synaptic plasticity (Roumier et al.,
2004; Nataf et al., 2005). Tyrobp differential expression is consis-
tent with new synapse formation, establishment, and plasticity in
the setting of induced adult neocortical neurogenesis.

Taken together, the differential over-expression of several
synapse-related genes reinforces the interpretation that synapto-
genesis is ongoing in the setting of induced adult neurogenesis.
Both formation of synapses onto newborn neurons, and forma-
tion of new synapses by those neurons, might jointly account for
the increase in synaptogenic genes following induction of adult
neurogenesis.

GENES DIFFERENTIALLY RE-EXPRESSED BY MICROARRAY ANALYSIS IN
REGIONS OF INDUCED YOUNG ADULT NEUROGENESIS PREVIOUSLY
NOT SPECIFICALLY IDENTIFIED TO BE EXPRESSED DURING
NEOCORTICAL DEVELOPMENT
Other genes identified as differentially over-expressed in regions
activated to undergo induced neocortical neurogenesis were pre-
viously not recognized to be expressed in the developing cortex.
We searched gene expression databases and the primary literature
regarding these genes in other systems or CNS regions, reveal-
ing their expression in progenitors and developing neurons of
the cortical plate. Their regional and temporal expression during
corticogenesis, combined with their differential over-expression
in the setting of induced young adult neocortical neurogenesis,
suggest the re-expression of these genes as functional in corti-
cal development and both developmental and adult neurogenesis.
Four examples of such genes are Cry2, Litaf, Myo10, and Nelf.
Identification of these genes as both highly expressed during
initial corticogenesis in developing VZ/SVZ and cortical plate,
and during induction of adult neocortical neurogenesis, suggests
functional linkage between developmental and induced cortical
neurogenesis.

Cryptochrome 2 (Cry2)
Cry2 has been described as a circadian clock gene (Ishida, 2007),
but we identify it from the publicly available Genepaint/Eurexpress
consortium to be expressed strongly in the cortical plate at E14.5
(Figure 2A). This suggests potential function for Cry2 dur-
ing developmental corticogenesis, and during induced cortical
neurogenesis.

Lipopolysaccharide-induced TNF factor (Litaf)
Litaf is expressed strongly in the neocortical germinal zone at
E14.5 (Figure 2B), again suggesting function in developmen-
tal and young adult cortical neurogenesis, in addition to pre-
viously identified function in other systems. Litaf mutations
result in the peripheral neuropathy syndrome Charcot–Marie–
Tooth (CMT)1c, which accounts for between 1 and 2% of all
CMT1 (Street et al., 2003; Bird, 2010). The biological function of
lipopolysaccharide-induced TNF factor (LITAF) is not well under-
stood. It was originally cloned as a transcription factor modulating
the tumor necrosis factor-α (TNFα) gene (Polyak et al., 1997;
Myokai et al., 1999), but it has also been found to encode a lysoso-
mal protein (Moriwaki et al., 2001). Litaf has not been investigated
regarding potential function in cortical development. It would be
of interest to determine whether Litaf has a critical functional role
during developmental corticogenesis, and, if so, whether it func-
tions through the TNF signaling pathway, as a lysosomal protein,
or by another mechanism.

Myosin 10 (Myo10)
Myo10 was also identified as differentially over-expressed in the
setting of induction of young adult neocortical neurogenesis.
Myo10 is a member of the myosin family of molecular motors.
We identified from Genepaint/Eurexpress that it exhibits strong
expression in the neocortical germinal zone (Figure 2C). Recently,
a shorter version of Myo10 that does not contain the stereotypi-
cal “head” that allows these proteins to act as molecular motors
was shown to be expressed by CNS neurons during develop-
ment (Sousa et al., 2006). It would be of interest to investigate
the specific isoform(s) expressed in the developmental germinal
zone to gain insight into potential function during developmental
neurogenesis.

Nasal embryonic LHRH factor (Nelf)
We also identified Nelf as differentially over-expressed in the set-
ting of young adult neocortical neurogenesis, and from Gene-
paint/Eurexpress as being strongly expressed in the cortical plate
(Figure 2D). Nelf is known as a guidance molecule previously
reported to be responsible for axonal outgrowth of olfactory neu-
rons (McTavish et al., 2007). It would be of interest to investigate
potential function(s) during developmental and induced adult
neurogenesis.

