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One of the most interesting challenges in ECoG-based Brain-Machine Interface is move-
ment prediction. Being able to perform such a prediction paves the way to high-degree
precision command for a machine such as a robotic arm or robotic hands. As a witness of
the BCI community increasing interest toward such a problem, the fourth BCI Competition
provides a dataset which aim is to predict individual finger movements from ECoG signals.
The difficulty of the problem relies on the fact that there is no simple relation between
ECoG signals and finger movements. We propose in this paper, to estimate and decode
these finger flexions using switching models controlled by an hidden state. Switching mod-
els can integrate prior knowledge about the decoding problem and helps in predicting fine
and precise movements. Our model is thus based on a first block which estimates which
finger is moving and another block which, knowing which finger is moving, predicts the
movements of all other fingers. Numerical results that have been submitted to the Com-
petition show that the model yields high decoding performances when the hidden state
is well estimated. This approach achieved the second place in the BCI competition with a
correlation measure between real and predicted movements of 0.42.
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1. INTRODUCTION
Some people who suffer neurological diseases can become severely
impaired and have strongly reduced motor functions but still have
some cognitive abilities. One of their possible way to communicate
with their environment is by using their brain activities. Brain-
Computer interfaces (BCI) research aim at developing systems
to help such disabled people communicating with other people
through machines. Non-invasive BCIs have recently received a
lot of interest because of their easy protocol for sensor implan-
tation on the scalp surface (Blankertz et al., 2004; Wolpaw and
McFarland, 2004). Furthermore, although the electroencephalo-
gram signals have been recorded through the skull and are known
to have poor Signal-to-Noise Ratio (SNR), those BCI have shown
great capabilities, and have already been considered for daily
use by Amyotrophic Lateral Sclerosis (ALS) patients (Sellers and
Donchin, 2006; Nijboer et al., 2008; Sellers et al., 2010).

However, non-invasive recordings still show some drawbacks
including poor signal-to-noise ratio and poor spatial resolu-
tion. Hence, in order to overcome these issues, invasive BCI may
instead be considered. For instance, Electrocorticographic record-
ings (ECoG) have recently received a great amount of attention
owing to their semi-invasive nature as they are recorded from the
cortical surface. They offer high spatial resolution and they are
far less sensitive to artifact noise. Feasibility of invasive-based BCI
have been proven by several recent works (Leuthardt et al., 2004;
Hill et al., 2006, 2007; Shenoy et al., 2008). Yet, most of these papers
consider motor imagery as a BCI paradigm and thus do not take
advantage of the fine degree of control that can be gained with the
ECoG signals.

Achieving such high degree of control is an important chal-
lenge for BCI since it would make possible the control of a cursor,
a mouse pointer, or a robotic arm (Wolpaw et al., 1991; Krusien-
ski et al., 2007). Toward this aim, a recent breakthrough has
been made by Schalk et al. (2007) proving that ECoG record-
ings can lead to continuous BCI control with multiple degree
of freedom. Along with the work of Pistohl et al. (2008), they
have studied the problem of predicting real arm movements
from ECoG signals. As such, it is important to note that unlike
other BCIs, real movements are considered in these works, hence
the global approaches they propose do not suit to impaired
subjects.

Following the road paved by Schalk et al. (2007) and Pistohl
et al. (2008), we investigate in this work, the feasibility of a fine
degree of resolution in BCI control by addressing the problem of
estimating finger flexions through ECoG signals. Indeed, we pro-
pose in this paper a method for decoding finger movements from
ECoG data based on switching models. The underlying idea of
these switching models is based on the hypothesis that move-
ments of each of the five fingers are triggered by an internal
discrete state that can be estimated and that all finger movements
depend on that internal state. While such an idea of switching
models have already been successfully used for arm movement
prediction on monkeys, based on micro-electrode array measures
(Darmanjian et al., 2006), here we develop a specific approach
adapted to finger movements. The global method has been tested
and evaluated on the 4th Dataset of the BCI Competition IV
(Miller and Schalk, unpublished) yielding to a second place in
the competition.
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The paper is organized as follows: first, we briefly present the
BCI Competition IV dataset used in this paper for evaluating our
method and provide an overview of the global decoding method.
Then we delve into the details of the proposed switching models
for finger movement prediction from ECoG signals. Finally, we
present numerical experiments designed for evaluating our con-
tribution followed by a discussion about the limits of our approach
and about future works.

