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This article presents the method that won the brain-computer interface (BCI) competition
IV addressed to the prediction of the finger flexion from electrocorticogram (ECoG) signals.
ECoG-based BCIs have recently drawn the attention from the community. Indeed, ECoG
can provide higher spatial resolution and better signal quality than classical EEG recordings.
It is also more suitable for long-term use. These characteristics allow to decode precise
brain activities and to realize efficient ECoG-based neuroprostheses. Signal processing is a
very important task in BCIs research for translating brain signals into commands. Here, we
present a linear regression method based on the amplitude modulation of band-specific
ECoG including a short-term memory for individual finger flexion prediction. The effective-
ness of the method was proven by achieving the highest value of correlation coefficient
between the predicted and recorded finger flexion values on data set 4 during the BCI
competition IV.
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1. INTRODUCTION
The goal of brain-computer interface (BCI) research is to reinstall
control and communication capabilities for people with severe
motor disabilities by translating brain signals into commands for
a computer application or a neuroprosthesis (Wolpaw et al., 2002).

The neural electrophysiological signals currently being stud-
ied in the BCI domain ranges from electroencephalogram (EEG),
electrocorticogram (ECoG), to local field potential (LFP) and
single-unit activity/multi-unit activity (SUA/MUA). These differ-
ent types of brain signals have their own characteristics and there
is still controversy on the type of signals which is the most suitable
for the BCI applications.

Electrocorticogram electrodes are placed over the surface of
the cortex with typically 1 cm inter-electrode distance (Asano et al.,
2005). On the one hand, ECoG provides a higher spatial resolution,
a higher signal quality, and is more suitable for long-term use than
the classical scalp EEG recordings. On the other hand, ECoG is less
invasive than intracortical recordings like LFP, SUA/MUA which
by far are used in a few BCI systems with human beings (Kennedy
et al., 2000, 2004; Hochberg et al., 2006; Chadwick et al., 2011). By
recognizing the merit of ECoG recordings, several groups of BCI
researchers have carried out tests on the efficiency of using ECoG
as control signals for human BCIs (Chin et al., 2007; Schalk et al.,
2007; Pistohl et al., 2008; Sanchez et al., 2008).

Spatial resolution plays an important role in BCI (Sanchez et al.,
2008). The fine spatial resolution of ECoG provides a better oppor-
tunity for directly decoding brain activities. Therefore, it is possible
to implement direct neural interfaces which are difficult to be
accomplished through EEG-based BCIs.

To study the usability of ECoG in BCIs, several research groups
had recorded ECoG signals from the participants while they are

performing certain kind of tasks related to the brain functional
areas where the electrode arrays had been implanted. The tasks
include center-out reaching or pointing task (Sanchez et al., 2008),
grasping (Acharya et al., 2010), individual finger flexion [(Kubánek
et al., 2009; Wang et al., 2010; Flamary and Rakotomamonjy, 2012)
or (Acharya et al., 2010; Wang et al., 2011b)], and cursor trajectory
(Schalk et al., 2007; Pistohl et al., 2008).

This paper describes the method we proposed to contribute to
the ECoG data set from the BCI competition IV, which was ded-
icated to the task of decoding individual finger flexion in 2008.
More precisely, for decoding individual finger flexion from ECoG,
we noticed that a simple linear regression model of amplitude
modulation (AM) of band-specific ECoG signals was efficient
(Sanchez et al., 2008). Moreover, we made contribution to this
method in two ways: firstly, we replaced the inverse operator in the
solution of the linear model by the pseudo-inverse operator that
should improve the stability of the model; secondly, we proposed
to use a forward feature selection procedure to select the relevant
frequency bands and electrodes (Langley, 1994). This method won
the competition.

2. MATERIALS AND METHODS
2.1. BRAIN-COMPUTER INTERFACE COMPETITION IV – DATA SET 4
The task for data set 4 in BCI competition IV was to predict the
finger flexion from ECoG recordings.1 Detail description about
this data set can be found in Miller and Schalk (2008). Here, we
only provide a brief summary.

This data set contains data for three subjects who were epilep-
tic patients under surgical planning. Each subject had an electrode

1The dataset is accessible through http://www.bbci.de/competition/iv/
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array placed subdurally on the surface of the brain in order to iden-
tify the epileptic focus. Each subject gave consent to participate in
the recording experiments. While he/she performed a finger flex-
ion task, the corresponding ECoG signals and the finger flexion
time courses were recorded simultaneously. The electrode array
was arranged in 8× 6 or 8× 8 grid (n.b., the exact location of
the electrodes was unknown to the competitors because the elec-
trode order had been scrambled during the preparation of this
data set). There were 62, 48, and 64 channels for subject 1, 2, and
3, respectively.