MOLECULAR CONTROLS AND MECHANISMS EXPRESSED DURING
DEVELOPMENTAL CORTICOGENESIS ARE RE-EXPRESSED BY
MICROARRAY ANALYSIS IN REGIONS OF INDUCED YOUNG ADULT
NEUROGENESIS
Taken together, these experiments and analysis demonstrate that
multiple molecular controls and likely functional mechanisms
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active during normal developmental neurogenesis are re-
expressed during induced neurogenesis in the neocortex. Genes
implicated in developmental neocortical neurogenesis, synap-
togenesis, and radial glial progenitor and migrational func-
tion are re-expressed with induction of young adult neocortical
neurogenesis.

Finally, it is important to note that non-mutually exclusive pos-
sibilities exist that together might contribute to the induction
of neurogenesis of neurons ultimately residing in neocortex in
experiments parallel to those reported here. Progenitors (quite
possibly distinct subsets of the much broader set of SVZ progen-
itors) appear to be activated and mobilized from the young adult
SVZ (as reported in Magavi et al., 2000). Additionally, popula-
tions of intra-parenchymal progenitors that have been identified
by multiple groups might contribute through more local activation
and differentiation (indirect evidence suggesting this possibility
in addition to SVZ activation was also presented in Magavi et al.,
2000). The targeted neurons themselves, of course, will alter their
gene expression. Beyond these populations, there are other popu-
lations of glia and other cells that can regulate their gene expression
in the microenvironment.

Future studies could elucidate function(s) and mechanism(s)
of these genes, proteins, and pathways. It appears likely that
fundamental mechanisms are shared during neurogenesis in the
developing and adult CNS.
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APPENDIX

Table A1 | Genes differentially expressed in regions of induced young adult neurogenesis.

Full name Gene symbol Fold change P -value Affymetrix ID Accession number

A

Apolipoprotein E Apoe 1.20 4.00E-04 95356_at D00466

Aquaporin 4 Aqp4 2.23 4.58E-03 102703_s_at U48398

Basigin Bsg 1.17 1.90E-03 101078_at Y16258

Calcium/calmodulin-dependent protein kinase II alpha Camk2a 7.21 4.71E-03 93659_at X14836

Calcium/calmodulin-dependent protein kinase II, delta Camk2d 2.18 9.50E-03 93214_at AF059029

Coiled-coil domain containing 50 Ccdc50 −1.90 4.88E-03 104056_at AI573367

CD63 molecule Cd63 1.27 2.00E-05 160493_at D16432

Carbohydrate sulfotransferase 2 Chst2 2.07 8.08E-03 97110_at AW121776

Coatomer protein complex, subunit beta 1 Copb1 −1.36 8.40E-04 94992_at AI840667

Cellular retinoic acid binding protein II Crabp2 −2.27 2.14E-03 100127_at M35523

Cryptochrome 2 (photolyase-like) Cry2 2.24 3.27E-03 97724_at AB003433

Casein kinase 1, delta Csnk1d 1.84 9.48E-03 97263_s_at AI846289

Cathepsin L Ctsl 1.36 7.50E-03 101963_at X06086

ELOVL family member 5, elongation of long chain fatty

acids (yeast)

Elovl5 1.25 5.10E-03 93496_at AI852098

Epidermal growth factor receptor pathway substrate 15 Eps15 1.98 3.55E-03 104006_at L21768

FBJ osteosarcoma oncogene Fos −1.79 6.13E-03 160901_at V00727

Ferritin light chain 1 Ftl1 1.42 1.53E-03 99872_s_at L39879

Glutathione S-transferase, mu 1 Gstm1 −1.35 5.34E-03 93543_f_at J03952

General transcription factor II H, polypeptide 1 Gtf2h1 1.17 1.04E-03 94811_s_at AJ002366

Histocompatibility 2, D region H2-d1 1.75 3.80E-04 101886_f_at X52490

MHC class I like protein GS10 H2-gs10 1.69 7.04E-03 98438_f_at X16202

Histocompatibility 2, K1, K region H2-k1 3.82 5.15E-03 93120_f_at V00746

Histocompatibility 2, Q region locus 2 H2-q2 1.82 2.00E-04 102161_f_at X58609

Histocompatibility 2, T region locus 23 H2-t23 1.44 1.73E-03 98472_at Y00629

HOP homeobox Hopx 1.37 5.46E-03 96672_at AW123564

Importin 8 Ipo8 −1.28 8.00E-03 104163_at AA711002

Lysosomal multispanning membrane protein 5 Laptm5 2.12 9.52E-03 161819_f_at AV356071

Lectin, galactose binding, soluble 1 Lgals1 1.24 6.75E-03 99669_at X15986

Legumain Lgmn 1.26 1.40E-03 93261_at AJ000990

Myelin basic protein Mbp 1.28 2.34E-03 96311_at M11533

Myelin-associated oligodendrocytic basic protein Mobp 3.45 6.54E-03 99048_g_at U81317

