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Brain–computer interfaces (BCI) based on event-related potentials (ERP) allow for selection
of characters from a visually presented character-matrix and thus provide a communica-
tion channel for users with neurodegenerative disease. Although they have been topic of
research for more than 20 years and were multiply proven to be a reliable communication
method, BCIs are almost exclusively used in experimental settings, handled by qualified
experts. This study investigates if ERP–BCIs can be handled independently by laymen
without expert support, which is inevitable for establishing BCIs in end-user’s daily life
situations. Furthermore we compared the classic character-by-character text entry against
a predictive text entry (PTE) that directly incorporates predictive text into the character-
matrix. N = 19 BCI novices handled a user-centered ERP–BCI application on their own
without expert support. The software individually adjusted classifier weights and control
parameters in the background, invisible to the user (auto-calibration). All participants were
able to operate the software on their own and to twice correctly spell a sentence with
the auto-calibrated classifier (once with PTE, once without). Our PTE increased spelling
speed and, importantly, did not reduce accuracy. In sum, this study demonstrates feasi-
bility of auto-calibrating ERP–BCI use, independently by laymen and the strong benefit of
integrating predictive text directly into the character-matrix.
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INTRODUCTION
Event-related potentials (ERP) are brain signals in the human elec-
troencephalogram (EEG) that occur in response to stimuli, e.g.,
visual stimuli (for review, see Polich, 2007). Farwell and Donchin
(1988) suggested to utilize these potentials for brain–computer
interface (BCI) based communication, particularly dedicated to
patients with impaired motor control due to neurodegenerative
disease (e.g., patients suffering from amyotrophic lateral sclerosis,
ALS). Such ERP–BCI is often referred to as P300-BCI due to its
usual dependence on the P300, a prominent positive ERP approx-
imately 200–400 ms post-stimulus (Picton, 1992; Polich et al.,
1997). It is elicited in an oddball-paradigm, in which participants
focus their attention on a rare stimulus (the odd stimulus) among
many frequent but irrelevant stimuli. In the visual ERP–BCI this
oddball is typically realized by presenting letters and numbers of
the alphabet on a computer screen and flashing these characters
randomly. Users are then asked to focus their attention on flash-
ings of the character they intend to spell while ignoring all other
characters (e.g., counting the target flashes). After a certain num-
ber of character flashings, a classification algorithm detects ERPs in
the recorded signal and thereof determines the intended character.
Hence, healthy as well as severely impaired users can communicate
words on a character-by-character basis (e.g., Nijboer et al., 2008).

Today, visual ERP–BCIs are most commonly used systems for
BCI-based communication (for a review, see Kleih et al., 2011).

It has been shown that they are reliably accurate (in healthy
participants, e.g., Guger et al., 2009; Kleih et al., 2010; in patients,
e.g., Sellers et al., 2006, 2010; Townsend et al., 2010) and robust for
long-term use (Nijboer et al., 2008; Sellers et al., 2010). However,
when considering daily use of a visual ERP–BCI system at current
status of technology, some main barriers in terms of practicability
and usability can be identified:

First, preparation effort for EEG acquisition with commonly
used wet electrodes and herewith originating inconvenience (e.g.,
electrode gel, washing hair) were reported as being highly dis-
comforting for patients using BCIs (Zickler et al., 2011). This
issue is currently addressed by several manufacturers, e.g., by
investigating dry electrodes. First prototypes have been tested for
use in BCI (e.g., Grozea et al., 2011; Zander et al., 2011, for a
review see Mak et al., 2011).
Second, since its first description in 1988, numerous modifica-
tions to the ERP–BCI have been well studied and led to many
improvements e.g., in signal processing and classification (e.g.,
Krusienski et al., 2006, 2008; Blankertz et al., 2011, for reviews see
Lotte et al., 2007; Kleih et al., 2011) and on the stimulus presenta-
tion side (e.g., Sellers et al., 2006; Guger et al., 2009; Salvaris and
Sepulveda, 2009; Takano et al., 2009; Jin et al., 2010b; Townsend
et al., 2010; Frye et al., 2011; Kaufmann et al., 2011; McFarland
et al., 2011). Many of these modifications have been incorporated
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into today’s BCI software systems and led to implementation of
a plethora of parameters that allow for individual adjustment.
However, being comprehensive and flexible for research pur-
pose inevitably entails complexity and effort in user handling.
Therefore, this constitutes a major problem when bringing BCI
technology toward end-users (Zickler et al., 2009), as they and
their care-givers may not be educated in handling of complex
software as well as analysis and interpretation of acquired EEG
data for calibrating the BCI system.
Third, communication speed and accuracy are low compared
to existing solutions from the field of assistive technology (AT;
Zickler et al., 2011). In parts this issue may be improved with
further investigation of new signal processing methods and/or
modifications of the paradigm. For example Kaufmann et al.
(2011) recently investigated new stimuli, i.e., flashing characters
with famous faces, which clearly outperformed classic character
flashing in terms of communication speed and accuracy. Con-
sequently, choice of appropriate stimuli may enhance bit rate.
However, independent of all possible improvements, the com-
monly used ERP–BCI paradigm is necessarily limited to spelling
on a character-by-character basis. Therefore, another attempt to
foster bit rate is to integrate a predictive text entry (PTE) system
into the BCI paradigm (Wolpaw et al., 2002). Besides the classic
character-by-character text entry, Ryan et al. (2011) presented
users with a separate window of numbered text suggestions,
determined by a predictive text system. Users were provided with
the possibility to select these numbered text predictions by focus-
ing on their associated number in the matrix. For example, after
spelling an “y,” a first suggestion “your” would appear with num-
ber “1” among other suggestions in the separate window and by
focusing on “1” in the character-matrix, users would in fact spell
“your.” We therefore further refer to this paradigm as “indirect
paradigm.” The authors reported that integration of such PTE
system into the BCI effectively decreased the time needed to spell
a sentence. A likewise indirect approach was proposed by Jin
et al. (2010a) who adapted a Chinese cell-phone input system for
BCI use to enable communication for languages that comprise
too many characters for classic character-by-character text entry
(e.g., Chinese, Japanese). In their system, seven word suggestions
were presented that could be chosen indirectly by focusing on
the numbers 1–7 in the matrix. Unfortunately, Ryan et al. (2011)
reported that overall spelling accuracy was significantly decreased
when using such indirect PTE paradigms, which was explained
with higher workload and task demands (dual task interference).
However, it remains unclear if this negative side effect is generaliz-
able for all paradigms using predictive text system or if the higher
workload is evoked by the indirect paradigm used in this study,
i.e., selecting predictive text by focusing on its related number in
the main matrix.

We addressed the latter two barriers by developing and evaluating
a software solution, further referred to as optimized communi-
cation interface (OCI). It was specifically designed for use by
laymen and thus reduces handling of the whole BCI application
to a minimum of several button presses, thereby automatically
controlling all other necessary steps in the background. Its core
feature lies in an auto-calibration of the classifier that – with

one button press – individually adjusts classifier weights to the
user’s brain signals. The system assesses quality of the signal
recorded during a calibration session and decides if further cal-
ibration data is needed. Furthermore a PTE system was integrated
as optional choice. Instead of numbering text suggestions and
requiring the user to indirectly focus on the appropriate num-
bers (Ryan et al., 2011), we integrated predictive text directly
into the matrix. This could decrease workload and task demand
as users directly focus on the suggested word and its selection
would be similar to selections of any other character in the
matrix.

The herein presented study evaluated use of OCI by investi-
gating (1) if auto-calibrating BCI systems can be used indepen-
dently by laymen and (2) if predictive text incorporated into the
speller matrix may better serve the goal of fast but highly accurate
BCI-based communication than the classic character-by-character
selection.

