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The process of neurogenesis includes neural stem cell proliferation, fate specification,
young neuron migration, neuronal maturation, and functional integration into existing cir
cuits. Although neurogenesis occurs largely during embryonic development, low levels
but functionally important neurogenesis persists in restricted regions of the postnatal
brain, including the subgranular zone of the dentate gyrus in the hippocampus and the
subventricular zone of the lateral ventricles. This review will cover both embryonic and
adult neurogenesis with an emphasis on the latter. Of the many endogenous mediators
of postnatal neurogenesis, epigenetic pathways, such as mediators of DNA methylation,
chromatin remodeling systems, and non-coding RNA modulators, appear to play an inte-
gral role. Mounting evidence shows that such epigenetic factors form regulatory networks,
which govern each step of postnatal neurogenesis. In this review, we explore the emerging
roles of epigenetic mechanisms particularly microRNAs, element-1 silencing transcription
factor/neuron-restrictive silencing factor (REST/NRSF), polycomb proteins, and methyl-CpG
bindings proteins, in regulating the entire process of postnatal and adult neurogenesis.
We further summarize recent data regarding how the crosstalk among these different
epigenetic proteins forms the critical regulatory network that regulates neuronal develop-
ment. We finally discuss how crosstalk between these pathways may serve to translate
environmental cues into control of the neurogenic process.
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INTRODUCTION

Neurogenesis is defined as the generation of new functional neu-
rons, including the proliferation of neural stem/progenitor cells
(NSCs), differentiation of these cells into new neurons, and mat-
uration of new neurons that integrate into the neural circuitry.
Currently, mammalian neurogenesis is divided into two phases:
embryonic/developmental neurogenesis which forms the central
nervous system (CNS) and adult neurogenesis which continues at
low levels in postnatal and adult brains (Ming and Song, 2011).
NSCs are the cellular basis of embryonic and adult neurogene-
sis and these cells share many regulatory factors and pathways.
However, they have inherent differences and reside in distinct
environments (Li and Zhao, 2008).

Epigenetic mechanisms, including DNA methylation, histone
modifications, and non-coding RNAs (ncRNAs) have emerged as
key regulators of gene expression that are required for NSC main-
tenance and fate specification. Recent literature has shown that
maintaining the stemness of NSCs requires the epigenetic sup-
pression of neuronal and glial genes, whereas NSC differentiation
requires the removal of epigenetic suppression of genes necessary
for neuronal or glial fate specification. In addition, many extrin-
sic signals, both under normal conditions and during disease and
injury, can modulate this process (Hsieh and Eisch, 2010). In this
review, we discuss the contribution of epigenetic mechanisms to

NSC regulatory networks, with a particular emphasis on adult
neurogenesis, and how epigenetic regulation mediates the envi-
ronmental impact on neurogenesis. Understanding the regulatory
mechanisms that govern NSCs, particularly when it comes to adult
neurogenesis, is critical for regenerative medicine.

NEUROGENESIS

Neural stem cells are multipotent cells characterized by their abili-
ties to self-renew and to generate differentiated cells in the nervous
system. During development, radial glia in the neuroepithelium
are the NSCs that generate the entire CNS. These radial glia pro-
duce cortical neurons either directly or indirectly through inter-
mediate progenitor cells (Malatesta et al., 2000; Heins et al., 2002).
At the end of neurogenesis, the neurogenic radial glia become
translocating cells that are astrocytes (Kriegstein and Alvarez-
Buylla, 2009). The three major cell types in the CNS arise from
NSCs in a temporally defined sequence: neurons appear first, fol-
lowed by astrocytes, and then oligodendrocytes (Kriegstein and
Alvarez-Buylla, 2009).

In adult brains, neurogenesis has largely stopped, but multipo-
tent NSCs have been found to exist in many brain regions. There
are two areas of the adult CNS confirmed to have ongoing neu-
rogenesis, a process defined by the production of new neurons.
These neurogenic regions include the subgranular zone (SGZ) of
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the dentate gyrus (DG) in the hippocampus and the subventric-
ular zone (SVZ) bordering the lateral ventricles (Li and Zhao,
2008). In these regions, radial glia-like stem cells (RGLs) give
rise to intermediate or transit-amplifying progenitors that sub-
sequently differentiate into immature and then mature neurons.
Experimental evidence suggests that adult NSCs originate from
the embryonic neuroepithelial cells, mostly radial glia, located in
the ventricular zone (Li and Zhao, 2008).

The specific purpose of adult neurogenesis is not entirely clear;
although still debated, mounting evidence points to important
roles for it in adult learning and memory (Aimone et al., 2010;
Ming and Song, 2011). For instance, ablating adult neuroprogen-
itors via mouse genetics, anti-proliferative drugs, or focal irradia-
tion impairs hippocampus-dependent learning (Shors et al., 2002;
Barkho et al., 2006, 2008; Saxe et al., 2006; Winocur et al., 2006;
Dupret et al., 2008; Farioli-Vecchioli et al., 2008; Imayoshi et al.,
2008; Clelland et al., 2009; Deng et al., 2009; Garthe et al., 2009;
Jessberger et al., 2009); conversely, treatments that enhance neuro-
genesis also enhance hippocampus-dependent learning (Kitamura
et al., 2009; Creer et al., 2010; Stone et al., 2011). Our recent pub-
lications, in which we enhanced or inhibited neurogenesis via
mouse genetics, demonstrate a direct link between adult neuro-
genesis and hippocampus-dependent learning (Guo et al., 2011b,
2012). Moreover, both adult neurogenesis and learning are altered
in several pathological conditions (Kempermann et al., 2008; Deng
et al., 2010). As expected, the quiescence of RGLs, the cell-cycle
progression and differentiation of IPCs, and the maturation of
new neurons are all tightly controlled by intricate molecular net-
works that consist of intrinsic genetic and epigenetic programs
modulated by extrinsic physiological and pathological conditions
(Barkho et al., 2006; Smrt and Zhao, 2010; Barkho and Zhao,
2011). Therefore, adult NSCs (aNSCs) may play major roles in
both normal brain functions, such as learning and memory, as
well as the brain’s response to injury and disease.

Neural stem cells isolated from the rodent adult SVZ, DG,
or forebrain can be maintained as multipotent progenitor cells
in serum-free media with defined supplemental factors and the
presence of the mitogens basic fibroblast growth factor (bFGF or
FGF2) and epithelial growth factor (EGF). Clonal analyses have
shown that these NSCs can be instructed to differentiate into all
three major cell lineages of the brain (neurons, astrocytes, and
oligodendrocytes). Therefore, the in vitro culture of NSCs makes
not only a good system for studying neurogenesis, but also an
excellent source of cells for potential cell-based therapies (Barkho
et al., 2008; Barkho and Zhao, 2011). Understanding aNSCs and
adult neurogenesis holds the key to therapeutic applications for
not just aNSCs, but many other types of stem cells, as well. In
addition, aNSCs make an excellent model system for studying
neurodevelopment and related disorders that have a postnatal eti-
ology, such as autism spectrum disorders. Extensive efforts have
been invested in this goal. In this review, we will focus on how
epigenetic mechanisms, and particularly how crosstalk among
epigenetic mechanisms, regulate neurogenesis.

