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We present a biomimetic system that captures essential functional properties of the
glomerular layer of the mammalian olfactory bulb, specifically including its capacity to
decorrelate similar odor representations without foreknowledge of the statistical distri-
butions of analyte features. Our system is based on a digital neuromorphic chip consisting
of 256 leaky-integrate-and-fire neurons, 1024 × 256 crossbar synapses, and address-event
representation communication circuits. The neural circuits configured in the chip reflect
established connections among mitral cells, periglomerular cells, external tufted cells, and
superficial short-axon cells within the olfactory bulb, and accept input from convergent sets
of sensors configured as olfactory sensory neurons.This configuration generates functional
transformations comparable to those observed in the glomerular layer of the mammalian
olfactory bulb. Our circuits, consuming only 45 pJ of active power per spike with a power
supply of 0.85V, can be used as the first stage of processing in low-power artificial chemical
sensing devices inspired by natural olfactory systems.
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INTRODUCTION
Natural odor environments consist of complex, noisy, and high-
dimensional combinations of chemical features derived from
many different sources. Biological olfactory systems detect poten-
tial signals of interest in these environments, extract and classify
the relevant feature combinations, associate them with memories,
and determine appropriate responses. Insights into the physio-
logical and molecular mechanisms of signal transduction and
subsequent processing in the olfactory system have revealed much
about the algorithms with which neural circuits solve these com-
plex computational problems (Cleland and Linster, 2005, 2009;
Cleland, 2010), providing critical insights applicable to machine
olfaction.

The diagnostic feature of “artificial olfaction” within the larger
scope of chemosensor research has been the use of large arrays of
diverse, relatively non-specific primary sensors followed by some
form of pattern recognition to identify particular analytes based
on specific response patterns across the sensor array (Persaud
and Dodd, 1982). Presently, most artificial olfaction research is
focused on sensor technology; for example, metal oxide transistors
(Gonzalez-Jimenez et al., 2011), polymer-immobilized fluorescent
dyes (Dickinson et al., 1996), metalloporphyrins (Paolesse et al.,
2008), conductive polymer arrays (Beccherelli et al., 2010) and
fiber webs (Zampetti et al., 2011), and even carbon nanotube
transistors functionalized for diversity with single-strand DNA
(Staii et al., 2005) or by coupling to G-protein coupled recep-
tors (Goldsmith et al., 2011) have been developed to try and
increase the sensitivity and diversity of primary analyte detection

while reducing the costs and practical difficulties of deployment
(Hierlemann and Gutierrez-Osuna, 2008). Somewhat less atten-
tion, however, has been paid to the subsequent analysis of these
response patterns in artificial systems. Typically, activated sensor
arrays are analyzed using a variety of general pattern recogni-
tion algorithms (Gutierrez-Osuna, 2002). However, biomimetic
algorithms inspired by the olfactory bulb also have been devel-
oped for this purpose (reviewed in Marco and Gutierrez-Galvez,
2009), some implementing key biological features such as the
chemotopic convergence of multiple instances of a given sen-
sor onto a single circuit element and/or contrast enhancement to
improve the discriminability of similar analytes by decorrelating
their response patterns (Gutierrez-Galvez and Gutierrez-Osuna,
2006; Raman et al., 2006). Current in silico algorithms, however,
still lack many of the important capabilities of biological olfaction.
For example, none perform contrast enhancement in the native,
high-dimensional similarity space of an arbitrary chemosensor
array, but rather implement topographical (two-dimensional) lat-
eral inhibitory networks that are necessarily mismatched to these
similarity spaces. The high-dimensional, non-topographical con-
trast enhancement (NTCE) algorithm implemented here not only
enhances odor decorrelation while retaining sensitivity (Cleland,
2010; Cleland and Linster, 2012), but also supports the dynamic
regulation of contrast enhancement efficacy (Mandairon et al.,
2006; Chaudhury et al., 2009), potentially optimizing the degree
of decorrelation in service to a process of selective categorization
(Cleland et al., 2012). Additional operations such as limited con-
centration invariance, progressive adaptation to the statistics of
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the chemical environment, and the utilization of odor memory
also appear to be critical components of biological olfaction and
require post-transduction neural computations within the olfac-
tory bulb (Cleland and Sethupathy, 2006; Cleland et al., 2007, 2012;
Sultan et al., 2010). Implementation of these sophisticated bio-
mimetic algorithms should substantially improve the performance
and robustness of artificial chemosensory systems.

Artificial chemosensory systems are typically used in mobile
platforms where strict energy and real-estate budgets need to be
met. Therefore it is critical that low-power and low-area hard-
ware is developed to support the neural algorithms. Commod-
ity chip solutions [DSPs (Shi et al., 2006); GPUs (Nageswaran
et al., 2009); or FPGAs (Maguire et al., 2007)] are not natural
fits to the parallel and event-driven nature of neural computa-
tions. Specifically, these chips require high bandwidth to transmit
spikes effectively between processor and memory. To achieve real-
time performance, clock speeds are typically run in the gigahertz
range, leading to high power consumption that limits scaling. In
contrast, custom Very Large-Scale Integration (VLSI) implemen-
tations of large-scale biologically inspired neural networks enable
development of low-power, low-area, and highly scalable solu-
tions. These neuromorphic chips implement models of biological
neurons (Indiveri et al., 2011) and their networks (Scholze et al.,
2011) directly in silicon, and have been used in real-time and
low-power visual (Yu et al., 2005) and auditory (Liu et al., 2010)
systems. However, neuromorphic implementations of olfactory
bulb networks are relatively new (Koickal et al., 2006; Beyeler
et al., 2010), and do not yet incorporate the more sophisticated
algorithms described above.

