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A commentary on

Essential roles of enteric neuronal sero-
tonin in gastrointestinal motility and the 
development/survival of enteric dopamin-
ergic neurons
by Li, Z., Chalazonitis, A., Huang, Y.-Y., 
Mann, J. J., Margolis, K. G., Yang, Q. M., Kim, 
D. O., Côté, F., Mallet, J., and Gershon, M. D. 
(2011). J. Neurosci. 31, 8998–9009

For decades, it has been widely believed 
that serotonin has a major role in regulat-
ing gastrointestinal (GI) function for review 
see Gershon and Tack (2007). This belief is 
based on a huge number of different find-
ings. These include the well known obser-
vation that most of the body’s serotonin is 
synthesized and stored in the intestine, the 
presence of many different serotonin recep-
tors within the intestinal wall and a plethora 
of observations of altered intestinal behav-
ior following treatment with exogenous 
agonists and antagonists. However, despite 
a mountain of evidence, the actual roles of 
serotonin in the GI tract have been mad-
deningly difficult to identify.

Reasons for this failure include that there 
are both neural and mucosal sources of ser-
otonin within the gut and the widespread 
and overlapping distribution of specific 
serotonin receptor subtypes. As an example, 
the Dogiel type II neurons that are probably 
intrinsic sensory neurons (or intrinsic pri-
mary afferent neurons Furness et al., 2004) 
express 5-HT

3
 receptors, 5-HT

1A
 receptors, 

5-HT
4
 receptors, and 5-HT

7
 receptors (Neal 

and Bornstein, 2006). Other myenteric neu-
rons express 5-HT

3
 and 5-HT

4
 receptors and 

there is strong evidence that 5-HT
3
 receptors 

mediate fast excitatory synaptic potentials in 
some enteric neurons (Zhou and Galligan, 
1999; Monro et al., 2004). 5-HT

3
 receptors 

are expressed by the mucosal terminals of 
the intrinsic sensory neurons (Bertrand 
et al., 2000; Bertrand and Bornstein, 2002) 
and mucosal application of serotonin acti-
vates local reflex pathways via 5-HT

3
 recep-

tors (Gwynne and Bornstein, 2007) and 

enhances peristalsis via the same receptors 
(Tuladhar et al., 1997). Thus, any antagonist 
used to study the role of serotonin during 
complex behaviors will act at several differ-
ent sites in the enteric circuitry.

Several attempts to answer this ques-
tion have focused on mucosal serotonin in 
the mouse colon. The approach has been 
surgical removal of colonic mucosa prior 
to analysis of a stereotyped motor pat-
tern, the colonic migrating motor complex 
(CMMC), which is diminished by blocking 
5-HT

3
 receptors. The idea is simple: remove 

mucosal serotonin and if CMMCs persist 
then they cannot depend on release of sero-
tonin from mucosal stores. If CMMCs are 
eliminated then mucosal serotonin may 
have a role. Clearly this depends on the dis-
section. Complete removal is essential, but 
if the neural circuit mediating CMMCs is 
damaged, then loss of CMMCs might not 
result from loss of mucosal serotonin. Given 
these technical issues, it is unsurprising that 
two groups recently published completely 
opposite results from essentially the same 
experimental protocol. Keating and Spencer 
(2010) reported that CMMCs persist after 
complete removal of the mucosa and con-
firmed that the surgery had been effective 
using amperometry to detect residual ser-
otonin release. Importantly, the CMMCs 
were sensitive to 5-HT

3
 receptor blockade, 

presumably at synapses within the enteric 
neural circuitry. Heredia et al. (2009) 
reported that removal of colonic mucosa 
abolished spontaneous CMMCs, but could 
still trigger CMMCs mechanically confirm-
ing that the neural circuitry was intact. The 
latter observation has since been confirmed 
by Zagorodnyuk and Spencer (2011). We 
were thus left with considering minor tech-
nical details or trying to decide whose dis-
section was best.

The picture changed dramatically with 
a very recent paper by Li et al. (2011) in the 
Journal of Neuroscience. They used knock-
outs of tryptophan hydroxylase 1 (TPH1), 
the rate limiting enzyme for mucosal syn-
thesis of serotonin, and TPH2 (the neural 

form) to selectively delete serotonin from 
the two possible sources. Crosses eliminated 
all serotonin, in contrast to all previous 
studies [e.g., Yadav et al. (2008)]; surpris-
ingly, even these were viable. The TPH1 
knockouts did not differ from the wild 
type in any function measured, including 
gastric emptying, total intestinal transit, and 
colonic motility (expulsion of a glass bead). 
By contrast, TPH2 knockouts had major 
changes in each function; the double knock-
outs were indistinguishable from TPH2 
knockout mice. Another mediator may 
substitute for serotonin in TPH1 knockouts. 
However, without a likely candidate for a 
compensatory mediator, the conclusion is 
inescapable that mucosal serotonin has a 
very minor role in regulation of GI motility 
in the mouse, while neural serotonin may 
have a much more substantial role than pre-
viously believed.

The results of Li et al. (2011) leave the 
function of serotonin in limbo, with several 
of the more popular roles excluded, at least 
in the mouse. While it seems highly likely 
that release of serotonin acts to transduce 
chemical and mechanical stimuli acting at 
the level of the mucosa (for recent review 
Bertrand (2009)), the results of Li et al. 
(2011) indicate that this is not needed for 
normal function. Perhaps mucosal seroto-
nin only plays a significant role after some 
kind of pathophysiological insult, like 
inflammation. On the other hand, neuronal 
serotonin is clearly required for normal 
function, although part of this might be 
an indirect effect on development of the 
enteric neural circuitry. This is because Li 
et al. (2011) also showed that enteric neural 
development was disturbed in the TPH2 
knockout mice. Further, expression of a 
low activity form of TPH2 in Balb/cJ mice 
is associated with synaptic connections 
that differ subtly from those in the C57/
Bl6 strain, which has a high activity form 
of TPH2 (Neal et al., 2009).

Clearly, the role of mucosal seroto-
nin remains enigmatic and requires fur-
ther study, especially as this is the source 
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for all circulating serotonin. Frontiers in 
Autonomic Neuroscience would like to issue 
a broad challenge for scientific discussion in a 
Research Topic on the role of serotonin in the 
periphery, both in the GI tract and the rest 
of the autonomic nervous system. A call for 
preliminary submissions will appear soon.
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