PERP, TP53 apoptosis effector Perp −2.75 2.76E-03 97825_at AI854029

Peroxiredoxin 6 Prdx6 1.49 1.11E-03 100332_s_at AF093853

RAB11a, member RAS oncogene family Rab11a 1.14 4.99E-03 92854_at D50500

RAN GTPase activating protein 1 Rangap1 1.67 5.74E-03 98603_s_at U20857

ribosomal protein, large, P1 Rplp1 −1.48 1.39E-03 161480_i_at AV055186

Ribosomal protein S27 Rps27 −1.13 6.40E-03 96300_f_at AI854238

Ras-related GTP binding D Rragd 1.85 8.99E-03 93614_at AA600647

S100 calcium binding protein A6 S100a6 1.27 8.40E-04 92770_at X66449

Serine incorporator 3 Serinc3 1.15 6.79E-03 100151_at L29441

Sirtuin 2 (silent mating type information regulation 2,

homolog) 2 (S. cerevisiae)

Sirt2 1.34 7.29E-03 95502_at AI840267

Small nucleolar RNA host gene 11 Snhg11 −1.93 7.29E-03 97752_at AI854265

Synaptogyrin 1 Syngr1 2.71 3.30E-04 102221_at AJ002306

Synaptotagmin I Syt1 2.62 5.94E-03 93005_at D37792

(Continued)
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Table A1 | Continued

Full name Gene symbol Fold change P -value Affymetrix ID Accession number

Transgelin Tagln −1.50 5.70E-03 93541_at Z68618

Thrombospondin 1 Thbs1 −2.21 5.79E-03 160469_at M62470

Transmembrane protein 30A Tmem30a 1.52 1.43E-03 95613_at AW122573

Trafficking protein, kinesin binding 2 Trak2 2.01 1.64E-03 97111_at AA290180

Tubulin, beta 2 Tubb2a 1.19 4.09E-03 94835_f_at M28739

Tubulin, beta 5 Tubb5 1.13 7.32E-03 94788_f_at X04663

Tubulin, beta 6 Tubb6 1.20 7.60E-03 160461_f_at AW215736

Zinc finger, X-linked, duplicated A Zxda −2.16 7.66E-03 104191_at AI322972

B

Alpha-2-macroglobulin A2m 2.22 0.01 104486_at AI850558

ADAM metallopeptidase domain 10 Adam10 1.86 0.01 100751_at AF011379

Adipose differentiation-related protein Adfp 1.53 0.02 98589_at M93275

Adenomatosis polyposis coli down-regulated 1 Apcdd1 1.54 6.53E-04 96132_at AB023957

Baculoviral IAP repeat-containing 6 (Apollon) Birc6 −1.52 0.02 102754_at Y17267

Complement component 4A (Rodgers blood group); com-

plement component 4B (Childo blood group)

C4a; C4b 2.85 0.03 103033_at X06454

Caspase 9, apoptosis-related cysteine peptidase Casp9 2.29 0.02 100368_at AB019601

CD68 molecule Cd68 2.49 0.02 103016_s_at X68273

Colony stimulating factor 1 receptor Csf1r 1.79 0.04 104354_at X06368

CUG triplet repeat, RNA binding protein 1 Cugbp1 2.67 0.05 93630_at X61451

Ecotropic viral integration site 2A Evi2a 2 0.01 98026_g_at M34896

H2-K2 histocompatibility 2, K region locus 2 H2-k2 1.74 0.01 93714_f_at AI117211

Histocompatibility 2, Q region locus 7 H2-q7 1.72 0.04 98438_f_at X16202

Major histocompatibility complex, class I, C Hla-c 1.9 0.00 101886_f_at X52490

3-Hydroxy-3-methylglutaryl-coenzyme A reductase Hmgcr 1.63 0.02 99425_at X07888

Lipopolysaccharide-induced TNF factor Litaf 1.57 0.01 93753_at AI852632

Mitogen-activated protein kinase kinase kinase 7 Map3k7 1.55 0.04 160854_at D76446

Matrix Gla protein Mgp −1.75 0.02 93866_s_at D00613

Osteoglycin Ogn −1.54 2.68E-03 160877_at AA647799

RAB34, member RAS oncogene family Rab34 −1.61 0.03 160317_at AI835712

Ribose 5-phosphate isomerase A (ribose 5-phosphate

epimerase)

Rpia −1.79 0.04 103322_at L35034

Solute carrier family 5 (sodium-dependent vitamin

transporter), member 6

Slc5a6 −1.69 0.01 104200_at AW048729

TAP binding protein (tapasin) Tapbp 1.55 0.01 100154_at AI836367

Trans-Golgi network protein; trans-Golgi network protein 2 Tgoln1; Tgoln2 1.68 0.04 93881_i_at D50032