In this paper, we present an implementation of glomerular-
layer circuitry from the mammalian olfactory bulb in a digital
neurosynaptic core (Merolla et al., 2011). The core operates with
ultra-low energy consumption by using event-driven asynchro-
nous circuits and a crossbar synapse array that efficiently imple-
ments large neural fan out. The mapping of the neural circuits
in the core is columnar, designed to be driven by an array of
sensors incorporating chemotopic convergence. That is, multi-
ple sensors of the same type converge onto each columnar circuit
(glomerulus), and different sensor types in the array drive dif-
ferent columnar circuits on the core. Chemotopic convergence
increases the signal-to-noise ratio, and thereby also increases the
sensitivity of the system. It also can enhance concentration invari-
ance (Cleland et al., 2012), an important necessity for sensor types
that, like olfactory G–protein coupled receptors themselves, have
relatively narrow concentration tuning ranges. The NTCE algo-
rithm (Cleland and Sethupathy, 2006) is then computed within
each columnar circuit, with competitive normalization computed
across columns (Cleland et al., 2007). Our implementation con-
sists of 48 columnar circuits, each incorporating 10 convergent
sensor inputs as well as all of the cell types necessary to produce
these functional transformations. The “secondary representation”
generated by this chip can be passed to higher-order biomimetic
neural circuits, or to standard pattern recognition engines, for
further transformation and analysis.

The paper is organized as follows: Section “Computations
of the Olfactory Bulb Glomerular Layer” describes the major
transformations of odor representations performed by the

mammalian olfactory bulb. Section “Materials and Methods” pro-
vides an overview of the chip and its configuration to repli-
cate glomerular-layer circuitry. Section “Results” illustrates the
functionality and the performance of the chip when driven by
patterned input representing the output of chemosensor arrays.
Section “Conclusion” discusses the scalability of the chip and
outlines some planned enhancements of the design to replicate
additional higher-level functions of biological olfactory systems.

COMPUTATIONS OF THE OLFACTORY BULB GLOMERULAR
LAYER
In biological olfaction, inhaled odorants associate with olfactory
receptors (ORs) expressed on the apical cilia of olfactory sen-
sory neurons (OSNs) that line the nasal cavity (a circuit diagram
depicting OSN projections and the olfactory bulb glomerular layer
is depicted in Figure 1). ORs are typical G-protein coupled recep-
tors, but are hugely diverse in their ligand selectivities; overall,
roughly 350 different functional ORs are expressed in humans,
and over 1000 in mice and rats. The range of odor ligand features
that bind to and activate a given OR constitute its chemoreceptive
field (aka molecular receptive range). The chemoreceptive fields
of different ORs overlap substantially, such that odors – even those
comprising only one type of molecule – will activate a substan-
tial fraction of the available ORs to a greater or lesser degree. It
is the combinatorial pattern across the set of receptors that forms
the basis for odor perception and identification, and, importantly,
the basis for odor similarity. Perceptually similar odors activate
a correspondingly greater number of common ORs, and evoke
more highly overlapping primary odor representations. However,
perceptual similarity is also substantially regulated by centrifugal
neuromodulatory inputs and by intrinsic learning (Cleland et al.,
2009; Mandairon and Linster, 2009), and mediated by the intrinsic
circuitry of olfactory bulb.

There are on the order of millions of OSNs in the nose, and
on the order of thousands of OSNs that express any given OR.
In mammals, the axons of OSNs that express the same OR selec-
tively converge together to a common glomerulus; consequently,
olfactory bulb glomeruli inherit the basic chemoreceptive field of
exactly one OR. Despite this uniformity, convergent OSN pop-
ulations are not necessarily identical in all ways. A hypothesized
diversity in receptor reserve levels among convergent OSNs may
be responsible for spreading out their concentration specifici-
ties, such that the glomerulus in aggregate enjoys a substantially
broader dynamic range across odorant concentrations than can
be achieved by any single OR (Cleland and Linster, 1999). This
is an important feature contributing to concentration invariance
in models of biological olfaction (Cleland et al., 2012), and which
could be implemented in some types of artificial chemosensor
arrays. Even in the absence of such diversity in ligand-receptor
dissociation constants, chemotopic convergence will improve the
signal-to-noise ratio within convergent populations and hence the
maximum odorant sensitivity measured at the glomerulus. The
chip described herein is configured to receive 10 convergent sensor
inputs per “glomerular” column.