EPIGENETIC MECHANISMS
The term “epigenetics” was crafted by Conrad H. Waddington
in 1942, before the age of DNA, to indicate the “study of those

processes by which genotype gives rise to phenotype.” Over the
years, the meaning of “Epigenetics” has gone through a num-
ber of modifications as our knowledge of gene regulation grows.
At present, “Epigenetics” is defined as “changes in the expression
or function of genetic elements that are independent of changes
to the DNA sequence.” This loose, modern definition includes
three general mechanisms: histone modifications, DNA methy-
lation and related modifications, and ncRNAs. This definition
encompasses how a single fertilized egg can give rise to a vast
array of cell types through the transmission of epigenetic programs
to daughter cells (Hsieh and FEisch, 2010; Smrt and Zhao, 2010).
Recent work has revealed that epigenetic mechanisms can also
integrate external stimuli into regulation of the neurogenic process
(Molfese, 2011). Epigenetic mechanisms are increasingly recog-
nized as dynamic regulators of gene expression, especially in the
field of neurogenesis. The distinct boundaries between epigenetic
pathways are blurring as more interactions are uncovered. This
crosstalk is increasingly recognized as an important component of
NSC regulation.

DNA METHYLATION

DNA methylation is well known for its role in long-term gene
silencing; it serves as the basis of imprinting, X chromosome inac-
tivation, and the establishment of cell fate (Klose and Bird, 2006;
Edwards and Ferguson-Smith, 2007; Reik, 2007). DNA methyla-
tion involves the covalent addition of a methyl group from the
cofactor S-adenosyl-L-methionine (SAM) to C5 of cytosine in
CpG dinucleotides and is catalyzed by a family of DNA methyl-
transferases (DNMTs). DNMT3a and DNMT?3b establish de novo
methylation, whereas DNMT1 maintains methylation patterns in
daughter cells by recognizing hemi-methylated DNA and methy-
lating the unmodified strand of newly synthesized DNA (Law and
Jacobsen, 2010). DNA methylation is essential during develop-
ment, as DNMT null mutations are embryonic lethal (Bestor,
2000). During the neural induction of embryonic stem cells
(ESCs) to NSCs, many pluripotency genes are methylated and
silenced, which shows the importance of DNA methylation dur-
ing neurogenesis (Mohn et al., 2008). Interestingly, patterns of
DNA methylation correlate more strongly with histone modi-
fication patterns than with the underlying genetic code, high-
lighting the interplay between these two systems (Meissner et al.,
2008).

The role of dynamic DNA methylation in cell lineage spec-
ification is still murky. Until recently, methylation was thought
to be a static DNA modification, with demethylation occur-
ring only passively upon the reduction of DNMT levels, but
a number of reports have suggested dynamic DNA methyla-
tion changes that involve active demethylation (Ooi et al., 2009;
Chen and Riggs, 2011). The most convincing data include the
neuronal activity-dependent demethylation mediated by a DNA
excision repair protein, Gadd45b (Ma et al., 2009); however
the existence and biological functions of active demethylation
remain controversial. Hydroxymethylated cytosine (5ShmC), which
is particularly abundant in brain tissue and ESCs, is a critical
intermediate in the demethylation pathway. Proteins from three
families catalyze active DNA demethylation: ten-eleven translo-
cation (TET) family proteins modify methylated cytosines by
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hydroxylation, and then by further oxidation to produce 5mC
or 5hmC; enzymes of the AID/APOBEC family deaminate the
base of 5mC or 5hmC; and finally, members of the UDG fam-
ily of base excision repair (BER) glycosylases remove 5ShmC via
DNA repair mechanisms (Bhutani et al., 2011). 5ShmC is hypoth-
esized to play a role in maintaining the pluripotency of ESCs
(Cimmino et al., 2011) and in activity-dependent gene expres-
sion regulation in the brain (Guo et al., 2011a); however, how
5hmC and DNA demethylation regulate neurogenesis remains a
question.

Although DNA methylation may block gene repression by
directly preventing the binding of certain transcription factors,
DNA methylation-induced gene repression is primarily mediated
by methyl-CpG-binding proteins (MBPs), which can recognize
and bind to methylated DNA, and the recruitment of chro-
matin remodeling complexes (Defossez and Stancheva, 2011).
The MBP family is divided into three branches: proteins con-
taining methyl binding domain (MBD), including MBD1-5 and
MeCP2; members of the Kaiso family of methyl-CpG binding
zinc fingers; and UHRF1 and 2 proteins containing the SET and
RING finger-associated domain (SRA; Defossez and Stancheva,
2011). Among MBPs, MBDs were discovered first and remain
the best studied to date. Both MBD1 and MeCP2 are highly
expressed in the brain and play important roles in neurode-
velopment and plasticity (Fan and Hutnick, 2005), while many
other MBDs are involved in cancer (Parry and Clarke, 2011). We
have shown that members of the MBD family play significant
roles in the regulation of adult neurogenesis, which we discuss
further below. Two members of the Kaiso family of zinc fin-
ger DNA-binding proteins are expressed primarily in the brain
and can bind methylated CpG and induce gene silencing (Filion
et al., 2006). Although the function of UHRFs is more mys-
terious, UHRF1 (also called Np95) is essential for the main-
tenance of DNA methylation: UHRF1 has a high affinity for
hemi-methylated DNA and recruits DNMTI1 to newly synthe-
sized strands of DNA to establish DNA methylation (Sharif et al.,
2007). A critical step in understanding the function of MBPs
is to identify their binding specificity and targets. Despite keen
interest and some progress (Jorgensen et al., 2004; Klose et al.,
2005; Clouaire et al., 2010), much remains unknown, although
advances in high-throughput sequencing should help move this
effort forward.

HISTONE MODIFICATIONS

The basic component of chromatin is the nucleosome: hundred
and forty-seven base pairs of DNA wrapped twice around an
octamer of histone proteins, which contains two copies of each
histone, H2A, H2B, H3, and H4. The integration of variant his-
tones into nucleosomes can alter the properties of chromatin
and introduces an additional level of regulatory control. The
amino acid side chains of the N-terminus histone tail extend
from the nucleosome and can be post-translationally modified by
acetylation, methylation, ubiquitination, phosphorylation, ribo-
sylation, and SUMOylation; collectively, these are known as the
“histone code” (Bernstein et al., 2007). Approximately half of
the mass of chromatin consists of non-histone proteins that are
responsible for writing and reading the code, a complex process

that involves the cooperative and dynamic engagement of several
species (Ruthenburg et al., 2007).

Chromatin is present in two general states: highly condensed
heterochromatin associated with gene silencing, and loosely
packed euchromatin associated with gene expression. Alone, his-
tone modifications are unlikely to be sufficient for gene activa-
tion or repression: interactions with activators or repressors are
also necessary for efficient implementation. The enzymes that
add and remove histone modifications are not specific to certain
nucleosomes; rather, they are recruited by specific DNA-binding
proteins. Thus, it is the interactions between the histone code,
nucleosome-binding proteins, and DNA-binding proteins that
regulate chromatin structure and gene expression (Bernstein et al.,
2007).