Subjects were asked to flex a particular finger according to a
visual cue (e.g.,“index”) on a computer monitor. Typically for each
cue, the subjects flexed the finger 3–5 times lasting 2 s followed by
a rest period of 2 s. There were 30 movement for each finger result-
ing in 600-s recordings for each subject. The first 400-s recording
were used as training set and the last 200-s recording used as test-
ing set. Off-line analysis of the finger flexion time courses revealed
that the movements of the last three fingers (i.e., middle, ring, and
little fingers) were correlated in a considerable way.

The ECoG signals were recorded through the general-purpose
BCI system BCI2000 (Schalk et al., 2004), bandpass filtered
between 0.15 and 200 Hz and sampled at 1000 Hz. The finger
movements were recorded using a dataglove and sampled at 25 Hz.
Figure 1 provides an example of the visualization of the ECoG
signals and the corresponding finger movement time course from
subject 1. Due to space limitation, only a subset of ECoG electrodes
is displayed. The correlation coefficient between the predicted and
actual finger flexion time course has been used as the evaluation
criterion for this data set in the competition.

2.2. METHODS
2.2.1. Pre-processing
2.2.1.1. Band decomposition. The evidence of sensorimotor
ECoG dynamics has been reported in several specific frequency
bands including slow potentials, sub-bands (1–60 Hz), gamma
band (60–100 Hz), fast gamma band (100–300 Hz), and ensemble
depolarization (300–6k Hz) (Sanchez et al., 2008). Therefore, for
this data set, the band-specific ECoG signals were generated using
equiripple finite impulse response (FIR) filters by setting their
band-pass specifications as: sub-bands (1–60 Hz), gamma band
(60–100 Hz), and fast gamma band (100–200 Hz; n.b., consider-
ing the frequency content available in this data set, the fast gamma
band was defined up to 200 Hz and the ensemble depolarization
frequency band had not been taken into account). Therefore for
each channel, raw ECoG signals were decomposed into three sets
of band-specific ECoG signals.

2.2.1.2. Amplitude modulation. Being inspired by the rate cod-
ing approach used in spike train decoding, Sanchez proposed
a band-specific AM as the descriptor for ECoG signal decod-
ing, which is defined as the sum of the square voltage of the
band-specific ECoG signals v in a time window ∆t :

x (tn) =

∆t∑
t=0

υ2 (tn + t ) (1)

where ∆t = tn+1− tn. We simply let ∆t = 40 ms such that the
resulting band-specific AM features have the same sampling rate
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FIGURE 1 | For illustration purposes only, ECoG signals from channel 46 to 50 (at the top) and the corresponding movement time courses for each
finger (at the bottom) for the first 60 s of the training data set from subject 1 are displayed.
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(i.e., 25 Hz) as that of the dataglove position measurements. For
each set of band-specific ECoG signals v, we applied equation (1)
to estimate the band-specific AM features.

2.2.1.3. Feature selection. Since the ECoG electrode array cov-
ered quite a large zone of cortical area, only a subset of electrodes
was correlated to the task. Moreover, we had no prior information
about which frequency band contributed more than the other.
Therefore, for each finger and each subject, we use a forward fea-
ture selection procedure in a wrapper approach (Langley, 1994) to
identify relevant AM features (i.e., good channel/frequency band
couples). The whole set of AM features equals to 186, 144, and
192, respectively, for subject 1, 2, and 3 whose had 62, 48, and 64
channels (for three frequency bands). According to the forward
selection procedure, we started from the empty set adding one
by one the feature that improves the most the correlation among
the remaining set of features. So, this procedure is suboptimal
but the exhaustive procedure which tests all possible subsets is
very time consuming here. Feature selection has been achieved
and evaluated by splitting the original training set into a train-
ing set (3/5) and a validation set (2/5). The stopping criterion
is satisfied when the correlation coefficient for the validation set
does not increase or when a user predefined maximum num-
ber of features is reached (e.g., 10 for the results presented in
Figures 2 and 3).