On-center/inhibitory surround contrast enhancement has been
observed in mitral cells (second-order principal neurons; Figure 1)
along a trajectory of odor similarity (Yokoi et al., 1995). Critically,
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FIGURE 1 | Circuit diagram of the mammalian olfactory bulb

glomerular layer (two columns depicted). Olfactory sensory neurons
(OSNs), housed in the olfactory epithelium of the nasal cavity (OE), project
their axons into olfactory bulb. OSN axons expressing the same odorant
receptor type converge to form glomeruli (shaded ovals) on the surface of
the olfactory bulb, within which they interact with multiple classes of
olfactory bulb principal neurons and interneurons. Principal neurons
include mitral cells (Mi) and middle/deep tufted cells (often considered

together with mitral cells; not shown). Glomerular interneurons include
olfactory nerve-driven periglomerular cells (PGo), external tufted (ET)
cell-driven periglomerular cells (PGe), and multiple subtypes of ET cells;
both types of PG cells inhibit mitral cells. Superficial short-axon cells (sSA)
are not associated with specific glomeruli but project broadly and laterally
within the deep glomerular layer, interacting with glomerular interneurons.
GL, glomerular layer; MCL, mitral cell layer. Deeper layers of olfactory bulb
(Cleland, 2010) are not depicted.

such maps of similarity among the aggregate chemoreceptive
fields of all glomeruli in the olfactory bulb are intrinsically high-
dimensional. That is, if OR chemoreceptive fields are compactly
modeled (e.g., as hyperellipses), there are no low-dimensional
solutions to the problem of mapping all of these fields into
a common space such that all of their similarity relationships
(degrees of pairwise overlap) are respected. Consequently, the
glomerular layer does not contain a true map of odor similar-
ity or perceptual quality, but does comprise a lookup table of OR
chemoreceptive fields (Murthy, 2011). This becomes important
because decorrelation operations such as contrast enhancement
are similarity-dependent computations; that is, to sharpen an odor
representation, the contrast enhancement operation must oper-
ate within this high-dimensional similarity space such that the
“edges” of the odor representation are selectively inhibited. Two-
dimensional algorithms such as lateral inhibition are wholly inef-
fective in this environment (Cleland and Sethupathy, 2006), except
to the extent that disordered inhibition (which does not gener-
ate an inhibitory surround) can decorrelate such representations
by broadly reducing sensitivity (Cleland and Linster, 2012). In
the olfactory bulb, high-dimensional contrast enhancement arises
via an intra-glomerular, non-topographical computation based on
OSN input to mitral cells paired with feed-forward inhibition via
olfactory nerve-driven periglomerular (PGo) cells. Briefly, at lower

relative input levels (i.e., compared to the overall activity across
all glomeruli), the feed-forward inhibition dominates, inhibiting
mitral cells below baseline to generate the inhibitory surround.
At higher relative input levels, direct OSN excitation overcomes
PGo-mediated inhibition such that the mitral cell is excited by
the odor. The net effect is that the most highly excited mitral
cells are activated, whereas mitral cells that receive only mod-
erate levels of OSN input are selectively and disproportionately
inhibited, thereby generating surround inhibition in the native
similarity space of the sensor array. Importantly, from an artificial
systems perspective, this property enables contrast enhancement
to be performed on input from any arbitrary sensor comple-
ment without the need for sensor-specific programming. The chip
described herein replicates this functionality (Figure 9), while
replacing the shunting inhibition-based biological mechanism
with a low-power spike-based algorithm.

The NTCE algorithm requires global normalization to generate
relational representations. The existence of a normalization circuit
in olfactory bulb can be inferred in that, unlike OSNs, mitral cells
do not exhibit monotonic increases in activation as ligand concen-
trations increase, instead exhibiting a variety of profiles including
transitions from excitation to inhibition or vice versa. A com-
petitive normalization algorithm based on external tufted (ET)
cells, ET cell-driven periglomerular (PGe) cells, and superficial
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short-axon (sSA) cells has been proposed that delivers global feed-
back inhibition based on an estimate of aggregate input levels
computed without requiring all-to-all connectivity, essentially by
invoking small-world effects (Cleland et al., 2007; Cleland, 2010).
Briefly, the ET/sSA circuit integrates heterogenous activity level
across the layer and delivers a uniform level of excitation onto PGe
cells in each glomerulus, which in turn inhibit their co-glomerular
mitral cells. In the biological system, this circuit conserves vol-
ume and energy by reducing neuron numbers and interneuronal
connectivity density in the glomerular layer. Interestingly, in the
present implementation, normalization via a small-world distrib-
uted integrator based on these same cell types and circuits also
substantially reduces circuit footprint and power consumption
over that required by a global integrator.

Glomerular-layer circuits in the olfactory bulb transform raw
OSN input into a secondary odor representation, mediated by
mitral cells, upon which further transformations are performed by
subsequent circuits such as deep olfactory bulb, anterior olfactory
nucleus, and piriform cortex. The neuromorphic implementa-
tion of glomerular-layer circuitry described in subsequent sections
generates normalized output that enables a powerful and poten-
tially adjustable decorrelation of odor representations generated
by arbitrary sensor arrays and contributes substantially to resolv-
ing the extremely difficult problem of rejecting concentration-
dependent variance (Cleland et al., 2012). Subsequent operations
of the biological olfactory system, including the generation and
utilization of olfactory learning and memory as well as mecha-
nistic processes such as the regulation of spike timing, are not
implemented in the present design.

MATERIALS AND METHODS
CHIP ARCHITECTURE
The digital neurosynaptic core in the chip consists of 256 single-
compartment leaky-integrate-and-fire neurons, a 1024 × 256
crossbar synapse array, and communication circuits to transfer
spike trains (Figure 2). The crossbar array is freely configurable so
that arbitrary networks can be set up in the system. Each row of the
crossbar corresponds to an axon which is driven by off-chip sensor
arrays or by one of the on-chip neurons. Each column corresponds
to a dendrite of a particular neuron. A memory cell resides at each
intersection of a row and a column, and the state of this cell rep-
resents whether or not a connection exists between that particular
axon-dendrite pair. Hence, each neuron may receive up to 1024
synaptic inputs (via its dendrite) depending on the configuration
of the crossbar and the activity of the axons.