The acetylation of lysine residues is catalyzed by histone acetyl-
transferases (HATs), and the reversal of this modification is cat-
alyzed by histone deacetylase (HDAC). Acetylation of histone
4 (H4Ac) directly loosens chromatin by neutralizing the posi-
tive charge of lysine, eliminating its attraction to the negatively
charged DNA backbone of the neighboring nucleosome. Acetyl
transferases also regulate gene expression in trans by recruit-
ing other effector chromatin remodeling complexes (Ruthenburg
etal.,2007). Mammals have 18 HDACs that are grouped into four
classes, based on homology with yeast counterparts (de Ruijter
et al., 2003). Class I HDACs (HDACI, 2, 3, and 8) are localized in
the nucleus. Although Class I HDACs are believed to be ubiqui-
tously expressed, HDAC2 is upregulated in aNSCs differentiated
into neuronal lineages, whereas HDAC1 is enriched in glia in the
adult brain (MacDonald and Roskams, 2008). We have found that
HDACI and 2, but not the other HDAC:s, are expressed in NSCs
isolated from the adult DG (Zhao, unpublished observation). Class
II HDACs (HDAC4, 5, 6, 7, 9, and 10) are able to shuttle in and
out of the nucleus in response to certain cellular signals, and these
HDAGCs display interesting cell type-specific expression. In fact,
the upregulation of HDAC4, 5, 7, and 9 has been found in differ-
entiating NSCs (Ajamian et al., 2003), and HDACS5 regulates NSC
neuronal differentiation (Schneider et al., 2008). HDAC4 and 5
are enriched in the brain and are involved in neuronal maturation
and neuroprotection (Majdzadeh et al., 2008). However, HDAC
3 and 5 are also reported to be highly expressed in proliferating
NSCs and required for their proliferation (Sun et al., 2007). There-
fore, cell type-specific HDACs may serve as important regulators
in aNSCs and neuronal development, though their roles are not
completely defined.

Histone methylation of lysine or arginine residues is catalyzed
by a variety of methyltransferases (HMT) and can be associ-
ated with either gene silencing or activation, depending on the
number of methyl groups (mel, 2, or 3) and their specific loca-
tion on the histone. So far, 20 unique methylation marks have
been uncovered: repressive marks include, but are not limited
to, H3K9me3/me2, H4K20me3, H3K27me, and H4K59; acti-
vating marks include H3K4me3, H3K36me3, and H3K79me3
(Mosammaparast and Shi, 2010). The levels of repressive trimethy-
lation of lysine 27 on histone 3 (H3K27me3) and activating
trimethylation of lysine 4 (H3K4me3) are controlled by antag-
onistic groups of proteins called Polycomb (PcG) and Trithorax
(TrxG). The addition of PcG-catalyzed H3K27me3 marks leads to
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the formation of heterochromatin and gene repression, whereas
TrxG-catalyzed H3K4me3 marks result in euchromatin forma-
tion and gene expression. When both repressive and activating
modifications occupy the same genomic region, the result is a biva-
lent chromatin state that is poised for either activation or further
repression (Ringrose and Paro, 2007). Many HMTs are associated
with cancer (reviewed in Albert and Helin, 2010) and neurodevel-
opmental diseases, including Sotos syndrome, Wolf-Hirschhorn
syndrome, and 9q syndrome (Nimura et al., 2010).

In recent years, histone methylation was recognized as a
dynamic modification that plays a role in gene regulation
(Mosammaparast and Shi, 2010). This realization began with the
discovery of lysine-specific demethylase 1 (LSD1), also known as
lysine (K)-specific demethylase 1A (KDM1A), which is part of the
REST complex (Shi et al., 2004). KDMs are known to regulate
neuronal differentiation and fate specification, while mutations of
KDMs have been tied to X-linked mental retardation (XLMR) and
many cancers (Pedersen and Helin, 2010).

NON-CODING RNAs

A large portion of the genome is transcribed into RNA but is
never translated into protein. ncRNA is increasingly recognized
as an important means of epigenetic regulation of cell fate deter-
mination and gene expression. The broad ncRNA category covers
an array of small RNAs, including microRNAs (miRNAs), small
nucleolar RNAs (snoRNAs), small interfering RNAs (siRNAs), and
PIWI-interacting RNAs (piRNAs; Li and Zhao, 2008); of the small
ncRNAs, this review will focus on miRNAs known to play a role in
many facets of adult neurogenesis. miRNAs target mRNAs through
base pairing between a short, 2- to 8-nucleotide seed sequence.
Such a short complementation requirement means that a sin-
gle miRNA may have dozens to hundreds of downstream targets
(Bartel, 2009). The final processing steps of miRNA biosynthe-
sis are mediated by Dicer and Drosha, members of the RNase
III family, which cleave miRNA precursors into mature miRNA
that is then loaded into silencing complexes (Krol et al., 2010).
Although the mechanisms behind miRNA-mediated repression
are not fully understood, the majority of miRNA-induced silenc-
ing effects result from the degradation of target mRNAs (Guo et al.,
2010). Mechanistically, a miRNA binds to its target mRNA, fre-
quently in the 3’ UTR, and recruits ribonucleoprotein complexes
(miRNPs), also known as RNA-induced silencing complex (RISC),
to deadenylate and degrade the mRNA. A number of miRNAs are
known to play important roles in stem cells and development. For
example, miR-124 is not only brain-enriched, but is also the most
abundant miRNA in the embryonic and adult CNS. miR-124 levels
increase during neuronal differentiation, and high levels of miR-
124 promote neuronal differentiation; conversely, knockdown of
endogenous miR-124 maintains proliferation and precursor status
in several immature cell types, including adult NSCs. The down-
stream targets of miR-124 include splicing regulatory factor Ptbp1,
pro-neuronal factors Ngnl and NeuroD1, and REST (Makeyev
et al., 2007; Visvanathan et al., 2007; Cheng et al., 2009; Yoo et al.,
2009; Liu etal., 2011). The misregulation of miRNAs is involved in
a number of neurodegenerative diseases, such as Alzheimer’s and
Parkinson’s (Junn and Mouradian, 2012), and in many cancers
(McDermott et al., 2011).

Another class of RNAs, long ncRNAs (IncRNAs), are gain-
ing recognition as important mediators of cell fate specification,
homeostasis, and plasticity in the CNS, though these roles have yet
to be characterized fully (Wapinski and Chang, 2011). IncRNAs
range in size from 200 bp to 10 kb, and though they do not code for
protein, they undergo many of the same modifications as mRNA,
including splicing and polyadenylation (Wang and Chang, 2011).
Long intergenic ncRNAs (lincRNAs) are a type of IncRNAs found
in gene introns; sometimes they are simply referred to as IncRNAs.
There may be upward of 30,000 IncRNAs coded for in the human
genome, and estimates are that over half of these are expressed
in the CNS in a lineage-specific and developmentally regulated
manner (Mercer et al., 2008). LncRNAs are involved in gene reg-
ulation at nearly every level, and the molecular mechanisms of
their action can be characterized by four general archetypes: sig-
nal, decoy, guide, and scaffold (Wang and Chang, 2011). Many
IncRNAs are involved in the regulation of chromatin structure;
in fact, Khalil et al. (2009) discovered that approximately 20% of
lincRNAs are bound to Polycomb repressive complex 2 (PRC2),
either alone or with other chromatin-associated complexes, such
as Cofactor of REST (CoREST). The expression and biological
functions of IncRNAs in the CNS, as well as their role in a num-
ber of neurodevelopmental and neurodegenerative diseases, are
reviewed by Qureshi et al. (2010b). These RNAs likely alter gene
expression through crosstalk with other epigenetic mechanisms,
including modulation of chromatin modification enzymes and
MBPs. The many roles that ncRNAs and other epigenetic pathways
play in embryonic and adult neurogenesis have sparked significant
interest in unraveling the complex networks that govern these cru-
cial processes. In the next sections, we will discuss the functional
crosstalk among these mechanisms.