2.2.2. Linear regressor model
The relationship between the features and the target signals or the
interaction between features was not clear for this case. We sim-
ply applied a linear model as a decoder for its robustness property.
Although, we noticed that other advanced methods have been used

for ECoG signals decoding, for example, the Kalman filter (Pistohl
et al., 2008), this method is not suited for our case because it needs
a finger model which we do not have. The linear model we used
here takes the following form:

d (tn) = W T
Ex (tn) (2)

where d is the finger position as measured by the dataglove.
Ex(tn) is the short-term memory AM feature vector Ex(tn) =

[x(tn)x(tn−1) . . . x(tn−k)]
T . k is the number of values stored. The

best results have achieved when k = 25. The coefficients W of the
model are trained with the Wiener solution:

W = E
(
ExT
Ex
)−1

E
(
ExT d

)
(3)

where E is the expected mean. In order to improve the stability for
estimating the coefficients of the Wiener model, we replaced the
inverse operator in equation (3) by the pseudo-inverse operator.

3. RESULTS
First, we present the feature selection results. For the feature selec-
tion procedure as described in Section 1, we stop the forward
selection when the number of cycles is equal to 10 or when the
correlation coefficient for the validation set does not increase.

Figure 2 gives an example on the evolution of the feature selec-
tion procedure for the index finger of subject 1. We found that
there is no evident increment of the testing correlation coefficient
by increasing the number of features after the first four features
have been selected.
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FIGURE 2 | Evolution of the performance for the index finger of subject 1
according to the number of features given by the forward feature

selection procedure. For each step, the three bars from left to right represent
the correlation coefficient for the training, validation, and test set, respectively.
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FIGURE 3 |The X -axis shows the first 10 most relevant selected
features, from left to right. Each feature is indicated by two elements:
channel index and frequency band (1, sub-bands; 2, gamma band; and 3,

fast gamma band). The Y -axis indicates the correlation coefficients of
training, validation, and test set, respectively, regarding each feature
individually.

Table 1 |The prediction performance of the methods (with and without band-specific features) is provided in terms of correlation coefficient

between the predicted and recorded finger movement for each finger and subject.

Subj. Method Thumb Index Middle Ring Little Av.

1 ECoG 0.00 0.13 0.01 0.22 0.06 0.08

Band-specific ECoG 0.58 0.71 0.14 0.53 0.29 0.45

2 ECoG 0.26 0.28 0.19 0.34 0.15 0.25

Band-specific ECoG 0.51 0.37 0.24 0.47 0.35 0.39

3 ECoG 0.40 0.25 0.31 0.29 0.27 0.31

Band-specific ECoG 0.69 0.46 0.58 0.58 0.63 0.59

Av. ECoG 0.22 0.22 0.17 0.28 0.16 0.21

Band-specific ECoG 0.59 0.51 0.32 0.53 0.42 0.48

The last column represents the correlation coefficient value averaged over all fingers; The last two rows represent the correlation coefficient value averaged over all

subjects. Using the band-specific ECoG approach, all p-values of a paired t-test were less than 10−4.

Figure 3 gives another point of view on the feature selection
for the same subject and finger. This Figure emphasizes the indi-
vidual prediction power of each feature selected during the first
10 cycles. Looking at the first three features, we learn that channel
1 was very useful (with two bands selected) and channel 40 was
complementary. Last three features had lesser contribution to the
task of decoding finger flexion.

Observing the 10 most relevant selected features over the 15
possible studies (three subjects× five fingers), we noted that they
mainly characterized information in the gamma band (1–60 Hz:
27%, 60–100 Hz: 44%, and 100–200 Hz: 29%).

Next, we summarized the prediction performance of this
method using the testing dataset in terms of correlation coef-
ficient between the predicted and recorded finger movement

in Table 1.2 In order to highlight the effect of frequency-
specific decomposition, the results based on the original ECoG
signals (i.e., without band-pass filtering) are also provided for
comparison.

From Table 1, we observed that the method based on band-
specific AM features obtained better performance than the method

2The last element in Table 1 indicates the correlation coefficient value averaged
over all fingers and subjects for the method based on band-specific ECoG, which
is slightly different from the result of value 0.46 announced in the competition
(http://www.bbci.de/competition/iv/results/index.html#dataset4) because ring fin-
ger was removed from the evaluation in the competition due to the finger movements
of ring finger, through off-line inspection, were quite correlated with middle finger
and little finger.
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FIGURE 4 |Time course of the predicted (solid red) and actual (dash blue) finger flexion for the first 60 s of the testing data set from subject 3.

using the original ECoG signals (i.e., without band-specific filter-
ing). It explains that the decoding square voltage of brain signals
lies in certain frequency bands and other frequency bands are more
likely to be background noise.