The dynamics of the core are driven by a discrete time step.
At each time step t, each axon j is presented with an activity
bit Aj(t ) driven by its input (off-chip sensor or associated neu-
ron). An axon can be one of three distinct types Gj that determine
the polarity and efficacy of the synapses it makes onto dendrites.
This information is stored in the crossbar memory along with the
state Wji (i.e., existence) of each row-column intersection. Each
postsynaptic neuron i weighs the synaptic input from axon j of

type Gj with a weight S
Gj

i that is configurable and can take inte-
ger values between −256 and +255. Thus, each neuron stores
three distinct (and configurable) weight values that it respectively
assigns to each of the three different types of synapses. This can,

for example, distinguish between a strongly excitatory, a weakly
excitatory, and an inhibitory synapse. Axon j therefore delivers the
following synaptic input to each neuron i:

Aj (t ) × Wji × S
Gj

i

In addition to the weights of the input synapses along their den-
drites, each neuron is also characterized by configurable leak L
and threshold θ values. At each time step, the neuron voltages are
updated as:

Vi (t + 1) = Vi (t ) − Li +
1024∑

j

[
Aj(t ) × Wji × S

Gj

i

]

If the updated voltage of a neuron exceeds its threshold θ, the
neuron emits a spike and resets its voltage to 0. The spike is sent
off-chip and may be routed back onto the axons of the core through
peripheral circuits. Neurons in the core communicate in this way.

EVENT-DRIVEN IMPLEMENTATION
We implemented the architecture using asynchronous quasi-
delay-insensitive (QDI; Martin, 1990) circuits that are globally
synchronized with a clock. The use of QDI circuits keeps the
dynamic power consumption of the core to a minimum during
periods of low spiking activity. The global synchronization ensures
strict correspondence between a neural algorithm running on the
hardware and an equivalent algorithm running in a software neural
network simulator. The period of the global clock is configured to
1 ms to enable the chip to operate in real-world environments.

Due to their use of physical primitives for computation, analog
circuits have traditionally been the popular method for imple-
menting low-power, small-footprint silicon neurons, whereas reli-
able digital circuits have been used for spike communication.
Dense analog circuits, however, are sensitive to fabrication process
variations, ambient temperature, and noisy environments, mak-
ing it difficult to configure functional circuits that operate reliably
under a wide range of external parameters. In contrast, our imple-
mentation is fully digital, making it completely deterministic by
design and functionally equivalent to neural networks coded in
software; that is, the activities of neurons in equivalent software
and hardware implementations are identical at every time step.
This greatly facilitates the design and configuration of specific
neural circuits, and contributes to reliable operations. Despite the
purely digital implementation, we were able to meet tight area bud-
gets by utilizing new fabrication technologies in which increasing
subthreshold currents and the lack of high-density capacitors ren-
der analog implementations even more difficult and unreliable.
Low-power budgets also were met by using event-driven QDI
circuits that drive active current only when useful computation
is taking place (Manohar, 2000). QDI circuits also are partic-
ularly robust because their correct operation is independent of
the timing parameters of the implementation. Consequently, they
remain operational under a wide range of voltage and tempera-
ture variations, making them ideally suited for mobile, embedded
systems.

Every block in the system carries out request-acknowledge
handshakes with its neighbors. An example sequence of events in
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FIGURE 2 |Top:The architecture of the neurosynaptic core. Each core
consists of an array of neurons, a crossbar array of synapses (bounded by
gray box) and AER receiver (decoder) and transmitter. Each junction in the
crossbar represents a potential synapse between an axon (row) and dendrite
(column). An example sequence of events in the core is illustrated. The AER

decoder accepts an incoming address event and activates axon 3 (A3) by
asserting the third wordline of the SRAM crossbar array. As a result, a
synaptic event of type G3 is delivered to neurons N1, N3, and NM. The AER
transmitter sends out the addresses of these neurons if they consequently
spike. Bottom: Parameters and state variables of the system.

the core is illustrated in Figure 2. The crossbar is constructed with
standard 6T SRAM cells. A receiver decodes axon addresses coming
in due to spikes from on-chip neurons or from external sensors,
and asserts the rows (or wordlines) of the crossbar one by one. An
axon event is thus expressed as the assertion of a wordline in the
memory array. This causes the synapse controllers to concurrently
communicate with neurons whose dendrites (crossbar columns)
have a connection with that particular axon (i.e., with the neurons
corresponding to the 1-s in the crossbar row). Along with the com-
munication of an axon event, type information Gj about the axon
also is sent to the neuron. The neurons are implemented with stan-
dard asynchronous control and datapath blocks that implement

the voltage updates. Spikes from the neurons are communicated
out of the core through efficient asynchronous address-event rep-
resentation (AER) transmitter circuits (Imam and Manohar, 2011)
that send out spiking neuron addresses through a multiplexed
channel. These addresses can be communicated out of the system,
or can be routed back to the crossbar array with an appropriate
axon address.