CROSSTALK AMONG EPIGENETIC MECHANISMS
REGULATES NEUROGENESIS

Maintenance of multipotency, fate specification of NSCs, and phe-
notypic development of new neurons all require complex gene
regulation. A host of experimental evidence has shown the critical
roles of epigenetic regulation in this process (Li and Zhao, 2008;
Liu and Zhao, 2009). Not surprisingly, this complex regulation
requires crosstalk among multiple epigenetic pathways. Here we
present several examples of how interactions among epigenetic
mechanisms control the neurogenic process.

REST

Recent advances have shown that the element-1 silencing tran-
scription factor/neuron-restrictive silencing factor (REST/NRSF)
is part of an intricate and interconnected regulatory network
of ncRNAs, chromatin remodeling complexes, and DNA-binding
and -modifying complexes that ensures correct gene expression
in the CNS during development and beyond (Qureshi et al.,
2010a). Highlighting its importance, REST has been implicated
in a number of disorders, ranging from Down syndrome, XLMR,
and epilepsy syndromes to neurodegenerative disorders, such as
Huntington’s disease, and cancers (Qureshi and Mehler, 2009).
REST is a Kriippel-type zinc finger transcription factor that binds
to 1/neuron-restrictive silencer element (RE1) sequences and other
non-canonical genomic sites, where it acts as a scaffold for other
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multi-subunit complexes and DNA-binding proteins to activate,
repress, or silence gene expression in a context-dependent man-
ner (Qureshi et al., 2010a). REI is found in many neural-specific
genes, including ion channels, neurotransmitter receptors, and
neurosensory factors, and is highly expressed in non-neuronal lin-
eages, suggesting that REST acts as a repressor of neuronal genes in
non-neuronal lineages (Qureshi et al., 2010a). Since its initial dis-
covery, REST has emerged as a central hub in a complex network of
transcriptional and epigenetic mechanisms that precisely regulate
neuronal development. REST recruits two main cofactors: mSin3
and CoREST. The N-terminus of REST recruits mSin3, which
serves as a scaffold for HDACI, 2,4, and 5. The C-terminus of REST
binds to CoREST and can recruit an astonishing array of proteins,
including but not limited to HDAC1 and 2, MECP2, LSD1, G9a,
Suc39h1, SCP1 (small C-terminal domain phosphatase), DNMTs,
and other chromatin remodeling complexes (reviewed by Qureshi
and Mehler, 2009). For example, MeCP2 targets the RE1 subset of
neuronal genes and recruits HDACS, reflecting the possibility that
both DNA methylation and histone remodeling are required to
maintain these genes in a heterochromatin state. REST and CoR-
EST are also found to complex with ATP-dependent chromatin
remodeling mechanisms, such as BAF57, npBAF, and nBAF, in the
suppression of neuronal gene function (Battaglioli et al., 2002).
CoREST complexes can act independently of REST and may con-
tribute to the dynamic regulation of different developmental stages
(Ballas et al., 2005).

Deletion of REST is embryonic lethal (Chen et al., 1998), and
the function of REST in stem cell lineage commitment is complex.
In mouse ES cells, the transition from ESCs to NPCs is marked
by a reduction in REST levels (Ballas et al., 2005); however, a
knockdown of REST inhibits the formation of NSCs, NPCs, and
neurons (Sun et al., 2008). Distinctly, the knockdown of CoREST
impedes maintenance of NSCs and leads to altered neuronal dif-
ferentiation (Abrajano et al., 2009). In adult neurogenic zones, the
expression pattern of REST is biphasic; first, REST is expressed
in quiescent, slowly dividing NSCs, then it diminishes in type 2b
and type 3 transient amplifying cells, but reappears in immature
and mature neurons (Gao et al., 2011). This study also shows
that REST is required to maintain the adult NSC pool, as condi-
tional knock down of REST in mice leads to a transient increase in
neurogenesis that eventually depletes the NSC pool and leads to
diminished neurogenesis (Gao et al., 2011). Further, beyond their
roles in neurogenesis, REST and CoREST also modulate astro-
cyte and oligodendrocyte lineage specification and maintenance
(Abrajano et al., 2009).

There is growing evidence to support close interactions between
REST and small ncRNAs. A number of brain-enriched miRNAs,
including miR-9, miR-124, and miR-132, as well as Dicer, are
regulated by REST (Buckley et al., 2010). The relationship goes
both ways: REST is itself a target of several of the miRNAs that
it regulates. One of these, the bifunctional miR-9/miR-9x, targets
both REST and CoREST and forms a double-negative feedback
loop (Packer et al., 2008). miR-9 is also regulated by the cAMP
response element-binding (CREB); in non-differentiated cells,
REST represses transcription of the miR-9 gene miR-9-2, then,
at the same time REST is dislodged, CREB is phosphorylated and
activates miR-9 expression during in vitro neuronal differentiation

(Laneve et al., 2010). miR-124, on the other hand, reduces the
expression of the REST cofactors CoREST, MeCP2, and SCP1
(Visvanathan et al., 2007). REST has also been implicated in the
regulation of ESC pluripotency via miR-21, though its role remains
controversial (Singh et al., 2008).

Long ncRNAs may also play an important role in the REST reg-
ulatory network. Computational analysis comparing annotated
IncRNAs and REI motifs suggests that REST could regulate 23%
of IncRNAs (Johnson and Buckley, 2009). This study identified
two candidate IncRNAs with brain-specific expression patterns,
AK046052 and AK090153, which are silenced by REST. Other
ncRNAs may act through other REST cofactors; in fact, 13% of
the IncRNAs expressed in HeLa cells bind to CoREST (Khalil
et al., 2009). In another example, the IncRNA AIR accumulates
at promoters, where it recruits G9a, a REST cofactor and his-
tone methyltransferase involved in H3K9 di- and trimethylation,
to silence gene expression (Nagano et al., 2008).