We also provided in Figure 4 an example for the predicted
finger movement for subject 3 using the method based on band-
specific ECoG AM features. For comparison, the corresponding
time course of the recorded finger movement is plotted in the
same figure.

4. DISCUSSION
This article presents the method that won the BCI competition
IV addressed to the prediction of the finger flexion from ECoG
signals. This method used a linear decoding scheme based on
band-specific AM for decoding individual finger flexion from
ECoG signals in humans. The correlation between the predicted
and recorded finger flexion shows that ECoG-based BCIs was a
promising solution for implementing a practical and apt neuro-
prosthesis. In particular, we can confirm from the experimental
results that the sensitivity profile of ECoG signals is band-specific.
However it is not clear if the frequency selection scheme used here

is optimal. In the forward feature selection procedure, we found
that some features did not contribute too much to the prediction of
finger flexion alone but ranked high in the sequence of the feature
selection procedure. This inspires us to consider the correlation
between band-specific ECoG signals. It suggests that incorporat-
ing the feature correlation into feature selection, for example, using
correlation feature selection (CFS) method (Hall, 2000), may pro-
duce an optimal compact feature set. Furthermore in a recent
study (Wang et al., 2010), a sparse Gaussian process (SPGP) has
been applied for decoding finger flexion and a set of important
features has been deduced from the length scale parameters in the
trained SPGP.

We noticed that our method failed in some cases, especially for
the middle finger of subject 1. It might be due to the considerable
correlation between middle, ring, and little fingers. This draws our
attention to the natural constraints that governs the movements
of fingers (Wang et al., 2011a). In Wang et al. (2011a), it incor-
porates the prior knowledge about constraints that govern finger
flexion through a prior model to improve the prediction accu-
racy. Their work achieved the higher correlation coefficient for this
problem.

www.frontiersin.org June 2012 | Volume 6 | Article 91 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Liang and Bougrain Decoding finger flexion from ECoG

REFERENCES
Acharya, S., Fifer, M. S., Benz, H.

L., Crone, N. E., and Thakor,
N. V. (2010). Electrocorticographic
amplitude predicts finger positions
during slow grasping motions of the
hand. J. Neural Eng. 7, 046002.

Asano, E., Juhász, C., Shah, A., Muzik,
O., Chugani, D. C., Shah, J.,
Sood, S., and Chugani, H. T.
(2005). Origin and propagation
of epileptic spasms delineated on
electrocorticography. Epilepsia 46,
1086–1097.

Chadwick, E. K., Blana, D., Simeral,
J. D., Lambrecht, J., Kim, S. P.,
Cornwell, A. S., Taylor, D. M.,
Hochberg, L. R., Donoghue, J. P.,
and Kirsch, R. F. (2011). Continu-
ous neuronal ensemble control of
simulated arm reaching by a human
with tetraplegia. J. Neural Eng.
8, 034003.

Chin, C., Popovic, M., Cameron, T.,
Lozano, A., and Chen, R. (2007).
“Identification of arm movements
using electrocorticographic signals,”
in 3rd International IEEE/EMBS
Conference on Neural Engineering,
Kohala Coast, Hawaii, 196–199.

Flamary, R., and Rakotomamonjy, A.
(2012). Decoding finger movements
from ECoG signals using switching
linear models. Front. Neurosci. 6:29.
doi:10.3389/fnins.2012.00029

Hall, M. A. (2000). “Correlation-based
feature selection for discrete and
numeric class machine learning,”
in 7th International Conference on

Machine Learning (Morgan Kauf-
mann), 359–366.

Hochberg, L. R., Serruya, M. D., Friehs,
G. M., Mukand, J. A., Saleh, M.,
Caplan, A. H., Branner, A., Chen,
D., Penn, R. D., and Donoghue,
J. P. (2006). Neuronal ensemble
control of prosthetic devices by a
human with tetraplegia. Nature 442,
164–171.

Kennedy, P., Bakay, R., Moore, M.,
Adams, K., and Goldwaithe, J.
(2000). Direct control of a computer
from the human central nervous sys-
tem. IEEE Trans. Rehabil. Eng. 8,
198–202.