To ensure that the operation of the hardware after every time
step is equivalent to a software simulation running the same neural
algorithm, we divide the neuron and synapse updates into two
phases. The positive edge of a global synchronization clock (“Sync”
in Figure 2) initiates the first phase of operation. In this phase, the
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axons are asserted one by one and synaptic information is deliv-
ered to the neurons. The negative edge of the clock initiates the
second phase of operation, during which the neuron voltages are
updated and spikes are communicated out of the system or routed
back to the AER receiver. The order in which spikes arrive at the
core or are sent out of the core can be variable due to resource
arbitration in the communication circuits. By first accounting for
all the synaptic events and then checking for spikes in the neu-
rons, we ensure that the hardware is in lockstep with an equivalent
software simulation.

The core was fabricated in a 45-nm CMOS SOI process. To
test it, we built a custom printed circuit board (Figure 3) that
can interface with virtual and real environments through a USB
link. This link also enables us to configure the parameters of the
neurons and synapses in the core. The chip consumes only 45 pJ
of active power per spike, and produces 1–1 correspondence with
neural algorithms running on a software simulator (Merolla et al.,
2011).

NETWORK CONFIGURATION
The crossbar states and neuronal parameters were configured to
replicate the connections among neurons in the glomerular layer
of the mammalian olfactory bulb. A glomerular column in the
core was represented by configuring five neurons (corresponding
to mitral, PGo, ET, PGe, and sSA cells) and their interconnections
(via the crossbar) according to the circuit diagram of Figure 1. This
enabled 48 columns to be implemented on one core with each row
of the 16 × 16 neuron array consisting of 3 glomerular columns.
The crossbar was also configured such that a glomerular column
would receive input from 10 convergent sensor inputs. Notably,
in part because of the non-topographical architecture and small-
world normalization schemes, the system is readily scalable both
in terms of the numbers of neurons and synapses per core and in
terms of the number of cores.

In lieu of actual sensors, we simulated the presentation of odors
with 48-dimensional combinatorial activity patterns, each dimen-
sion representing the level of activation of one sensor type. Each of
these input dimensions was mediated by 10 OSNs, each capable of
an arbitrary number of activation levels represented by stochastic
spike rates. The presence of a particular odorant was simulated

with a characteristic pattern of relative activation levels of the sen-
sors. The sensors were assumed to be broadly tuned and sensitive
to concentration, each responding with a specific intensity to an
odorant and each showing monotonic rise in activity as the con-
centration of the odorant increased. The OSNs were assumed to
reside outside of the core and to provide spiking input to the core
through the rows of the crossbar. The 10 inputs associated with
the same sensor type were implemented homogeneously and pro-
jected convergently to the same glomerular column as depicted
in Figure 4. The activation of a sensor was simulated by send-
ing AER packets (“spikes”) into the core (to address the crossbar
rows associated with the sensor) at a frequency corresponding
to the activation level. At each time step, sensors that were highly
responsive to a presented odorant had a higher probability of send-
ing in AER packets into the core, compared to sensors that were
less responsive. Consequently, any sensor that can be configured
to output AER packets at a frequency proportional to its activation
level can be used effectively with this chip.

The internal connections of each glomerular column were
implemented by routing the spikes sent out of the core back to
axons that connected to the appropriate column of the cross-
bar. For example, the reciprocal connections between mitral and
PGo cells are illustrated in Figure 5. In biological olfactory bulbs,
PGo cells short-circuit excitatory currents that are synaptically
evoked in a mitral cell and thereby shunt the effects of OSN excita-
tion. However, in our system, neurons only communicate through
spikes. We replicated the effects of this shunt inhibition by config-
uring each mitral cell such that the activity of a spiking inhibitory
PGo cell is integrated to shut down the effects of subsequent exci-
tation that the mitral cell receives from the OSNs. The PGo cells
were configured such that their spike rates saturated above a cer-
tain OSN activation level, ensuring that higher OSN activation
levels will overpower PGo inhibition and enable excitation of the
mitral cell. Setting the saturation level of the PGo cells is one way
in which the degree of contrast enhancement can be adjusted in
this circuit.

The dense lateral network formed by ET and sSA cells has
small-world-like connectivity (Cleland et al., 2007; Cleland, 2010;
Figure 6A). This enables the integration of activity across the
glomerular layer at a fraction of the energy and volume costs
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FIGURE 3 |The fabricated chip on the test board. Spike events are sent to a PC via a USB 2.0 link and may also be routed back to the chip.
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FIGURE 4 | Crossbar connectivity depicting the convergence of OSNs

expressing the same receptor type to the same glomerulus. A total of
48 distinct glomerular columns are implemented in one core.

FIGURE 5 |The reciprocal connections between mitral and PGo cells.

Spikes from the mitral or PGo cell are sent off-chip by the AER transmitter
and routed back to the appropriate axon. The mitral cell is configured so that
a “10” type synapse is given a negative weight during synaptic integration.
The spike of a PGo cell is routed to its axon in the crossbar which is
configured to have a “10” type connection to inhibit the mitral cell.
Similarly, the PGo cell is configured so that a “01” type synapse is given a
positive weight. The mitral cell axon produces this type of synapse with the
PGo cell to excite it.

that would have been incurred with all-to-all connections. We
followed this insight to configure an ET/sSA network in our chip
(Figure 6B). The projection topology was sparse – a total of 10 sSA
cells projected axons to a given glomerular column – and reflected
a scaled version of the actual connectivity profile observed in the
mouse olfactory bulb (Aungst et al., 2003). While the physical
proximity of glomerular circuits on the chip is computationally

irrelevant, for illustrative purposes we utilized their locations to
organize the distribution of connectivity to resemble that of the
ET/sSA network. Specifically, around 50% of the 10 sSA inputs
arose from glomerular columns located more distant than two
rows away in the two-dimensional neuron array, while around
20% arose from columns more than five rows away. An sSA
axon branched to contact 10 different columns while its dendrite
received input from the ET cells from the same row. We determined
appropriate synaptic weights for the ET/sSA network by sweeping
through a range of parameters and measuring the normalized
Euclidean distance between the chip output and a z score normal-
ization term produced by the same input pattern (Cleland et al.,
2007). The z score was computed as [zi = (xi − μx)/σx], where
μx was the mean of the synaptic inputs and σx was the standard
deviation. The synaptic weights that minimized the normalized
Euclidean distance were used.