MATERIALS AND METHODS
OPTIMIZED COMMUNICATION INTERFACE (OCI) SOFTWARE
Implementation of OCI was based on the core modules of BCI2000
(Schalk et al., 2004, Version 3, http://bci2000.org) and compiled
with Microsoft Visual Studio 2008 compiler. It can be grouped into
three work stages: (1) modification of the graphical user inter-
face, (2) implementation of an auto-calibration and (3) imple-
mentation of a stimulus presentation paradigm including a PTE
system.

Graphical user interface
BCI2000’s graphical user interface was modified using Qt Designer
4.7. Handling of the whole BCI application was reduced to one
button and an optional check mark for switching on the PTE
system (see Figure 1). When starting OCI, the button acts as a
start button for the calibration session. With one button press,
all parameters are automatically set in the background and the
classic character-matrix appears. After a predefined calibration
word was spelled, the matrix disappears and auto-calibration
is performed in the background without user intervention. In
case of successful calibration, the button automatically turns
into a start button for the online, free-spelling mode. Other-
wise it would act as a start button for recalibration of the
system.

FIGURE 1 | Graphical user interface of OCI. The application is controlled
with one button only. When starting OCI, the button displays “Kalibrieren”
(German for “calibrate”). During the calibration phase it acts as a stop
button, whereas after successful calibration it turns into a start button for
the online mode. Optionally, a predictive text entry system is switched on
by selecting the “Bibliothek” check mark (German for “library”).
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Auto-calibration
Auto-calibration was performed by automatically transferring the
acquired data to MATLAB (The Mathworks, USA; version 2010b)
using the MATLAB Component Runtime 4.14 to bridge between
C++ and MATLAB code. A stepwise linear discriminant analysis
(intervals of 800 ms post-stimulus, no spatial filtering) was per-
formed based on data from all 12 EEG electrodes and thereof
classifier weights were computed for the online sessions. Also,
the number of sequences (NoS; a sequence consists of all rows
and columns flashed once) used for flashing the characters in the
online sessions was computed. Accuracy and stability of offline
classification determined the outcome of the calibration session:
(1) If accuracy was below 75% with 15 sequences, calibration ses-
sion had to be performed again. (2) NoS used for online sessions
was adjusted based on the stability of the classifier output, i.e.,
maximum accuracy remained stable after a given amount of data
segments. In this case, NoS was defined as the minimum num-
ber of sequences to reach a stable offline accuracy maximum plus
two sequences. E.g., if stable 100% accuracy were reached offline
with seven sequences, NoS would have been nine during online
sessions. (3) If no plateau was reached but classification accuracy
was above 75%, NoS was set to 15. (4) The minimum NoS was
restricted to eight to prevent from high error rates in long spelling
sessions.

Note that auto-calibration was performed invisible to the user
and all parameters for the online sessions were automatically
adjusted without expert or user intervention.

Predictive text and stimulus presentation paradigm
First, we wrote an application that screened several prominent
German internet pages (e.g., news pages) for words and counted
their amount of occurrence. The word list was then sorted with
decreasing occurrence and manually checked for non-sense words
or words with internet specific content, e.g., name of the web-
page holder. The final list comprised 82.616 words. This number
includes various grammatical variations of the same word, e.g.,
plural forms.

Suggestion of predictive text and stimulus presentation matrix
was implemented in Python 2.5 and connected to BCI2000 via
user datagram protocol. After each letter selection, the application
screened the list downwards to update the six most likely words
that were than presented in the first column of the speller matrix.
If less than six words matched the previously entered letters, fewer
up to none text suggestions were presented. At the beginning of
new words, i.e., after selection of space, word deletion or after
selection of a predictive word, the six most frequent words were
presented (first six words of the list).

For the control condition, i.e., a matrix without PTE, an identi-
cal Python based stimulus presentation paradigm was used. Only
it did not contain the PTE. Figure 2 provides examples of both
stimulus presentation matrices. All matrices were of size 6 × 6
and displayed on a computer screen approximately 70 cm dis-
tant from the participant (size: 22′′; refresh rate: 60 Hz; resolution:
1680 × 1050; size of matrix: 40 × 25 cm2).