REGULATION OF PcG AND TrxG PROTEINS BY DNA METHYLATION OR
miRNAs
PcG and TrxG proteins are antagonistic, evolutionarily conserved
members of a chromatin remodeling system that ensures proper
expression of developmental programs and the maintenance of
stem cell identities (Figure 1). During much of development,
the target genes of PcG and TrxG complexes are marked by both
activating H3K3me3 tags and repressing H2K27me3 tags. In this
poised but repressed state, these genes can be quickly activated
upon differentiation (Schuettengruber et al., 2007; Pietersen and
van Lohuizen, 2008). In keeping with their role in maintaining
stem cells, misregulation by PcG and TrxG proteins is frequently
linked to the birth of cancer stem cells (Richly et al., 2011). PcG
proteins are functional members of at least two multi-protein
complexes that regulate chromatin structure: Polycomb repressive
complexes 1 and 2 (PRC1 and PRC2; Li and Zhao, 2008; Pietersen
and van Lohuizen, 2008). Each complex contains a distinct set
of core proteins that were first identified and named in flies. In
mammals, PRC2 is composed of four core components: enhancer
of zeste 1 or 2 (EZH1 or EZH2), embryonic ectoderm development
(EED), suppressor of zeste 12 (SUZ12), and RbAp46/48 (reviewed
in Margueron and Reinberg, 2011). The PRC1 components are
Chromobox (CBX) 2/4/6/7/8, PH1/2/3, RING1A/1B, and Bmi-
1/Mel13/NSPC1 (Vidal, 2009). How the complexes are recruited
to specific chromatin targets is not fully understood, but recent
evidence indicates recruitment relies on not only DNA-binding
proteins but ncRNAs (Khalil et al., 2009; Wang and Chang, 2011).
In a simple model, PRC2 is recruited to target genes and catalyzes
the trimethylation of H3K27, and PRC1 recognizes the H3K27me3
mark of PRC2 and mediates ubiquitination of H2AK119 to main-
tain gene repression; however, this step-wise model of recruitment
is not always accurate, as the complexes can act independently of
each other (Margueron and Reinberg, 2011). Interactions among
PcG protein components and between PcG members and other
regulatory proteins, including HATs, HDACs, REST, and TrxG pro-
teins, are essential for PcG functions (Cao et al., 2005; Buchwald
et al., 2006; Vidal, 2009).

Evidence for the importance of PRC1 in neurogenesis comes
from the neurodevelopmental phenotypes of mice lacking
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FIGURE 1 | Crosstalk between epigenetic pathways and Polycomb
group (PcG) and Trithorax group (TrxG) proteins during adult
neurogenesis. The figure illustrates a possible model of crosstalk
between epigenetic pathways and PcG and TrxG protein complexes
during adult neurogenesis. In the bivalent chromatin state, genes are
poised for either rapid induction or further repression; activating
H3K4me3 marks and repressing H2K27me3 marks are both present, as
are the antagonistic TrxG and PcG complexes (left panel). TrxG and other
activating complexes displace PRC2 and loosen the chromatin which
enables the expression of neuronal genes (top right panel). Conversely,
the recruitment of PRC1 and other repressive complexes (possibly REST)
condenses chromatin and suppresses cell-cycle inhibitors and neuronal
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genes, leading to neural stem cell (NSC) self-renewal (bottom right). The
addition of activating H3K4me3 marks and the removal of repressive
H2K27me3 marks is associated with chromatin loosening while further
H2K27 trimethylation and the addition of repressive H2AUb marks
condenses chromatin. Members of PcG and TrxG proteins that have
been shown to regulate neurogenesis are shown in black (see text for
references). Crosstalk among microRNAs, long non-coding RNAs and
PcG and TrxG proteins are shown in black (adult neurogenesis), purple
(development; Brett et al., 2011; Song et al., 2011a), red for ESC
differentiation (O'Loghlen et al., 2012), and blue (cancer; Lau et al., 2008;
Wong and Tellam, 2008; Friedman et al., 2009; Shimono et al., 2009;
Wellner et al., 2009; lliopoulos et al., 2010; Cao et al., 2011).

functional B-cell-specific Moloney murine leukemia virus inte-
gration site 1 (Bmi-1; Lobo et al., 2007). Mounting data point
to an important role for Bmi-1 in controlling self-renewal and
senescence of different types of stem cells, among them cancer
stem cells and NSCs (Shi et al., 2008; Schuringa and Vellenga,
2010). Bmi-1 deficiency leads to reduced proliferation and self-
renewal of SVZ neural progenitors, and these effects are mediated
in part through the transcriptional repression of three cell-cycle
inhibitors: p16™42, p19AT and p21 (Molofsky et al., 2003; Fasano
et al., 2007, 2009). Conversely, overexpression of Bmi-1 increases
the self-renewal of SVZ-derived cells in vitro and increases prolif-
eration in vivo (Yadirgi et al., 2011). However, one study found
that transgenic Bmi-1 overexpression did not have significant
effect on aNSC proliferation in either the SVZ or the DG (He
et al,, 2009); therefore demanding further analysis in future stud-
ies. The core component of PRC2, EZH?2, is essential for stem
cell maintenance and fate specification in many cell lineages,
including neurons (reviewed in Yu et al., 2011). The role of
EZH2 has not been explored directly in adult neurogenesis, but

several lines of evidence indicate it might mirror the effects of
Bmi-1 in postnatal neuronal development. In embryonic NSCs,
Ezh2 is highly expressed in proliferating cells and its expression
declines as cells differentiate into neurons (Sher et al., 2008).
In embryonic epidural progenitors, the loss of Ezh2 does not
change the fate of these cells; rather, it reduces their prolifera-
tion through the upregulation of p16™42 and p19A™ (Ezhkova
et al., 2009). Moreover, in human embryonic fibroblast cells, the
ability of Bmi-1 to repress p16 and p19 was dependent on EZH2
(Bracken et al., 2007). In cortical progenitor cells, the loss of
EZH2 led to increased production of neurons at the expense
of the progenitor population and improper developmental tim-
ing (Pereira et al., 2010). Other PcG members of PRC2 are
also necessary to maintain neural progenitor cells. For example,
ESCs from SUZ12—/— mice were unable to form neurons under
normally permissive neuronal differentiation conditions in vitro
(Pasini et al., 2007). Furthermore, knocking down EED enhanced
neuronal differentiation in embryonic NSCs (Hirabayashi et al.,
2009).
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The question becomes how PcG proteins themselves are regu-
lated. Evidence suggests that other epigenetic pathways contribute
significantly to the regulation of PcG proteins in the context of
neurogenesis. For example, Bmi-1 is targeted by several miR-
NAs, including miR-128 in glioblastoma cells (Cui et al., 2010;
Dong et al.,, 2011), meaning such regulation might also exist
in NSCs. Ezh2 is also regulated by miRNAs. In adult NSCs
derived from the mouse forebrain, overexpression of miR-137
increases proliferation, whereas reduction of miR-137 enhances
the neuronal differentiation of these cells (Szulwach et al., 2010).
This modulation is believed to occur through miR-137’s post-
transcriptional repression Ezh2, which leads to a global reduc-
tion in the repression of H3K27me3 marks. Moreover, miR-137
is regulated by MeCP2 (which will be discussed later), a fact
that highlights the extensive crosstalk between epigenetic path-
ways (Szulwach et al., 2010). Recently, microdeletions of miR-
137 were associated with intellectual disability (Willemsen et al.,
2011), underscoring the significance of its interaction with Ezh2
and MeCP2.