In all cases, mitral cell spike trains constitute the output of the
present system.

RESULTS
CHEMOTOPIC CONVERGENCE
With 48 glomerular columns, each receiving input from a distinct
type of chemosensor, combinatorial representation in principle
can represent a large number of different odorants. For example,
if the chemosensors each have m distinct activation levels, then
m48 separate odors can be represented in a single core. Noise in
the chemosensors can be partially compensated by the conver-
gence of multiple sensors of the same type onto one glomerulus,
increasing the signal-to-noise ratio as well as the maximum sen-
sitivity to low-concentration odorants. Consequently, the output
of glomerular circuitry can offer a considerably more robust and
reliable representation of low-concentration odors than can indi-
vidual chemosensors. An example measurement from the chip is
shown in Figure 7. We here define the signal-to-noise ratio as
the number of spikes induced by odorant presentation divided by
the total number of spikes (i.e., activity due to the stimulus plus
background activity) during the presentation interval.

NON-TOPOGRAPHICAL CONTRAST ENHANCEMENT
The connections between PGo and mitral cells (see Figure 1)
sharpen the secondary representations of odors as described in
Section “Computations of the Olfactory Bulb Glomerular Layer.”
Mitral cell spike patterns measured from the chip confirm that
feed-forward inhibition by PGo cells indeed can yield output
that is more precisely tuned to specific odorants than are the
broad primary representations mediated by OSNs (sensors). This
chemotopic contrast enhancement is illustrated in Figure 8A. We
represented the presence of an odor by externally driving OSN
inputs such that a few had high spike rates (depicting strongly
responsive chemosensors), some had moderate spike rates (depict-
ing moderately/weakly responsive chemosensors), and some did
not increase their spiking over the background rate (depicting
insensitive chemosensors). As shown in the figure, those mitral
cells corresponding to the most strongly activated OSNs increased
their spiking activity, while those corresponding to the mod-
erately/weakly activated OSNs shut down, resulting in a sharp
population tuning curve. As illustrated in Figure 8B, this reduction
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A B

FIGURE 6 | Normalization of the total activity of mitral cells via the

ET/sSA network. (A) Illustration of the lateral connectivity of sSA cells.
Glomeruli receive inputs from the axons of multiple sSA neurons located at a
characteristic distribution of distances away. These axons branch extensively,
although for clarity this is not shown. The sSA neurons receive synaptic input
from ET cells in a small number of immediately neighboring glomeruli
(depicted as the gray dendrites of the black sSA cells). Figure adapted from
Cleland (2010). (B) Crossbar connectivity in the chip to replicate the

normalization effects of the ET/sSA lateral network. Each sSA neuron receives
input from ET cells from the same row. The PGe and ET neurons of each of
the 48 columns receive input from 10 sSA neurons, most of which are located
in neighboring rows, but some of which are more than five rows away. Spikes
generated by an sSA neuron are routed to its axon in the crossbar which
synapses with the PGe and ET cells of 10 different glomeruli. The outputs of
the PGe and ET neurons also are routed to their axons in order to make the
appropriate inter- and intra-glomerular connections (see Figure 1).

FIGURE 7 | Chip data illustrating the enhanced signal-to-noise ratio

(SNR) in a mitral cell compared to an OSN. A constant
low-concentration odor was presented between 30 and 50 ms (solid
black line). This increases the spiking probability of individual OSNs
during one time step (1 ms) from 0.1 to 0.15. Background spiking is

depicted by open circles; additional odor-evoked spikes are depicted by
solid black dots. Since multiple OSNs converge on one mitral cell, mitral
cell activity during the stimulus period exhibits a significant increase over
its background level. The signal-to-noise ratio in an OSN is 0.3 while that
in the mitral cell is 0.8.

in the overlap of the combinatorial representations of similar ana-
lytes creates a sharply decorrelated set of odor representations. The
basic decorrelation function is illustrated in Figure 9.

CONCENTRATION INVARIANCE
Figure 10 illustrates the normalizing effects of the ET/sSA cell
network on the activity of mitral cells in the chip. The uniform
level of activation integrated by this network excites PGe and ET
cells in all glomeruli and thereby uniformly inhibits all mitral
cells in proportion to the global average level of OSN activation.
This process generates a relational representation among mitral
cells in which the relative (rather than the absolute) pattern of

activity best represents the identity of an odor and also helps to
preserve recognizable odor-specific activity patterns across con-
centrations (concentration invariance). This normalization also is
necessary for NTCE to function across different concentrations.
Optimal concentration invariance still will be limited by sensor
non-linearities and ultimately may be improved by an adaptive
algorithm as discussed in Cleland et al. (2012).