As predictive text was directly integrated into the matrix it could
be flashed in a similar manner than usually done in ERP-BCIs, i.e.,
in both conditions (PTE and character-by-character entry) the full

6 × 6 matrix was flashed row/column wise. Thus, selection of pre-
dictive text was also performed by counting each highlighting of
the intended word to spell. The BCI system always chose the cell
in the matrix with highest probability, which could be a selection
of predictive text, single characters or commands (delete, space,
escape) depending on the content of the chosen matrix cell (see
Figure 2).

EXPERIMENTAL SCHEDULE
Electrodes were mounted by the experimenter. Thereafter, all par-
ticipants handled the software fully on their own without expert
support. Handling of OCI was explained in a condensed user
manual (paper hardcopy) and with two short videos.

First, participants were required to start OCI and to start a
calibration session where they had to spell the word “BRAIN-
POWER.” Each character was highlighted 30 times per letter to
spell [NoS = 15; stimulus duration of 31.25 ms; inter-stimulus
interval (ISI) of 125 ms]. This resulted in a final data set of 30 × 10
target and 150 × 10 non-target stimuli. From this data set, clas-
sifier weights were automatically computed in the background,
invisible to the user.

Thereafter, participants twice spelled a German sentence com-
prising of 45 characters (nine words) using the automatically
adjusted classifier weights and automatically determined NoS.
Errors had to be corrected immediately such that the finalized
sentence was 100% accurate. Then, spelling had to be terminated
by selecting twice the “escape” function from the matrix, which
brought them back to the main application window (necessary
double selection constituted a safety mechanism of the “escape”
function, to prevent unintended program termination due to
selection error, i.e., selecting “escape” only once had no conse-
quence). The inter-trial interval was 5 s to provide participants
with enough time to perceive feedback on the spelled charac-
ter/word and to screen all predictive text suggestions before the
next stimulus sequence began. The same sentence was spelled once
with PTE and once without, but both times with equal classifier
weights and equal NoS to ensure comparability (within-subject
design; calibration had to be performed only once). The order was
randomized across participants.

After finalization of the spelling sessions, participants were
asked to fill out questionnaires on handling of OCI and the PTE.

PARTICIPANTS
N = 20 healthy university students with normal or corrected to
normal vision participated in the study. All participants were
native German speakers and BCI novices. Due to equipment
failure, data acquisition for N = 1 participant was aborted. The
final sample comprised N = 19 participants (10 male, mean age
23.9 years, SD = 3.7, range 20–35). The experiment was conducted
in accordance with standard ethical guidelines as defined by the
Declaration of Helsinki (World Medical Association) and the
European Council’s Convention for the Protection of Human
Rights and Dignity of the Human Being with regard to the Appli-
cation of Biology and Medicine (Convention on Human Rights
and Biomedicine). All participants gave signed informed consent
prior to the experiment and received 8 C per hour for taking part
in the study.

www.frontiersin.org May 2012 | Volume 6 | Article 72 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Kaufmann et al. A user-centered brain–computer interfaces

FIGURE 2 |Two paradigms were tested. (A) The classic
character matrix consisting of single characters. Furthermore the
matrix contains functions for deletion (delete character), space,
and escape (finish writing). (B) Our new predictive text entry

paradigm with predictive text included into the first column of the
matrix to allow for direct selection of words. Also, the matrix
contains functions for deletion (delete character, delete word),
space, and escape.

DATA ACQUISITION
Electroencephalogram was acquired from 12 passive Ag/AgCl elec-
trodes that were placed according to the guidelines of the American
Electroencephalographic Society at positions Fz, FC1, FC2, C3, Cz,
C4, P3, Pz, P4, O1, Oz, and O2. Furthermore an electrooculogram
(EOG) was obtained from two horizontal (hEOG) and two ver-
tical (vEOG) sintered Ag/AgCl electrodes. Both, EEG and EOG
were recorded at a sampling rate of 256 Hz and amplified with a
16-channel g.USBamp amplifier (g.tec Medical Engineering GmbH,
Austria).