LncRNAs may also be involved in the regulation of PcG. As
discussed previously, components of PRC1 and PRC2, Bmi-1 and
EZH2, respectively, are required to correctly regulate the switch
between proliferation and differentiation through the expres-
sion of two cell-cycle inhibitors/tumor suppressors, p16"k42 and
p192T. The expression of the Ink4a/ARF/Ink4b locus, which codes
for p16 and p19, as well as p15 and p14, is regulated by the IncRNA
ANRIL (antisense ncRNA in the INK4 locus) via direct interac-
tion with subunits of PRC1 and PRC2. ANRIL is a 3.8-kb ncRNA
that is expressed in the opposite direction of and overlaps with
the Ink4a locus. CBX7, an H3k27me3-recognizing component
of PRC1, can bind directly to both ANRIL and H3K27me3, and
both interactions are required for CBX7 to repress the INK4A
and INK4B loci (Yap et al., 2010). ANRIL is also involved in
the recruitment of PRC2, through SUZ12, to p15™NK4B in the
INK4A/ARF/INK4B region, and is necessary for its repression
(Kotake et al., 2011). In this regulatory scheme, ANRIL acts as
a scaffold that recruits PRC1, PRC2, and possibly other factors
to regulate gene expression (Wang et al., 2011). LncRNAs are
emerging as significant regulators of development and fate speci-
fication. Considering the intersection of regional and cell-specific
epigenetic pathways and the diversity of chromatin remodeling
complexes, the capacity for fine-tuned regulation of gene expres-
sion is extraordinary. HOTAIR is a 2.2-kb lincRNA encoded in the
HOZXC locus that represses transcription of HOXD genes in trans
by recruiting PRC2 (Rinn et al., 2007). Specific phosphorylation
of EZH2 is found to increase its affinity to HOTAIR, resulting
in increased recruitment of PRC2 to Hox genes (Kaneko et al,,
2010). Through its 3’ end, HOTAIR also recruits CoREST along
with the lysine-specific histone methyltransferase, LSD1, which
recognizes activating H3K4me3 marks (Tsai et al., 2010). Thus,
IncRNA can recruit different chromatin remodeling complexes
and resolve bivalent chromatin states via H3K4 demethylation
and H3K27 methylation. Recently, the HOTAIRM1 was shown
to be elevated in early differentiating neurons generated from
human iPS (induced pluripotent stem) cells, as was JARID, a reg-
ulator of Polycomb repressive complexes (Lin et al., 2011). Both
HOTAIR and ANRIL have been implicated in a number of cancers

(Wapinski and Chang, 2011), but whether these ncRNAs play a
role in adult neurogenesis remains to be seen.

The composition of TrxG complexes is heterogeneous; most
contain MLL1-3, a SET domain factor, and its associated proteins,
such as WDR5 and ASH2L, whereas others contain NURF com-
plexes or ATP-dependent SWI/SNF complexes (Schuettengruber
et al., 2007). Mixed-lineage leukemia 1 (MIl-1) is a TrxG mem-
ber that contains a SET domain with H3K4 methyltransferase
activity. MLL family members also interact with UTX, a di- and tri-
methyl-H3K27 transferase that is part of the Jumonji-C family of
proteins (Lee et al., 2007). Thus, MIl1 complexes may have the abil-
ity to identify genes for transcription and remove repressive marks,
resolving bivalent chromatin situations. In 2009, Lim et al. revealed
that MI11 is specifically required for neuronal differentiation in the
adult SVZ, but not for glial or oligodendrocyte differentiation; in
the absence of MIl1, the level of the neuron-specific transcription
factor dIx2 was reduced, but the levels of MASH1 or olig2, factors
necessary for glial and oligodendrocyte generation, were not. Sur-
prisingly, they found that while all three genes possessed activating
H3K4me3 marks, only dix2 were held in the bivalent chromatin
state with repressing H3K27me3 marks (Lim et al., 2009). Thus,
epigenetic control of the bivalent chromatin state is essential for
proper adult neurogenesis. TrxG proteins are also regulated by
miRNAs. For example, miR-17-92 cluster miRNAs are known reg-
ulators of MLL, and dysregulation of these clusters of miRNAs
contributes to cellular transformation (Mi et al., 2010; Wong et al.,
2010). Since multiple components of repressing PcG complexes
are subject to regulation by ncRNAs, it is not surprising that IncR-
NAs are involved in the antagonistic, activating TrxG complexes.
For example, the long intergenic RNA (lincRNA) HOXA transcript
at the distal tip (HOTTIP) is found to be necessary for maintaining
MLL complexes on HoxA genes (Wang et al., 2011).

MBD1 AND MeCP2 CONTROL THE EXPRESSION OF OTHER EPIGENETIC
FACTORS

Both MBD1 and MeCP2 are highly expressed in the brain and
play important roles in neurodevelopment and plasticity (Fan and
Hutnick, 2005). As discussed below, we and others have found that
both MBD1 and MeCP2 regulate NSCs and neurogenesis through
transcriptional regulation of other epigenetic factors (summa-
rized in Figure 2). Mutations in MeCP2 are the cause of the
neurodevelopmental disorder Rett syndrome (RTT), but they are
also associated with a number of other neurological disorders,
including cases of Angelman syndrome, Prader—Willi syndrome,
autism, and non-syndromic mental retardation (Chahrour and
Zoghbi, 2007). Mouse models have replicated key phenotypes of
RTT and revealed that MeCP2 plays a critical role in neuronal
maturation and synaptogenesis, in part through the regulation of
dendritic morphology, synaptic transmission, and long-term plas-
ticity (Zhao et al., 2007; Smrt et al., 2011). Both clinically and in
mouse models of Rett syndrome, loss of MeCP2 and increased
dosage both result in similar pathology, highlighting the neces-
sity for its precise control (Chahrour and Zoghbi, 2007). In adult
NSCs from the DG, MeCP2 is not critical for early neurogenesis;
rather, MeCP2 is important during the transition from imma-
ture to mature neurons (Smrt et al., 2007). Indeed, MeCP2 is
highly expressed in post-mitotic neurons in many regions of the
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pathways (e.g., miR-184). MeCP2 plays important roles at multiple stages
of neurogenesis from NSC fate specification to maturation and integration
of new neurons. Similar to MBD1, MeCP2 is known to both directly
regulate the expression of developmental genes (e.g., BDNF) and
indirectly modulate gene expression through miRNA pathways (e.g.,
miR-137 and miR-132). On the other hand, MeCP2 is regulated by
neuronal activity and at least in part through CREB-regulated miRNA (see
text for references).

brain, and its loss results in global alterations in chromatin struc-
ture, including increased histone acetylation and increased H1
nucleosome occupancy (Skene et al., 2010). MeCP2 expression in
astrocytes has recently been shown to have significant impact on
neuronal function and RTT pathology (Ballas et al., 2009; Lioy
et al., 2011). Since astrocyte-“specific” manipulations utilize the
promoter of GFAP, a protein that is also expressed in NSCs, it is
possible that some of these effects might be, at least in part, due to
changes in NSCs.