2. DATASET
In this work, we focus on the fourth dataset from the BCI Compe-
tition IV (Miller and Schalk, unpublished). The task related to this
dataset is to predict finger flexions and finger extensions from sig-
nals recorded on the surface of the brain of the subjects. In what
follows, we use the term “flexion” for both kinds of movements
as in the dataset description (Miller and Schalk, unpublished).
The signals composing the dataset, have been acquired from three
epileptic patients who had platinium electrode grids placed on the
surface of their brain, the number of electrodes varying between
48 and 64 depending on the subject. Note that the electrode posi-
tions on the cortex have not been provided by the competition
organizer impeding thus the use of spatial prior knowledge such
as electrode’s neighborhood for building the finger movement
model.

Electrocorticographic (ECoG) signals of the subjects were
recorded at a 1-kHz sampling using BCI2000 (Schalk et al.,
2004). A band-pass filter from 0.15 to 200 Hz was applied to
the ECoG signals. The finger flexion of the subject was recorded
at 25 Hz and up-sampled to 1 kHz. Note that the finger flex-
ion signals have been normalized with zero mean an unit vari-
ance. Due to the acquisition process, a delay appears between
the finger movement and the measured ECoG signal. To cor-
rect this time-lag, we apply a 37-ms delay to the ECoG signals
(Miller and Schalk, unpublished) as suggested in the dataset
description.

The full BCI Competition dataset consists in a 10-min record-
ing per subject. Six minutes 40 s (400,000 samples) were given
to the contestants for learning the finger movement models and
the remaining 3 min 20 s (200,000 samples) were used for eval-
uating the model. Since the finger flexion signals have been up-
sampled and thus are partly composed of artificial samples, we
have down-sampled the number of points by a factor of 4 leading
to a training set of size 100,000 and a testing set of size 50,000.
The 100,000 samples provided for learning have been split in a
training (75,000) and validation set (25,000). Note that all para-
meters in the proposed approach have been selected in order to
minimize the error on the validation set. All results presented in
the paper have been obtained on the testing set provided by the
competition.

In this competition, performances of methods proposed by
competitors were evaluated according to the correlation between
measured and predicted finger flexions. These correlations were
averaged across fingers and across subjects to obtain the over-
all method performance. However, because its movements were
highly physically correlated with those of the other finger, the
fourth finger is not included in the evaluation (Miller and Schalk,
unpublished).

3. FINGER FLEXION DECODING USING SWITCHING LINEAR
MODELS

This section presents our decoding method for addressing the
problem of estimating finger movement from ECoG signals. At
first, we introduce a global view of the model and briefly discuss
the decoding scheme. The second part of the section is devoted to
a detailed description of each block of the switching model: the
internal state estimation, the linear finger prediction, and the final
decoding stage.

3.1. OVERVIEW
The main idea on which our switching model used for predicting
finger movement from ECoG signals is built, is the assumption that
measured ECoG signals and finger movements are intrinsically
related to one or several internal states.

These internal states play a central role in our model. Indeed, it
allows us to learn from training examples a specific model associ-
ated to each single state. In this sense, the complexity of our model
depends on the number of possible hidden states: if only one hid-
den state is possible then all finger movements would be predicted
by a single model. If more hidden states are allowed, then we can
build more specific models related to specific states of the ECoG
signals. According to this, allowing too many hidden states may
thus lead to a global model that overfits the training data.

In the learning problem addressed in here, the ECoG signals
present some specificities. Indeed, during the acquisition process,
subjects have been dictated to move only one finger at a time, thus
it appeared natural to us to take profit of this prior knowledge
for building a better model. Hence, we have considered an inter-
nal state k that can take six different values, depending on which
finger is moving: k = 1 for the thumb to k = 5 for the baby finger
or k = 6 for no finger movement. This is in accordance with the
experimental set-up where mutually exclusive states are in play,
nonetheless for another dataset where any number of finger can
move simultaneously, we can use another model for the hidden
states, e.g., one binary state per finger corresponding to movement
or no movement.