ANALYSIS
The study aimed at investigating two independent aspects, i.e.,
feasibility of auto-calibrated BCI use and benefit of a new PTE
paradigm.

Suitability of the auto-calibration was assessed by evaluating
offline classifier accuracy as well as online spelling performance
with the classic character-by-character-matrix condition. As auto-
calibrated classifiers may build upon ocular artifacts due to missing
control by the experimenter,we compared the auto-calibrated clas-
sifier accuracy to classifier accuracy after offline ocular artifact
correction (Gratton et al., 1983). Benefit of our new PTE paradigm
was assessed by comparing to the classic character-by-character-
matrix the overall time needed to finish the sentence correctly, the
amount of errors per selected item as well as achieved bit rate.
Also, we evaluated results from questionnaires in terms of user
satisfaction.

Besides computation of bit rate (as described e.g., in Wolpaw
et al., 2000; Wolpaw et al., 2002; Serby et al., 2005) we computed
a bit rate measure incorporating the information transferred with
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selections of whole words. PTE systems enhance bit rate in that
with one selection many characters are communicated at once.
Thus true bit rate is not only depending on the number of accurate
selections made but also on the information transferred with each
selection. Certainly such measure heavily depends on the length
of the selected words. For example true bit rate would be five
times higher when selecting a 10-character word instead of a two-
character word, although bit rate in terms of selections/minute
would be identical. Therefore true bit rate has to be interpreted
with caution and is only provided to display the potential of PTE
systems.

For offline analysis of ERPs, EEG data were filtered with 0.1 Hz
high and 30 Hz low pass and corrected for ocular artifacts (Grat-
ton et al., 1983). To avoid influence of overlapping ERPs due to the
short ISI used in this study (ISI = 125 ms), only target stimuli with
a minimum time distance of 469 ms (i.e., at least two non-target
stimuli in between) were taken into account for ERP analysis. For
statistical comparison, P300 peak amplitudes were obtained as
maximum potentials between 200 and 300 ms at electrode Cz for
both conditions.

Apart from ocular artifact correction with Brain Vision
Analyser (Brain Products GmbH, Germany), all data analy-
sis was performed using Matlab (The Mathworks, USA; ver-
sion 2010b), and SPSS statistics (IBM, USA). Statistical com-
parison was performed using analysis of variance (ANOVA),
except for not normally distributed data for which Wilcoxon-Test
was used.

RESULTS
All participants were able to handle OCI on their own without
expert support and to twice spell the predefined sentence correctly
using the auto-calibrated classifier. In a forced-choice question-
naire all participants reported, that handling of the software was
straightforward (average score: 3.84, with 1 = “not at all,” 2 = “not
really,” 3 = “mostly,” 4 = “completely”), that they would be able to
manage the BCI application on their own in the future (3.84) and
to explain it to others (3.74).

AUTO-CALIBRATION
For all participants, classifier weights were adjusted automati-
cally after one calibration session and no repetitions were needed.
In the consecutively scheduled online spelling sessions partici-
pants achieved overall good performance levels with regards to
the length of the spelled sentence (average performance with
classic character-by-character paradigm: 91.2%, SD = 7.8, range:
76–100% accuracy).

As auto-calibration may lead to classification of ocular arti-
facts, classifier accuracy of the auto-calibration as well as achieved
stable NoS (see Auto-Calibration) were compared to accuracy
and NoS after ocular artifact detection. No significant difference
was found for the automatically selected NoS [F(1, 18) = 0.156,
p = .697, η2

partial = 0.009]. Also, offline classification accuracy did
not differ before and after correction [With minimal NoS pos-
sible (NoS = 1): F(1, 18) = 0.518, p = .481, η2

partial=0.028; with
minimal NoS used online (NoS = 8): Z = −1.0, p = .317]. Fur-
thermore, we checked how many NoS were necessary to achieve

a stable classifier accuracy of 100%. Difference was not signifi-
cant before and after ocular artifact correction [F(1, 18) = 0.010,
p = .920, η2

partial = 0.001].