MeCP2 may translate signaling cascades into epigenetic gene
regulation. In neurons, neuronal activity leads to phosphorylation
of MeCP2 at specific sites, which differentially affects its bind-
ing to gene promoters, such as brain-derived neurotrophic factor
(BDNF), a neurotrophic factor critical for neuronal development
and synaptic plasticity (Na and Monteggia, 2011). BDNF signaling
via its receptor, TrkB, is essential for neurogenesis in hippocampal
NSCs (Li et al., 2008b). miRNAs are emerging as important reg-
ulators at many points in the MeCP2 regulatory pathway. MeCP2
mRNA transcript is targeted by miRNA-132, a neuronal activity
and CREB-regulated miRNA that regulates neuronal maturation
and dendritic morphology in neonate rat hippocampal neurons
(Klein et al., 2007; Wayman et al., 2008). The transgenic over-
expression of miR-132 decreased MeCP2 levels and increased
dendritic spine density in isolated primary hippocampal neu-
rons (Hansen et al., 2010). Undoubtedly, neuronal maturation
is regulated by an extensive, intertwined network of epigenetic
pathways.

In addition to being a target of miRNAs, MeCP2 is also involved
in miRNA regulation. miR-137 is enriched in the brain and
miR-137 levels increase upon neuronal differentiation of adult
forebrain-derived NSCs (Silber et al., 2008; Smrt et al., 2010b).

miR-137 was found to modulate the proliferation and differenti-
ation of forebrain aNSCs; the translation of miR-137 is repressed
by MeCP2 and Sox2, a transcription factor that regulates stem
cell self-renewal (Szulwach et al., 2010). One target of miR-137
in NSCs is the PRC2 component EZH2 (Szulwach et al., 2010).
Interestingly, EZH2 has been shown to recruit DNMT to promot-
ers of genes destined for DNA methylation and gene repression
(Viré et al., 2006). Therefore, the crosstalk among these epige-
netic mechanisms may coordinately regulate NSC fate. miR-137
also regulates later stages of neurogenesis: in immature neurons,
overexpression of miR-137 inhibited hippocampal DG neuronal
maturation by targeting Mind Bomb-1, a RING ubiquitin ligase
(Smrt et al., 2010a). Significantly, in embryonic NSCs, miR-137
seems to play a role in the transition from proliferation to differ-
entiation, as miR-137 positively regulates neuronal differentiation
of embryonic NSCs by targeting LSD1, a component of a transcrip-
tional complex containing HDACs and nuclear receptor TLX, an
essential regulator in stem cell self-renewal (Sun et al., 2011).
Methyl binding domain proteins are essential in linking DNA
methylation to the regulation of gene expression. In humans,
mutations in MBD1 have been linked to a subset of individu-
als with autism (Li et al., 2005; Cukier et al., 2010), as well as
to some cancers (Sansom et al., 2007). MBD1 null mice exhibit
decreased neurogenesis in the DG, impaired spatial learning, and
reduced long-term potentiation in the hippocampus (Zhao et al,,
2003). These mice also show signs of depression, believed to be a
result of decreased adult neurogenesis (Allan et al., 2008). MBD1
binds directly to the promoter of Fgf-2 (fibroblast growth fac-
tor 2), a molecule that promotes proliferation and is commonly
used to expand NSC populations, to regulate its expression. Fur-
thermore, a DNA methylation inhibitor blocked the effects of
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MBDL1 in forebrain-derived aNSCs and increased Fgf-2 expres-
sion, underscoring the important role the methylation state of the
promoter plays (Lietal.,2008a). In part, MBD1 regulates neuroge-
nesis by silencing miR-184; an increased level of miR-184 promotes
proliferation and hinders the differentiation of hippocampal GD
adult NSCs in vivo and forebrain-derived NSCs in vitro. In turn,
miR-184 binds the 3’ UTR of Numb like (Numbl), a signaling
protein required for differentiation in adult neurogenesis, and
targets it for degradation (Liu et al., 2010). Numbl is known to
inhibit the Notch pathway (Petersen et al., 2006), which has a
significant impact on neurogenesis. Interestingly, Notch signaling
was recently shown to be required for FGF-2 receptor-dependent
growth in embryonic cortical cells (Rash et al., 2011), bringing
together a possible regulatory loop involving MBD1, FGF-2, miR-
184, Notch, and Numbl. It is conceivable that regulation of miRNA
expression by MBDs requires cooperation from other epigenetic
machinery. In fact, HDACI, 2, and 3 can facilitate the regulation
of gene expression by MBD1 in cancer cells (Ng et al., 2000; Villa
et al., 2006). Inhibition of both DNA methylation and HDAC is
used for cancer treatment (Griffiths and Gore, 2008). Moreover,
miRNA and HDAC-mediated pathways can cooperate to repro-
gram somatic cells to pluripotency (Anokye-Danso et al., 2011).
It will be interesting to see whether coordinated manipulation of
all three epigenetic pathways will be more effective at controlling
cell fate.

ENVIRONMENTAL GOVERNANCE OF EPIGENETIC
CROSSTALK

It is well known that environmental stimuli can modulate neuro-
genesis, both during early development and in adulthood (Li and
Zhao, 2008; Barkho and Zhao, 2011). Numerous factors are found
to promote adult neurogenesis, including exercise and environ-
mental stimulation. Furthermore, depression, brain injury, and
stress have all been linked to reduced adult neurogenesis. The rela-
tive impact of nature versus nurture on human neurodevelopment
and brain function has been a topic of hot discussion and an active
research area. The significant overlap among epigenetic pathways
could explain how environmental factors regulate neurogenesis
and NSC fates with a high degree of complexity. Here we give
some examples as possible mechanisms whereby environmental
stimulation can be translated into changes in gene expression.

NEURONAL ACTIVITIES LEAD TO EPIGENETIC CHANGES

A number of studies show that long-term potentiation and mem-
ory formation require histone acetylation, particularly at H3
and H4, and that extrinsic stimuli inhibiting histone acetylation,
such as treatment with HDAC inhibitors and alcohol exposure,
inhibit learning and memory (Crepaldi and Riccio, 2009). Inter-
estingly, these treatments also impact NSCs and neurogenesis,
with potential downstream effectors of these treatments including
neurotrophins.

Neurotrophins, such as BDNE, seem to play a crucial role in
the environmental influence on neurogenesis. BDNF is known to
govern maturation, including the dendritic branching and synap-
tic development of new neurons (Smrt and Zhao, 2010). At a
neurogenic level, BDNF promotes neuronal fate choice and ter-
minal differentiation of NSCs both in vitro and in adult DG and

SVZ (Li et al., 2008b). An enriched environment, physical exer-
cise, and neuronal activity are all found to increase levels of BDNF
(Smrt and Zhao, 2010). It is not surprising that BDNE, as a key
point of regulation for neurogenesis, is itself regulated by multiple
mechanisms, including epigenetic pathways. MeCP2 is known to
work with REST/NRSF to recruit HDACS and suppress transcrip-
tion of the BDNF promoter, and neuronal depolarization results
in the release of MeCP2 from the BDNF promoter, thereby allow-
ing for its transcription (Ballas et al., 2005; Zhou et al., 2006).
In addition, miR-132 levels increase in response to both BDNF
and neuronal activity in the hippocampus, olfactory bulb, and
striatum, indicating that miR-132 may act in a feedback loop that
increases neural plasticity (Nudelman et al., 2010; Remenyi et al.,
2010). Such crosstalk may explain how depolarization is trans-
lated into neuronal termination differentiation and maturation,
and why there is a reduced BDNF level in MeCP2-deficient mice.