Figure 1 summarizes the big picture of our finger movement
decoding scheme. Basically, the idea is that based on some features
extracted from the ECoG signals, the internal hidden state trigger-
ing the switching finger models can be estimated. Then, this state
k controls a linear switching model of parameters Hk(x̃) that will
predict the finger movements.

According to this global scheme, we need to estimate the func-
tion f(·) that maps the ECoG features to an internal state k ∈ {1,
. . ., 6} and estimate the parameter of the linear model Hk(·) that
relates the brain signals to the movements of all fingers. The next
paragraphs introduce these functions and clarify how they have
been learned from training data.

3.2. MOVING FINGER ESTIMATION
The proposed switching model requires the estimation of an
hidden state. In our application, the hidden state k is a dis-
crete state representing which finger is moving. Learning a model
f(·) that estimates these internal states can be interpreted as a
sequence labeling problem. There exists several sequence labeling
approaches in the literature such as HMM or CRF. Nevertheless,
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FIGURE 1 | Diagram of the switching models decoder. We see that two
models ares estimated from the ECoG signals: (bottom flow) one which

outputs a state k predicting which finger is moving and (top flow) another one
that, given the predicted moving finger, estimates the flexion of all fingers.

those methods require an offline decoding, typically based on the
well-known Viterbi algorithm, which precludes their applications
for online movement prediction. We propose in the sequel to use a
simple time sample classification scheme for solving this sequence
labeling problem.

In the following, we depict the features and the methodology
used for learning the function f(·) that predicts the value of this
internal state.

Feature extraction
We used smoothed Auto-Regressive (AR) coefficients of the sig-
nal as features because they capture some dynamics of the signals.
The global overview of the feature extraction procedure is given
in Figure 2. For a single channel, the procedure is the following.
The signal is divided in non-overlapping windows of 300 samples.
For each window, an auto-regressive model is estimated. Thus,
AR coefficients are obtained at every 300 samples (denoted by the
vertical dashed line and the cross in Figure 2). In order to have
continuous values of the AR coefficients, a smoothing spline-based
interpolation between two consecutive AR coefficients is applied.
Note that instead of interpolating, we could have computed the
AR coefficients at each time instant, however, this heuristic has
the double advantage of being computationally less demanding
and of providing some smoothed (and thus more robust to noise)
AR coefficients. For computational reasons, only the two first AR
coefficients of a model of order 10 are used as features. Indeed, we
find out from a validation procedure that among all the AR coeffi-
cients, the two first ones are the most discriminative. Further signal
dynamics is taken into account by applying a similar procedure to
shifted versions of the signal at (+ts and −ts), which multiplies the
number of features by 3. Note that by using a positive lag +ts, our
feature extraction approach becomes non-causal which in princi-
ple, would preclude its use for real-time BCI. Nevertheless, this lag
does not exceed the window size used for AR feature extraction
and thus it has limited impact on the delay of the decision process,
while it considerably enhances the system performances.

To summarize, for measurements involving 48 channels, the
feature vector at a time instant t is obtained by concatenating the
six AR features extracted from each single channel, leading to a
resulting vector of size 48 × 3 × 2 = 240.

Channel selection
Actually, some channels are not used in the function f(·), since
we decided to perform a simple channel selection to keep only
the most relevant ones. For us, the channel selection has two
objectives: (i) to substantially reduce the number of channels
and thus to minimize the computational effort needed for esti-
mating and evaluating the function f(·) and (ii) to keep in the
model only the most relevant channels so as to increase esti-
mation performances. For this channel selection procedure, the
feature vector xt at time t has been computed as described above,
except that for computational reasons, we do not have consid-
ered the shifted signal versions and use only the first AR coef-
ficient. Again, we experienced on the validation set that these
features were sufficient for having a good estimate of the relevant
channels.