PREDICTIVE TEXT ENTRY
Figure 3 summarizes the overall time needed to finish each
sentence correctly. In line with Ryan et al. (2011), PTE sig-
nificantly decreased spelling time [F(1, 18) = 95.74, p < .001,
η2

partial = 0.84]. Average time needed to finish the task was
reduced by factor 1.8 (12.4 min as compared to 22.3 min without
PTE).

However, in contrast to the indirect paradigm by Ryan et al.
(2011), accuracy did not decrease with our PTE paradigm [F(1,
18) = 1.64, p = .216, η2

partial = 0.084]. Performance ranged from
100% accuracy to 76% (classic character-by-character condi-
tion) and to 74% respectively (PTE condition), see Figure 4.
Bit rate (in terms of selections per minute) was comparably
high for both conditions (character-by-character: M = 15.1 char-
acters/min, SD = 5.6; PTE: M = 15.7 characters/min, SD = 5.7).
Figure 5 displays bit rate as well as true bit rate. True bit rate
was higher for all participants, when using the PTE paradigm. For
those participants that made many errors with this paradigm (P08,
P17) benefit in terms of true bit rate was small. On the other hand,
participants with high accuracy also show a high benefit. Aver-
age true bit rate for the sentence was M = 12.0 characters/min
(SD = 2.7) with character-by-character text entry and M = 20.6
characters/min (SD = 5.3) with PTE. Please note that true bit rate
heavily depends on the length of the selected words (see Analysis)
and thus needs to be interpreted with caution. In this experi-
ment, word length of the selected words was M = 4.1 characters
on average (SD = 1.9; range: 2–8 characters).

Figure 6 displays the grand average ERPs for both condi-
tions with most prominent P300 amplitude at electrode Cz
around 246.5 ms (SD = 23.2; character-by-character text entry)
and 250.0 ms (SD = 24.3; PTE). Grand average P300 amplitude
was 3.55 μV (SD = 1.19) for character-by-character text entry
and 3.44 μV (SD = 1.40) for PTE. No within-subject difference
was found for P300 amplitudes between the conditions [F(1,
18) = 0.72, p = .410, η2

partial = 0.038].
We further compared the amount of errors made when select-

ing a character against the amount of errors made when selecting a
word or command. When using the classic character-by-character
text entry, participants made M = 2.2 errors (SD = 2.2) on aver-
age for selecting a single character and M = 4.2 errors (SD = 4.8)
for selecting a command. Error rates in the PTE condition were
slightly lower (single character selection: M = 1.3, SD = 1.6; selec-
tion of command or word: M = 1.6, SD = 2.5). To write the sen-
tence without any error, 10 commands (8× space, 2× escape)
and 37 characters were necessary in the character-by-character
text entry condition, whereas 11 commands and words and 16
characters were necessary in the PTE condition.

Evaluation of questionnaires revealed that all participants
would prefer to use the PTE paradigm instead of character-by-
character spelling, when exposed to BCI-based spelling in the
future. Only one participant (participant 9) reported higher effort
in selecting complete words as compared to single characters,
which however was not reflected in his performance.
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FIGURE 3 | Overall time needed to copy spell the sentence (including error correction and escape of spelling mode after finalization of 100% accurate

sentence): within-subject comparison between classic character-by-character text entry and predictive text entry paradigm.

FIGURE 4 | Average number of errors per selected item: within-subject

comparison between classic character-by-character text entry and

predictive text entry paradigm. As the number of items selected to finish

the sentence varied between participants and conditions (e.g., due to error
correction or selection of predictive text) no absolute amount of errors is
presented but instead the amount of errors per selected item.
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FIGURE 5 | Bit rate (in terms of selections per time unit) and true bit rate (in terms of communicated characters per time unit): within-subject

comparison between classic character-by-character text entry and predictive text entry paradigm.

