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Tau protein and adult hippocampal neurogenesis
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Tau protein is a microtubule-associated protein found in the axonal compartment that
stabilizes neuronal microtubules under normal physiological conditions. Tau metabolism
has attracted much attention because of its role in neurodegenerative disorders called
tauopathies, mainly Alzheimer disease. Here, we review recent findings suggesting that
axonal outgrowth in subgranular zone during adult hippocampal neurogenesis requires a
dynamic microtubule network and tau protein facilitates to maintain that dynamic cytoskele-
ton. Those functions are carried out in part by tau isoform with only three microtubule-
binding domains (without exon 10) and by presence of hyperphosphorylated tau forms.
Thus, tau is a good marker and a valuable tool to study new axons in adult neurogenesis.

Keywords: adult neurogenesis, hippocampus, phosphorylation, splicing, tau

INTRODUCTION
The subgranular zone (SGZ) of the hippocampal dentate gyrus is
one of the regions where adult neurogenesis takes place. Newborn
granule cells generated in the SGZ grow dendrites into the molecu-
lar layer and send axons into the CA3 region. This process is similar
to that which occurs during neuronal polarization mainly studied
with rodent embryonic hippocampal neurons in vitro (Dotti et al.,
1988, for a review see Kaech and Banker, 2006). Neuronal polarity
is mainly due to a polarized cytoskeleton and polarized distrib-
ution of cytoskeleton-associated molecules. One of those axonal
proteins is tau protein. This review focuses on recent data showing
the importance of tau protein in adult neurogenesis. Thus, out-
growth of axons during embryonic neurogenesis is characterized
by the expression of tau isoforms with less affinity by the micro-
tubules, tau with three microtubule-binding domains (tau-3R). In
addition, tau protein is found in these new neurons in a hyperphos-
phorylated form. These findings suggest that axonal outgrowth
requires a dynamic microtubule network and tau protein facilitates
to maintain that dynamic cytoskeleton.

HIPPOCAMPAL ADULT NEUROGENESIS
New neurons in the SGZ of the hippocampal formation grow den-
drites into the molecular layer, and send axons into the CA3 region.
Major glutamatergic synaptic activation from perforant path affer-
ents does not occur until new neurons are two or more weeks old
concurrent with appearance of spines on dendrites of newly born
neurons (Zhao et al., 2006). Four to six weeks after birth these
neurons become fully integrated in the circuit (Jones et al., 2003).
The stem cells that exist are a subset of astrocytes (Doetsch and

Hen, 2005). In the SGZ, astrocyte-like stem cells divide to generate
intermediate precursors, which remain in clusters of two to four
cells in neurogenic niches that are formed by the processes of astro-
cytes and specialized vasculature (Seri et al., 2004). These cells
progressively generate more differentiated progeny, which even-
tually mature into granule neurons. There are good markers for
labeling different stages of the cellular progeny, but these markers
usually label nuclei, soma, or somatodendritic compartments, but
not axonal compartment. Nevertheless, if we adopt the theory of
recapitulation or embryological parallelism to adult neurogenesis,
it can be accepted that adult neurogenesis recapitulates neuronal
development (Ming and Song, 2011). Thus, axonal cytoskeleton
offers us some specific markers which participate in the process
of morphological and physiological maturation that takes place
in these cells after commitment to neuronal lineage. One of these
proteins is tau protein.

TAU PROTEIN
Tau is a neuronal microtubule-associated protein that stabilizes
neuronal microtubules under normal physiological conditions.
Tau is able to promote polymerization of tubulins (Weingarten
et al., 1975) and prevent their dynamic instability by its binding
to microtubules (Drechsel et al., 1992). Tau plays a key role in
the morphogenesis of neurons. The human tau gene contains 16
exons from which different tau isoforms are generated by alterna-
tive splicing (Goedert et al., 1989; Andreadis et al., 1992). Some
of these isoforms are selectively expressed during embryonic and
early postnatal development (Goedert et al., 1989, 1996; Love-
stone and Reynolds, 1997). Exon 10 encodes one of the four repeat
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sequences (Goedert et al., 1989; Goedert and Spillantini, 2001) that
form the microtubule-binding domain (Lee et al., 2001). The pres-
ence of exon 10 results in tau with four repeat microtubule-binding
sequences (tau-4R), whereas the alternatively spliced isoforms
without exon 10 have only three of these sequences (tau-3R). Iso-
forms lacking exon 10 are found at early developmental stages
whereas tau isoforms containing exon 10 are mainly found in
neurons at mature developmental stages (Avila et al., 2004). The
microtubule-binding domain contains three or four similar but
not identical repetitive sequences of 31 or 32 residues. Each of these
repeats can be divided in two parts, one composed of an 18 residue
sequence that contains the minimal region with tubulin binding
capacity, and the second, a less conserved domain of 13 (or 14)
residues known as the inter repeat. It should be noted that in the
tubulin binding regions, the sequence with the highest capacity to
bind to microtubules is that contained within the first repeat, the
following inter region, and the second repeat (Goode et al., 1997).
The repeats bind to microtubules and can promote microtubule
assembly (Trinczek et al., 1995). As stated above, the alternative
splicing of exon 10 may result in the expression of tau-3R or tau-4R
in a cell, which in turn may produce some physiological differences
in the cell. In fact, tau-4R binds microtubules with a greater affinity
and can displace the previously bound tau-3R from microtubules
(Lu and Kosik, 2001).