Then, for each finger, we estimate a linear regression of the form
xtck, based on the training set {xt, yt}, where xt ∈ R

chan is a feature
vector of number of channels dimension and yt takes values +1
or −1 whether the considered finger is moving or not. Once the
coefficient vectors ck for all finger are estimated, we compute the
relevance score of each channel as:

s =
6∑

k=1

|ck | with s ∈ R
chan

where the absolute value is applied elementwise. The M relevant
channels are those having the M largest score in the vector s, M
being chosen in order to maximize the correlation on the vali-
dation set. This approach, although unusual, is highly related to
a channel selection method based on a mixed-norm. Indeed, the
above criterion can be understood as a �0 − �1 criterion where the
�0 selection would have been performed by comparing channels
�1 scores to an adaptive threshold dependent on M. Note that this
channel selection scheme has also been successfully used for sensor
selection in other competitions (Labbé et al., 2010).

Model estimation
The procedure for learning the function f(·) is as follows. First,
since in this particular problem, the finger movements are
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FIGURE 2 | Diagram of the feature extraction procedure for the moving finger decoding. Here, we have outlined the processing of a single channel signal.

mutually exclusive, we consider a winner-takes-all strategy and
defines f(·) as:

f (x) = argmax
k=1,...,6

fk(x) (1)

where fk(·) are linear real-valued functions of the form
fk(x) = xT ck, that are trained so as to predict the presence or
absence of finger movement for finger k. The features we use
take into account some dynamics of the ECoG signals through
the shifted features (+ts and −ts) and a finer feature selection has
been performed by means of a simultaneous sparse approximation
method as described in the sequel.

Let us consider the training examples {xt , yt }�t=1 where xt ∈ R
d,

with d = 240 and yt,k = {1, −1}, being the k-th entry of vector
yt ∈ {1, −1}6, t denoting the time instant and k denoting the inter-
nal states of each finger. yt,k tells us whether the finger k = 1,. . ., 5
is moving at time t while yt,6 = 1 translates the fact that no fingers
are moving at time t. Now, let us define the matrices Y, X, and C as:

[Y]t ,k = yt ,k [X]t ,j = xt ,j [C]j ,k = cj ,k

where xt,j and cj,k are the j-th components of respectively xt and
ck. The aim of simultaneous sparse approximation is to learn the
coefficient matrix C while yielding the same sparsity profile in
the different finger models. The task boils down to the following
optimization problem:

Ĉ = argmin
C

‖ Y − XC ‖2
F +λs

∑
i

‖ Ci,·‖2 (2)

where λs is a trade-off parameter that has to be properly tuned
and Ci, is the i-th row of C. Note that our penalty term is a mixed
�1 − �2 norm similar to the one used for group-lasso (Yuan and
Lin, 2006). Owing to the �1 penalty on the �2 row-norm, such a
penalty tends to induce row-sparse matrix C. Problem (2) has been
solved using the block-coordinate descent algorithm proposed by
Rakotomamonjy (2011).

3.3. LEARNING FINGER FLEXION MODELS
We now discuss the model relating the ECoG signal and the fin-
ger movement amplitudes. This model is controlled by an internal
state k, which means that we build an estimation of the move-
ment of all fingers and the choice of the appropriate model then

depends on the estimated internal state k̂. Hence, for each value

of the internal state k, we learn a linear model gk,j(x̃) = x̃T h(k)
j ,

with h(k)
j ∈ R

d ′
being a vector of coefficients, that predicts the

movement of finger j = 1,. . ., 5 when the finger k is moving. Note
that obviously the movements of the fingers j �= k are quite small
but different from zero as the finger movements are physically cor-
related. Linear model has been chosen since they proved to achieve
good performances for decoding movements from ECoG signals
(Schalk et al., 2007; Pistohl et al., 2008).