DISCUSSION
This study provides evidence, that current BCI technology can be
automatized and operated by BCI novices through a user-centered,
easy-to-use graphical user interface. This is inevitable when bring-
ing BCIs out of the laboratory environment to end-user’s homes.
Zickler et al. (2009) assessed user needs and requirements from
N = 77 AT users and reported “functionality,”“possibility of inde-
pendent use,” and “easiness of use” as most important require-
ments. The latter was one of the main reasons for dissatisfaction
with current AT solutions. Importantly, our results from handling
of OCI indicate high satisfaction with both, “easiness of use” and
“possibility of independent use.” Furthermore,“functionality” was
high as none of the auto-calibration sessions had to be performed
twice and all participants were able to correctly spell the sentences.
Overall spelling accuracy was high and none of the participants
performed with lower than 70% accuracy – an accuracy level pre-
viously described as minimum level for communication (Kübler
et al., 2001).

When considering adoption of a new AT solution, “function-
ality/effectiveness” was identified as the major critical factor for
potential end-users (Zickler et al., 2009). This study suggested inte-
gration of predictive text directly into the matrix and proofed high
benefit in terms of spelling speed (effectiveness) without loss of
accuracy (functionality). As can be particularly seen from the true

bit rate of participants with lower accuracy in the PTE paradigm,
a high performance level is inevitable to clearly benefit from a PTE
system. The unaffected P300 amplitudes in our study show that
when integrating predictive text directly into the matrix workload
may remain low, as predictive text is selected in a similar manner
than single characters. The drop in performance reported by Ryan
et al. (2011) may thus indeed be attributed to higher workload and
dual task interference in the indirect PTE paradigm. The remain-
ing performance level in our study, as well as the heavily decreased
time needed to spell a sentence may well explain why none of
the participants reported to prefer the character-by-character over
the PTE paradigm. Advantageously, daily life application with such
PTE system could easily be equipped with algorithms for grammar
recognition and learning of new words.

LIMITATIONS AND FUTURE EXPERIMENTATION
To reduce the amount of errors during spelling of long sentences,
we restricted the automatically adjusted NoS to a minimum of
eight sequences. This limit was set on basis of previous experience.
Apparently, there is a trade-off, as low NoS increases the proba-
bility of errors due to a low number of trials to average, whereas
high NoS may entail errors due to increased duration of spelling
time. We speculate that for some participants NoS could be fur-
ther reduced. This could also be realized with recently introduced
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FIGURE 6 | Grand average event-related potentials: within-subject comparison between classic character-by-character text entry and predictive text

entry paradigm.

dynamic stopping methods. (e.g., Lenhardt et al., 2008; Höhne
et al., 2010; Liu et al., 2010; Schreuder et al., 2011b; for compar-
ison of methods see Schreuder et al., 2011a). Instead of flashing
characters with a fixed NoS, dynamic stopping algorithms adjust
the NoS in every trial, i.e., stimulus presentation stops as soon as
probability of correct target classification reaches a certain level.

This study aimed at investigating if spelling at high accuracy
level is possible using an auto-calibrated classifier. Comparison to
manually calibrated classifier performance needs separate inves-
tigation. Manual calibration may still be valuable for some cases
(e.g., for exclusion of bad channels or detection of equipment fail-
ure). Auto-calibration may also be further equipped with mech-
anisms for detecting such cases. Our results are promising in
that high accuracy could be achieved in all participants using
auto-calibration and none of the participants needed recalibration
of the system.

We assume that our validation results from healthy users may
well transfer to end-users as we cautiously addressed their major
concerns (Zickler et al., 2009). However, Zickler et al. (2010) found
differences between end-users and care-givers with regards to their
expectations of new AT solutions – differences which may certainly
also exist in our healthy sample. Thus, it is inevitable to develop
and validate new BCI technology in close discussion with them.
Future experimentation therefore needs to validate our results in
an end-user sample.

CONCLUSION
In sum, this study specifically addressed critical aspects of ERP–
BCI-based communication reported by end-users, i.e., “func-
tionality/effectiveness,” “easiness of use,” and “possibility of
independent use.” Our results proofed feasibility of expert inde-
pendent BCI-based communication using auto-calibration and
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underlined the strong benefit of predictive text directly integrated
into the spelling matrix.
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