(Continued)
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Table A1 | Continued

SAM MANOVA

Full name Gene

symbol

Fold

change

P -value Fold

change

P -value Affymetrix ID Accession

number

C

ATP-binding cassette, sub-family A (ABC1), member 1 Abca1 3.40 1.04E-03 2.83 0.02 97198_at X75926

Beta 2 microglobulin B2m 1.46 2.00E-05 1.55 0.02 93088_at X01838

Brain derived neurotrophic factor Bdnf −1.41 3.00E-04 −1.60 1.42E-03 102727_at X55573

Complement component 1, q subcomponent, A C1qA 2.93 1.06E-08 2.77 0.01 98562_at X58861

Complement component 1, q subcomponent, B C1qB 2.33 1.23E-09 2.48 1.50E-03 96020_at M22531

Complement component 1, q subcomponent, C C1qC 2.05 8.15E-06 2.23 0.01 92223_at X66295

CD53 molecule Cd53 2.25 1.00E-05 1.67 0.01 94939_at X97227

CD9 molecule Cd9 1.65 2.20E-04 1.64 0.01 95661_at L08115

Cathepsin D Ctsd 1.53 2.34E-03 1.62 0.03 93810_at X68378

Cathepsin S Ctss 1.87 4.35E-15 2.10 4.80E-04 98543_at AJ223208

Cathepsin Z Ctsz 1.60 1.08E-03 1.75 0.01 92633_at AJ242663

Cytochrome b-245, alpha polypeptide Cyba 1.78 1.65E-03 2.37 4.02E-03 100059_at M31775

Emerin (Emery–Dreifuss muscular dystrophy) Emd −1.26 7.98E-03 −1.68 0.04 103420_at U79753

Fatty acid binding protein 7, brain Fabp7 1.51 2.30E-04 1.53 0.01 98967_at U04827

Fibromodulin Fmod −5.00 6.00E-04 −2.13 0.03 99152_at X94998

Gamma-aminobutyric acid (GABA-A) receptor, subunit

beta 3

Gabrb3 3.29 4.19E-03 2.25 0.02 99897_at U14420

Glial fibrillary acidic protein Gfap 3.93 2.98E-03 2.39 0.04 94144_g_at;

94143_at

X02801

Gap junction membrane channel protein beta 2 Gjb2 −1.74 6.24E-03 −1.74 0.01 98423_at M81445

Insulin-like growth factor binding protein 2 Igfbp2 −1.29 2.80E-03 −1.54 0.03 98627_at X81580

Lymphocyte cytosolic protein 1 (L-plastin) Lcp1 1.43 7.85E-03 1.99 2.74E-03 94278_at D37837

Lymphocyte antigen 86 Ly86 3.01 2.00E-05 3.88 6.71E-04 94425_at AB007599

Lysozyme 1; lysozyme 2 Lyz1; Lyz2 7.32 4.15E-03 5.92 4.22E-03 101753_s_at X51547

Myelin-associated glycoprotein Mag 1.55 1.60E-03 1.66 0.01 102405_at M31811

Macrophage expressed gene 1 Mpeg1 1.89 2.19E-03 2.17 0.02 99071_at L20315

Myosin X Myo10 1.96 3.11E-03 1.60 6.04E-03 100923_at AJ249706

Nasal embryonic LHRH factor Nelf 3.09 8.30E-04 3.85 0.03 99557_at AI849565

Proenkephalin 1 Penk1 −1.39 5.90E-03 −1.56 0.02 94516_f_at M55181

Prostaglandin D2 synthase (brain) Ptgds −2.54 5.73E-06 −3.06 0.01 92546_r_at AB006361

Serine (or cysteine) peptidase inhibitor, clade A,

member 3N

Serpina3n 4.94 5.50E-04 3.32 0.03 104374_at M64086

Splicing factor, arginine/serine-rich 1 (ASF/SF2) Sfrs1 2.32 1.82E-07 2.13 2.01E-04 160539_at X66091

TYRO protein tyrosine kinase binding protein Tyrobp 1.93 1.78E-06 2.39 4.84E-04 100397_at AF024637

(A) Genes identified by statistical analysis of microarrays (SAM), but not by multivariate analysis of variance (also known as linear modeling; MANOVA). (B) Genes

identified by MANOVA, but not by SAM. (C) Genes identified by both SAM and MANOVA (Source: .CEL files from this work will be deposited at NCBI’s GEO).
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