Feature extraction is performed following the same line as (Pis-
tohl et al., 2008), i.e., we use filtered time samples as features. First,
all channels are filtered with a Savitsky-Golay (third order, 0.4 s
width) low-pass filter. Then, the feature vector at time t, x̃t ∈ R

d ′

is obtained by concatenating the time samples at t, t − τ , and t + τ

for all smoothed signals and for all channels. Samples at t − τ and
t + τ are used in order to take into account slight temporal delays
between the brain activity and finger movements. Once more, our
decoding method is thus not causal, but as only small values for τ

are considered (�1 s), the decision delay is reduced.

Let us now detail how the matrix Hk = [h(k)
1 · · · h(k)

5 ] ∈ R
d ′×5

containing the finger linear model parameters for state k, is
learned. For each finger k, we extract all samples x̃t when that finger
is known to be moving. For this purpose, we have manually seg-
mented the signals and extracted the appropriate signal segments,
in order to build the target matrix Ỹk (finger movement amplitude
when finger k is moving), and the corresponding feature matrix
X̃k . This training sample extraction stage is illustrated on Figure 3.

Finally, the linear models for state k ∈ 1, . . ., 5 are learned by
solving the following multi-dimensional ridge regression problem:

min
Hk

‖ Ỹk − X̃k Hk ‖2
F +λk ‖ Hk ‖2

F (3)

with λk a regularization parameter that has to be tuned.
For this finger movement estimation problem, we also observed

that feature selection helps in improving performances. Again, we
use the estimated matrix Ĥ coefficients for pruning the model, Ĥ
being the minimizer of equation (3). Similarly to the feature selec-
tion procedure introduced in section 2, we keep the M ′ features

having the largest entries of vector
∑5

i=1 | ĥ
(k)

i |. M ′ being chosen
as to minimize the validation error.

3.4. DECODING FINGER MOVEMENT
Once the linear models and the hidden state estimator are learned,
we can apply the decoding scheme given in Figure 1. The decod-
ing is a 2-step approach requiring the two feature vectors xt and x̃t

used respectively for moving finger estimation and for estimating
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FIGURE 3 | Workflow of the learning sets extraction (Xk andYk) and estimation of the coefficient matrix Hk.

all finger flexion amplitudes. Estimated finger positions at time t
is obtained by:

ŷt = x̃T
t Ĥk̂ with k̂ = argmax

k
xt

t ck (4)

with ŷt ∈ R
5 a vector containing the estimated finger movements

at time t, k̂ the estimated moving finger, and Ĥk̂ the estimated
linear model for state k.

4. RESULTS
In this section, we discuss the performances of our switching
model decoder. But at first, we explain how the different para-
meters the overall model have been selected. Next, we establish
the soundness of linear models for finger movement prediction
by evaluating their performance just on part of the test examples
related to movements. Finally, we evaluate our approach on the
complete data and compare its performances to those of other
competitors.

4.1. PARAMETER SELECTION
All parameters used in the global model are selected by a valida-
tion method on the last part of the training set (75,000 for the
training, 25,000 for validation). We suppose that the validation set
size is large enough to avoid over-fitting. Examples of training and
validation set sizes for each hidden state k are given in Table 1 for
subject 1.

Hence, for the learning function f(·), we select the number of
relevant channels M, the time-lag ts used in feature extraction

Table 1 | Number of samples used in the validation step for subject 1.

Finger Learning Validation

1 8355 3848

2 9750 2965

3 13794 3287

4 6179 2915

5 10729 5362

6 26074 6623

and the regularization term λs of equation (2) while for estimat-
ing Hk, we tune the number of selected channels M ′, τ , and λk.
All these parameters are chosen so that they optimize the model
performances on the validation set.

4.2. LINEAR MODELS HK FOR PREDICTING MOVEMENT
Linear models are known to be accurate models for arm movement
prediction (Schalk et al., 2007; Pistohl et al., 2008), here we want to
confirm the hypothesis that their use can also be extended to fin-
ger movement predictions. For each finger k, we extract the ECoG
signals and finger flexion amplitude when that finger is actually
moving (see Figure 4) and we predict the finger movement on the
test examples using the appropriate column of Hk. The correla-

tion between the predicted finger movement X̃k ĥ
k
k and the actual

movement yk is computed for each finger k of each subject. The
results are shown in Table 2 and since they have been obtained
only on samples where the actual finger is moving, they can not
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FIGURE 4 | Signal extraction for linear model estimation: (upper plot) full

signal with segmented signal, corresponding to moving finger, bracketed

by the vertical lines and (lower plot) the extracted signal corresponding

to the concatenation of the samples when finger 1 is moving.