Kennedy, P., Kirby, M., Moore, M., King,
B., and Mallory, A. (2004). Com-
puter control using human intra-
cortical local field potentials. IEEE
Trans. Neural Syst. Rehabil. Eng. 12,
339–344.

Kubánek, J., Miller, K. J., Ojemann, J. G.,
Wolpaw, J. R., and Schalk, G. (2009).
Decoding flexion of individual fin-
gers using electrocorticographic sig-
nals in humans. J. Neural Eng. 6,
066001.

Langley, P. (1994). “Selection of rele-
vant features in machine learning,”
in Proceedings of the AAAI Fall Sym-
posium on Relevance (AAAI Press),
New Orleans, 140–144.

Miller, K. J., and Schalk, G. (2008).
Prediction of Finger Flexion
4th Brain-Computer Interface
Data Competition. Available at:
http://www.bbci.de/competition/iv/
desc-4.pdf

Pistohl, T., Ball, T., Schulze-Bonhage, A.,
Aertsen, A., and Mehring, C. (2008).
Prediction of arm movement tra-
jectories from ECoG-recordings in
humans. J. Neurosci. Methods 167,
105–114.

Sanchez, J. C., Gunduz, A., Carney, P. R.,
and Principe, J. C. (2008). Extrac-
tion and localization of mesoscopic
motor control signals for human
ECoG neuroprosthetics. J. Neurosci.
Methods 167, 63–81.

Schalk, G., Kubánek, J., Miller, K. J.,
Anderson, N. R., Leuthardt, E. C.,
Ojemann, J. G., Limbrick, D., Moran,
D., Gerhardt, L. A., and Wolpaw, J. R.
(2007). Decoding two-dimensional
movement trajectories using electro-
corticographic signals in humans. J.
Neural Eng. 4, 264–275.

Schalk, G., McFarland, D., Hinterberger,
T., Birbaumer, N., and Wolpaw, J.
(2004). BCI2000: a general-purpose
brain-computer interface (BCI) sys-
tem. IEEE Trans. Biomed. Eng. 51,
1034–1043.

Wang, Z., Ji, Q., Miller, K., and Schalk,
G. (2010). “Decoding finger flexion
from electrocorticographic signals
using a sparse Gaussian process,” in
20th International Conference on Pat-
tern Recognition (ICPR), 2010, Istan-
bul, 3756–3759.

Wang, Z., Ji, Q., Miller, K. J., and
Schalk, G. (2011a). Prior knowl-
edge improves decoding of finger
flexion from electrocorticographic
(ECoG) signals. Front. Neurosci.
5:127. doi:10.3389/fnins.2011.00127

Wang, Z., Schalk, G., and Ji, Q. (2011b).
“Anatomically constrained decoding
of finger flexion from electrocortico-
graphic signals,” in Annual Confer-
ence on Neural Information Process-
ing Systems (NIPS), Granada.

Wolpaw, J. R., Birbaumer, N., McFar-
land, D. J., Pfurtscheller, G., and
Vaughan, T. M. (2002). Brain-
computer interfaces for communi-
cation and control. Clin. Neurophys-
iol. 113, 767–791.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 20 January 2012; accepted: 05
June 2012; published online: 28 June
2012.
Citation: Liang N and Bougrain
L (2012) Decoding finger flexion
from band-specific ECoG sig-
nals in humans. Front. Neurosci.
6:91. doi: 10.3389/fnins.2012.00091
This article was submitted to Frontiers in
Neuroprosthetics, a specialty of Frontiers
in Neuroscience.
Copyright © 2012 Liang and Bougrain.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution Non Commercial License,
which permits non-commercial use, dis-
tribution, and reproduction in other
forums, provided the original authors and
source are credited.

Frontiers in Neuroscience | Neuroprosthetics June 2012 | Volume 6 | Article 91 | 6

http://dx.doi.org/10.3389/fnins.2012.00029
http://www.bbci.de/competition/iv/desc-4.pdf
http://www.bbci.de/competition/iv/desc-4.pdf
http://dx.doi.org/10.3389/fnins.2011.00127
http://dx.doi.org/10.3389/fnins.2012.00091
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroprosthetics/archive

	Decoding finger flexion from band-specific ECoG signals in humans
	Introduction
	Materials and Methods
	Brain-Computer Interface Competition IV – Data Set 4
	Methods
	 Pre-processing
	Band decomposition
	Amplitude modulation
	Feature selection

	Linear regressor model


	Results
	Discussion
	References