The ET/sSA network is sparsely connected and fairly localized
in its projection topology (see Network Configuration). However,
the axonal profiles of this network contain sufficient long-range
projections to evoke small-world effects (Watts and Strogatz,
1998). As a result, this sparse, localized connectivity profile is
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A

B

FIGURE 8 | Chip data illustrating contrast enhancement. (A) An odor with
a constant concentration was presented at the 200-ms time point, and
persisted till the 500-ms time point (solid black line). As an illustration, the
spiking activity (vertical bars) of seven mitral cells in response to the odor is
shown. The mitral cells receiving input from OSNs that most strongly respond
to the odor exhibit increased activity whereas those receiving input from
weakly responsive OSNs are inhibited below baseline, such that they are less
active even than completely insensitive mitral cells (see Figure 9). The activity
patterns of the mitral cells shown are presented in a one-dimensional,
two-tailed chemotopic arrangement for illustrative purposes; see Cleland and
Linster (2012) for a high-dimensional illustration. The mitral cell depicted in the

fourth row received input from the OSNs that responded most strongly,
whereas the mitral cells depicted in the rows above and below it received
progressively weaker OSN activity. The result is a sharply tuned population
tuning curve (in blue) with a distinct inhibitory surround (the spike count is for
the duration of the stimulus). (B) The representation of two different odors
(two peaks) by a population of mitral cells (distributed along the abscissa in a
one-dimensional chemotopic ordering for illustrative purposes).
Non-topographical feed-forward (PGo) inhibition generates an inhibitory
surround and reduces the overlap of the two combinatorial odor
representations (solid line) compared to the overlap that would occur in the
absence of PGo inhibition (dashed line).

FIGURE 9 |The contrast enhancement function in mitral cells on the

chip in response to sensor inputs. Mitral cells corresponding to
moderately activated sensors are predominantly inhibited (reducing the
spike rate of some cells to nearly 20% below baseline activity) by
feed-forward PGo inhibition (moderate activation), whereas mitral cells
excited by strongly activated sensors overcome the saturated PGo inhibition
and exhibit net excitation (strong activation). The leak portion of the
“inhibition + leak” curve represents charge leakage out of the cell between
successive excitatory spikes received from OSN inputs, and therefore is
inversely related to the activity of the OSNs. For strongly activated sensors,
the excitation delivered to the mitral cells is of sufficiently high frequency to
overcome the combined effects of PGo inhibition and the leak current.
Figure adapted from Cleland and Sethupathy (2006).

functionally equivalent to all-to-all connectivity while conserv-
ing substantial energy and space. We investigated the efficacy of
this algorithm by varying the synaptic density of the sSA cells and

observing the variance in their activities across the chip while mea-
suring the power consumption for different connectivity profiles.
The connectivity distribution took the form

Pij = Pofgauss
(
dij ; 0, R

)
,

where Pij is the probability of a synaptic connection between
glomerular column i and sSA j, Po is a baseline probability factor,
fgauss represents a gaussian distribution (parameterized by vari-
ance R), and dij is the distance between the glomerular column
and the sSA cell. By varying Po and R, we changed the synaptic
density and the projection distance of each sSA cell. An increase
in either of these parameters increased the amount of excitation
that each glomerular column receives from sSA cells. In order to
observe only the effects of changing the connection distribution
of the network and not changes in its overall strength, we reduced
individual synaptic weights in proportion to the increase in con-
nectivity. The coefficient of variation (CV) of sSA activity across
the chip provides a measure of how uniform the network activity
is, and consequently, the efficacy of the normalization process. We
performed this analysis for several different odor-activated sensor
patterns and averaged the results. When the average number of sSA
inputs per glomerulus is low (0 in the extreme case of a completely
isolated glomerulus), the CV is large, reflecting the heterogenous
activation levels of different glomeruli. The CV converges rapidly
to an asymptotic minimum as the density of sSA connections is
increased (Figure 11; also see Cleland et al., 2007) The connectivity
profile depicted by the vertical dotted line in Figure 11 (repre-
senting an average of 10 sSA inputs per glomerulus) substantially
reduced energy consumption while generating approximately the
same CV for sSA activity as that achieved by a fully connected
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A

B C

FIGURE 10 | (A) With the ET/sSA network off, mitral cell population
activity increases monotonically in proportion to input intensity (odor
concentration, [C]). The spikes of those mitral cells that are most sharply
tuned to the presented odor are depicted in red and indicated by red
arrows; additional, weakly activated mitral cells also are recruited in to the
active ensemble as concentration increases. With the ET/sSA network on,
aggregate mitral cell population activity remains largely independent of
concentration. Odor identity is represented by the profile of the most
sharply tuned mitral cells, and their relative activities remain essentially
stable after normalization. (B) Quantification of the normalizing effect of
the ET/sSA network. Spiking activity of mitral cells that are moderately or
poorly tuned to a given stimulus (i.e., the count of all black marks in the
raster of (A), excluding the spikes from sharply tuned neurons as denoted

in red) was plotted against odor concentration. The inhibitory effects of the
ET/sSA network limit or prevent firing in more weakly tuned mitral cells,
such as those that are recruited only at higher odor concentrations. At high
concentration the normalizing effects reduce the spike count by as much
as 80%. (C) Effects of ET/sSA network normalization on contrast
enhancement. Contrast was calculated as the total number of spikes in
the most strongly tuned neurons divided by the total number of spikes in
the population. With the ET/sSA network disconnected (top), the
recruitment of weakly tuned mitral cells by elevated odor concentrations
prevents improvements in contrast across mitral cell population activity.
With the ET/sSA network active (bottom), increases in concentration result
in net inhibition of marginally activated neurons, increasing the contrast
between them and the most strongly activated neurons.