Table 2 | Correlation coefficient obtained by the linear models h
(k)

k .

Finger Sub. 1 Sub. 2 Sub. 3 Average

1 0.4191 0.5554 0.7128 0.5625

2 0.4321 0.4644 0.6541 0.5169

3 0.6162 0.3723 0.2492 0.4126

4 0.4091 0.5668 0.0781 0.3513

5 0.4215 0.5165 0.5116 0.4832

Avg. 0.4596 0.4951 0.4411 0.4653

be compared to the competition results as they do not take into
account part of the signals related to other finger movements.

We observe that by using a linear regression between the fea-
ture extracted from the ECoG signals and the finger flexions, we
achieve a correlation of 0.46 (averaged across fingers and subjects).
This results correspond to those obtained for the arm trajectory
prediction (Schalk et al., 2007 obtained 0.5 and Pistohl et al.,
2008 obtained 0.43). We can then conclude that the linear models
provide an interesting baseline for finger movement predictions.

4.3. SWITCHING MODELS FOR MOVEMENT PREDICTION
In order to evaluate the accuracy and the contributions of our the
switching model, we report three different results: (a) we compute
the estimated finger flexion using a unique linear model trained
on all samples (including those ones where the considered finger
is not moving), (b) we decode finger flexions with our switching
decoder while assuming that the exact sequence of hidden states is
known1, and (c) we use the proposed switching decoder with the
estimated hidden states.

Correlation coefficients between real flexions and those pre-
dicted by the baseline model (a) are reported in Table 3A and
predicted flexions can also be seen on the upper plots of Figure 5.
We note that the correlations obtained are rather low (an average

1This is possible since the finger movements on the test set are now available.

of 0.30). We conjecture that this is due to the fact that the model
parameters are learned on the complete signal (which includes no
movement). Indeed, the long temporal segments with small mag-
nitudes have a tendency to shrink the global output toward zero.
This is an issue that can be addressed by using our switching linear
models.

The switching model decoder is a two-part process as it requires
the linear models Hk and the sequence of hidden states (see
Figure 1). In order to evaluate the optimal performances of the
switching model, we apply the decoder using the exact sequence k
obtained from the actual finger flexion. We know that this cannot
be done in practice as it would imply a perfect sequence labeling,
but in our opinion, it gives an interesting idea of the potential of the
switching models approach for given linear models Hk. Examples
of estimation can be seen in the middle plots of Figure 5 and while
correlation coefficients are in Table 3B. We obtain a high accuracy
across all subjects with an average correlation of 0.61 when using
an exact sequence. This proves that the switching model can be
efficiently used for decoding ECoG signals.

Finally, we evaluate the switching models approach when using
the finger moving estimator. In other words, we use the switch-
ing models Hk to decode the signals with equation (4) and the

estimated sequence k̂. The finger movement estimation can be
seen on the lower plot of Figure 5B and the correlation measures
are in Table 3C. As expected, the accuracy is lower than those
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Table 3 | Correlation between measured and estimated movement for a global linear regression (A), switching decoder with exact sequence (B),

and switching decoder with an estimated sequence (C).

Finger Sub. 1 Sub. 2 Sub. 3 Average

(A) LINEAR REGRESSION

1 0.1821 0.2604 0.3994 0.2807

2 0.1844 0.2562 0.4247 0.2884

3 0.1828 0.2190 0.4607 0.2875

4 0.2710 0.4225 0.5479 0.4138

5 0.1505 0.2364 0.3765 0.2545

Avg. 0.1942 0.2789 0.4419 0.3050

(B) SWITCHING MODELS (EXACT SEQUENCE)