It has long been known that electroconvulsive therapy, a treat-
ment for depression, can promote hippocampal neurogenesis,
which might be a causal link to better cognitive function; how-
ever, the mechanism underlying this is unclear (Ming and Song,
2011). One study shows that ECT leads to greater expression of the
immediate early gene Gadd45b in hippocampal neurons, which
catalyzes DNA demethylation of several important genes involved
in adult neurogenesis, such as Bdnf, Fgf-1, and NR2 subunit of
the NMDA receptor (Ma et al., 2009). In adult brains, neuronal
activity-dependent DNA demethylation involves the activity of
Tet1 through the 5ShmC pathway (Guo et al., 2011a).

NEURAL INFLAMMATION, STRESS, AND DISEASE LEAD TO CHANGES
IN EPIGENETIC STATES

Many negative factors can impact neurogenesis, but the mech-
anism remains unclear for most of these influences; epigenetic
changes seen in some of these conditions may explain the
missing link.

Drug and alcohol abuse is known to reduce NSC self-renewal,
neuronal differentiation, neuronal maturation, and neurogenesis
(Cho and Kim, 2010). The CREB protein and its cofactor, CREB-
binding protein (CBP), are known to regulate NSCs, as well as
neurogenesis and memory, and such function is dependent on
the HAT function of CBP (Lee et al., 2009; Lopez-Atalaya et al,,
2011). We and others have found that fetal alcohol exposure leads
to a significant reduction in CBP expression, to levels similar to
those seen in human Rubinstein—Taybi syndrome (heterozygotic
loss of CBP gene; Constantinescu et al., 2004; Guo et al., 2011c¢).
Alcohol exposure also leads to changes in DNA methylation in the
promoter of key genes involved in development and NSCs (Zhou
etal.,2011). Crosstalk among epigenetic pathways is a likely mech-
anism behind drug and alcohol abuse-induced cognitive deficits
(Mandrekar, 2011).

Stroke is also found to cause DNA methylation changes, and
altered DNA methylation may be a biomarker for cardiovascu-
lar disease and stroke. Inhibition of DNMTs and HDACs could
be used as a potential treatment for reducing the neuronal death
and tissue damage that result from stroke (for a recent review, see
Kim et al., 2009; Baccarelli et al., 2010; Qureshi and Mehler, 2010).
Stroke is known to result in enhanced neurogenesis in the SVZ
and such enhanced endogenous neurogenesis has been considered
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as a potential endogenous cell therapy for over a decade. How-
ever, the mechanism behind this neurogenic response is unclear
(Barkho and Zhao, 2011). Recently, focal cerebral ischemia in a
rodent stroke model was found to result in reduced expression of
miR-124, which targets Jagged-1 (JAG1), a ligand of Notch (Liu
et al., 2011). The activation of the JAG-Notch signaling pathway
leads to enhanced SVZ NSC proliferation and might prove to be
at least one of the key mechanisms behind stroke-induced neu-
rogenesis. Treatment with sodium butyrate, a HDAC inhibitor,
stimulates SVZ and DG neurogenesis in the ischemic brain, possi-
bly by promoting the expression of CREB and BDNF (Kim et al.,
2009).

Aberrant DG neurogenesis as a signature of temporal lobe
epilepsy has been appreciated for over a decade; however, whether
abnormal neurons are the cause or consequence of seizure is still
unclear (Schneider-Mizell et al., 2010). Alterations in histone mod-
ifications, DNA methylation, and ncRNA profiles have been seen
in epileptic brains and animal models, therefore epigenetic mech-
anisms are proposed to be part of the etiology, as well as a possible
treatment for, epilepsy (for a recent review, see Urdinguio et al,,
2009). Valproic acid (VPA), a HDAC inhibitor and an antiepileptic
drug, blocks seizure-induced neurogenesis and protects animals
from seizure-induced deficits in a hippocampus-dependent learn-
ing task (Jessberger et al., 2007), although the specific targets of
HDAC inhibitor treatment remain unclear. Quite a few miRNAs
exhibit altered expression profiles in epileptic tissues (Aronica
et al., 2010; Nudelman et al., 2010; Hu et al., 2011; Risbud et al.,
2011; Songetal.,2011b),and some of them, such as miR-21, let-7e,
miR-125, and miR-132, are known to regulate neurogenesis (Liu
and Zhao, 2009). Future studies are needed to determine whether
the expressions of these miRNAs are likely controlled by histone
modification and DNA methylation, as well as whether these miR-
NAs can also be used as therapeutic targets, along with HDAC
inhibitors, for the treatment of epilepsy.

The link between depression, neurogenesis, and epigenetic
changes has been discussed extensively for years (Hsieh and
Eisch, 2010). HDAC inhibitors are widely considered a treat-
ment for depression (Grayson et al., 2010), and DNA methylation
inhibitors, such as 5-aza cytidine, can also lead to dose-dependent
increases in BDNF expression and anti-depression effects (Sales
et al., 2011). Not surprisingly, changes in miRNA expression are
seen in cases of human depression and in animal models, mak-
ing the role of non-coding miRNAs in major depression apparent
(for recent reviews, see Dwivedi, 2011; Ha, 2011; O’Connor et al.,
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2012). However, as is the case with epilepsy, how depression affects
miRNA expression is still unclear. Epigenetic crosstalk in the eti-
ology of depression is likely to become a fruitful area of future
study. Of relevance here, the regulation of the stress pathway is
also known be to under epigenetic control. Maternal care dur-
ing the early postnatal period modulates the DNA methylation
status of glucocorticoid receptors and glutamic acid decarboxy-
lase 1 (GAD1) promoter (Zhang et al., 2010), and treatment with
both HDAC inhibitor and DNA methylation inhibitor can alter
the maternal effects (Weaver, 2009).

CONCLUSION

Neurogenesis is a complex process requiring coordinated con-
trol at multiple levels in a time- and stage-dependent manner,
and the sensitivity of neurogenesis to environmental factors is
what allows us to make necessary adjustments to fit better into
our environment. Epigenetic mechanisms, with their flexibility
and versatility, are uniquely suited to fulfill such a requirement.
Although a large body of literature presents data on the epige-
netic regulation of NSCs and neurogenesis, and its subsequent
impact on cognitive functions, particularly learning and memory,
few studies have dealt with the crosstalk among these individ-
ual mechanisms. At a conceptual level, crosstalk among these
mechanisms is inevitable. As a flood of publications offer evi-
dence of miRNA regulation of neurogenesis and related dis-
eases, it is the downstream targets of these miRNAs that have
been heavily focused on. The control of these miRNAs, partic-
ularly by DNA methylation and chromatin remodeling, as well
as processes altered by these diseases, have not been given full
attention. Future studies, with the goal of dissecting this crosstalk,
both at the individual pathway level and global network level, will
help us understand how neurogenesis is regulated and how the
environment impacts these processes. Breakthroughs from such
studies will likely yield new therapeutic targets for research to
pursue.
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