ET/sSA network. Good normalization results were obtained for
sSA densities as low as four inputs per glomerulus. These results
demonstrate that a small-world network on the chip can achieve
close to the maximum normalization quality using up to 10 times
less energy compared to an all-to-all network. As we scale the sys-
tem (through multiple cores), this effect will become increasingly
significant, since all-to-all ET/sSA connectivity at larger scales
would consume an increasingly disproportionate share of chip
resources.

CONCLUSION
We have presented the design of a low-power neuromorphic chip
and have configured it to replicate the connectivity and functional

transformations of the glomerular layer of the mammalian olfac-
tory bulb. The architecture that we presented is both scalable
and practically extensible in that the 48 glomeruli of each core
are designed to communicate efficiently with the glomeruli of
other cores. With multiple cores in a chip and the utilization of
multiple chips in an operational system, this architecture could
approach and even surpass the numbers of neurons and synapses
in biological olfactory pathways.

This chip is designed to receive a primary olfactory repre-
sentation comprised of spike trains generated by broadly tuned,
concentration-sensitive sensors. With m distinct activation levels
of each sensor, m48 different odors can in principle be represented.
The convergence of 10 distinct sensors of the same type to one
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FIGURE 11 |The sparse connectivity of the ET/sSA network on the chip

is functionally equivalent to a fully connected network, but carries out

global normalization at a reduced energy cost. The abscissa is a
measure of the density of sSA connections, bounded by the extremes of a
fully isolated network at x = 0 and an all-to-all interconnected network at
x = 48. The primary ordinate (left) denotes the coefficient of variation
(CV% – the standard deviation as a percentage of the mean) of sSA activity
across the sSA population. Low CVs indicate high uniformity in sSA activity
across the network. The secondary ordinate (right) denotes the energy
consumed in the chip (at its present scale) by updating all synaptic inputs
when sSA neurons spike. Denser interconnectivity requires more energy.
The dotted vertical line denotes the density of sSA innervation presently
implemented in the chip. This reasonably optimized solution corresponds
directly to that which appears to be implemented in mouse and rat
olfactory bulbs (cf. Figure 5B in Cleland et al., 2007).

glomerulus increases the signal-to-noise ratio from 0.3 in the sen-
sors to 0.8 in the mitral cells. NTCE results in moderately tuned
mitral cells to be inhibited as much as 20% below their baseline
spiking activity, thereby sharpening the tuning curves of the mitral
cell population. Global normalization of mitral cell activity results
from the effects of small-world connectivity in the ET/sSA net-
work. The connectivity profile of this network follows a gaussian
distribution with the connection probability between ET cells and
sSA cells larger for cells closer to each other in the physical lay-
out of the chip. With a connectivity profile corresponding to 10
sSA inputs per glomerulus, global spike count reduces by as much
as 80% while largely preserving the activity of the most strongly
responsive mitral cells. The CV of sSA activity in this network is
within 5% of that in an all-to-all connected ET-sSA network while
consuming six times less energy. By making the ET/sSA connec-
tion sparser, the energy consumption could be reduced to 10 times
lower than that in a fully connected network, while keeping the CV
within 10%.

As a result of the transformations in the chip, the secondary
representation generated across mitral cell spike trains exhibits
an improved signal-to-noise ratio, and is sharply tuned and nor-
malized with respect to the global activity. Output representations
from the chip (illustrated in Figure 12) can be further processed,
analyzed, and/or classified by standard pattern recognition engines

FIGURE 12 | Mitral cell population activity in the chip in response to

the presentation of four different odors. This activity constitutes the final
output of the system in its present configuration. Spiking patterns from 24
of the 48 mitral cells on the chip are depicted. Odorant concentration [C]
was modulated as depicted at the bottom of the figure. Compared to the
primary representation of the chemical environment by the broadly tuned,
concentration-sensitive population of simulated sensors driving the chip,
this secondary representation is more sharply tuned, normalized, and
exhibits an increased signal-to-noise ratio. For final odor identification and
discrimination, this output activity can be sent to a standard pattern
recognition engine, or to biomimetic circuits representing higher
processing stages in olfactory pathways.
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running in parallel with our system, or by another neuromorphic
circuit (e.g., based on a new configuration of the present system)
that replicates some functions of higher processing centers in bio-
logical olfactory pathways, such as the perceptual learning and
higher-order feedback mechanisms exhibited by the in vivo olfac-
tory system. Importantly, such neuromorphic implementations of
subsequent layers of olfactory processing (e.g., the external plex-
iform layer of the olfactory bulb) are likely to require adaptive
plasticity in synaptic weights and/or neuronal properties. The
experience-dependent transformation of odor representation is
likely to be a powerful technique for selectively grouping regions of
olfactory variance into “odors” in accordance with the similarities
of their implications. Such dynamic remapping of the connections

within the chip (Sun Seo et al., 2011) can be achieved by enabling
the neurons to change the state of the crossbar during run-time
based on plasticity rules such as spike timing-dependent plasticity
(Dan and Poo, 2006; Linster and Cleland, 2010).
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