1 0.8049 0.5021 0.8030 0.7033

2 0.7387 0.4638 0.7655 0.6560

3 0.7281 0.4811 0.7039 0.6377

4 0.7312 0.5366 0.6241 0.6307

5 0.2296 0.4631 0.6126 0.4351

Avg. 0.6465 0.4893 0.7018 0.6126

(C) SWITCHING MODELS (EST. SEQUENCE)

1 0.7016 0.3533 0.6457 0.5669

2 0.6129 0.3045 0.5097 0.4757

3 0.2774 0.0043 0.4025 0.2280

4 0.4576 0.2782 0.5920 0.4426

5 0.3597 0.2507 0.6553 0.4219

Avg. 0.4818 0.2382 0.5611 0.4270

FIGURE 5 |True and estimated finger flexion for (upper plots) a global

linear regression, (middle plots) switching decoder with true moving

finger segmentation and (lower plots) with the switching decoder with

an estimated moving finger segmentation. (A) Correspond to predictions
of the first finger of subject 1 and (B) Correspond to the prediction of the
second finger of subject 1.

obtained with the true segmentation. However, we obtained an
average correlation of 0.42 which is far better than the correla-
tion obtained from a unique linear model. These predictions of
the finger flexions were presented in the BCI Competition and
achieved the second place. Note that the last 3 fingers have the
lowest performances. Indeed, those fingers are highly physically
correlated and much more difficult to discriminate than the two
first ones in the sequence labeling. The first finger is by far the best
estimated one as we obtained a correlation averaged across subject
of 0.56.

DISCUSSION AND FUTURE WORKS
The results presented in the previous section have been submitted
to the BCI Competition IV. We achieved the second place with an
average correlation of 0.42 while the best performance have been
obtained obtained by Liang and Bougrain, 2009; a correlation of
about 0.46). Their method considers an amplitude modulation
along time to cope with the abrupt change in the finger flexions
magnitude along time. Such an approach is somewhat similar to
ours since they try to distinguish between situations where fingers
were moving or fingers were still.
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We believe that our approach can be improved in several ways.
Indeed, we chose to use linear models that are triggered by an
internal state, while (Pistohl et al., 2008) proposed to use a Kalman
filter for the movement decoding. Hence, it would be interesting to
investigate whether Kalman filter or a non-linear model can help
us in getting a better model.

Furthermore, our sequence labeling approach for estimating
the sequence of hidden states can be also improved. Liang and
Bougrain (2009) proposed to use Power Spectral Densities of the
ECoG channel as features and we believe that the sequence label-
ing might benefit from the use of this kind of features. Finally, we
have used a simple sequence labeling approach by doing a tempo-
ral sample classification of low-pass filtered features. Since other
sequence labeling methods like Hidden Markov Models (Darman-
jian et al., 2006) or Conditional Random Fields (Luo and Min,
2007) have been successfully proposed for BCI application, we
believe that a more robust sequence labeling approach can increase
the quality of the estimated segmentation and thus the final per-
formances. For instance, the sequence SVM proposed by Bordes
et al. (2008) can efficiently decode a sequence in real-time and has
shown good predictive performances.

Finally, the question of how to predict statically held finger
position is still open. Our approach has shown good finger move-
ment estimations but when still, fingers were always at the same
resting position, which is a favorable case. To address this problem
of held finger, we can simply extend our global model by making
the internal state estimator predict a static finger position.

CONCLUSION
In this paper, we present a method for finger flexions pre-
diction from ECoG signals. The decoder, based on switching
linear models, has been evaluated in the BCI Competition IV
Dataset 4 and achieved the second place in the competition.
We show empirically the advantages of the switching mod-
els scheme over a unique model. Finally the results suggest
that the model performances are highly dependent on the hid-
den state estimation accuracy. Hence, improving this estima-
tion would naturally imply an overall performance improve-
ment.

In future works, we plan to improve the results of the switching
models decoder by two different approaches. On the one hand,
we want to investigate the usefulness of more general models than
linear ones for the movement prediction (switching kalman fil-
ters, non-linear regression). On the other hand, we can improve
the moving finger decoding step using other sequence labeling
approaches or by considering other features extracted from the
ECoG signals.
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