One of the main posttranslational modifications of tau pro-
tein is phosphorylation. Phosphorylation regulates the binding of
tau to microtubules and to the membrane (Brandt et al., 1995).
Phosphorylation appears to be the predominant way in which tau
function can be regulated. Although different kinases may modify
tau, there is emerging evidence that GSK3 plays an important role
in regulating tau phosphorylation under normal (physiological)
and pathological (tauopathies) conditions (Avila et al., 2004).

The phosphorylation of tau is developmentally regulated; it
is higher in fetal neurons and decreases with age during the
development (Brion et al., 1993). Interestingly, phosphorylation
at different sites could take place in different tau isoforms (Her-
nandez et al., 2003). This could be due to the different cellular
localization or subcellular compartmentalization of the different
tau isoforms or the fact that different kinases/phosphatases can
modulate tau phosphorylation in a different way.

TAU-3R AND ADULT NEUROGENESIS
Adult newborn neurons express tau-3R (Figures 1A,B; Bullmann
et al., 2007; Llorens-Martin et al., 2012). To study the temporal
window or time course of tau-3R isoform expression in imma-
ture neurons BrdU-immunopositive cells colabeled for tau-3R
demonstrated that tau-3R can be found 3 days after BrdU admin-
istration. The thymidine analog is observed reaching a maximum
14 days after BrdU incorporation (Bullmann et al., 2007). The
same results were reached using retrovirus-mediated GFP trans-
duction (Llorens-Martin et al., 2012). After stereotaxic injection
of retrovirus, which only infects dividing cells, mice were killed at
different time points and GFP and tau-3R expression were ana-
lyzed by immunohistochemistry. GFP and tau-3R colabeling can
be detected in a period of 7–21 days after viral infection. Thus,
both approaches demonstrate that there is a transient expression
of tau-3R isoform during adult neurogenesis. Retrovirus injection

allowed analyzing axogenesis. Thus, differentiated or long axonal
processes were rarely observed 1 week after viral injection and
axonal tau-3R immunolabeling was almost absent in these cells,
but a slight somatodendritic staining was observed in some of
the cells analyzed. Two-week-old neurons showed apical dendrites
and axons in the hilar region. These axons, as well as the somatic
compartment were labeled with tau-3R antibody. Three-week-old
neurons had more elaborate dendritic arborization. In cells of this
age, tau-3R was found in the somatic compartment of most of
the cells, but only few of them expressed tau-3R in the axons.
This tau-3R staining was detectable both in the subgranular layer
where newborn axons begin, as well as in hilar region and CA3
field. Finally, 8-week-old neurons did not express neither axonal
nor somatic tau-3R.

In the majority of the labeled cells DCX and tau-3R colo-
calize and only a few of them are single DCX-positive labeled
(Llorens-Martin et al., 2012). These cells probably represent those
cells which initiate a neuronal program but are in the initial stage
of neuronal maturation. However, some cells labeled with anti-
calbindin antibody contain tau-3R (Bullmann et al., 2007). Thus,
some mature granule cells express the tau-3R protein. Although it
is possible that the change in alternative splicing occurs in mature
granule cells, a possible explanation could be that half-life of tau
protein is high (about 60 h in HT22 cells) and higher into its
phosphorylated form (Poppek et al., 2006).

By using an specific antibody, Bullmann et al. (2007) have also
demonstrated that tau protein expressed in these newborn neurons
lack of exon 2 and 3. These N-terminal exons regulate the binding
of tau to the membrane (Brandt et al., 1995) and are expressed
during embryonic and early postnatal development (Kosik et al.,
1989).

TAU PHOSPHORYLATION AND ADULT NEUROGENESIS
In addition to the presence or absence of exon 10, the phospho-
rylation of tau is developmentally regulated: it is higher in fetal
neurons and decreases with age during development (Brion et al.,
1993, 1994; Yu et al., 2009). However, fetal-tau phosphorylation
can also be observed in the adult. It has been demonstrated that
the presence of tau phosphorylated in fetal epitopes is related with
adult neurogenesis in the SGZ, although fetal-tau phosphoryla-
tion can be found in adults not only in these areas (Yu et al., 2009).
Tau phosphorylated is coexpressed temporally and spatially with
DCX (Fuster-Matanzo et al., 2009; Hong et al., 2010) and neuroD
(Hong et al., 2010) in the hippocampal dentate gyrus.

In the central nervous system GSK3 is the main tau kinase.
GSK3 is inhibited by phosphorylation in the N-terminal end.
Interestingly GSK3β phosphorylated in the inhibitory Ser-9 does
not colocalize with DCX, suggesting that active GSK3β is the main
tau kinase in newborn neurons (Hong et al., 2010).

As shown above, it is well known that phosphorylated tau has a
reduced affinity for microtubules. In good agreement, it has been
previously shown that tau hyperphosphorylation in transgenic
mice overexpressing GSK3β correlates with somatodendritic accu-
mulation of microtubule-unbound tau in hippocampal neurons
(Lucas et al., 2001). The somatodendritic localization of phos-
photau in adult newborn neurons from SGZ was evidenced by
immunohistochemistry with the 7.51 antibody (Fuster-Matanzo
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FIGURE 1 |Tau-3R expressing cells in the DG. (A,B) Tau-3R (red)
immunohistochemistry in 2-month-old wild-type (C57BL/6) mice showing
the abundance of tau-3R expressing cells along the SGZ. White arrows
indicate axonal processes. DAPI staining in blue. Scale bar: 50 µm. H,
hilus; GL, granular layer; SGZ, subgranular layer. (B) Shows tau-3R
immunolabeling. Tau-3R antibody labeled the somatic compartment of a

subpopulation of cells in the SGZ of the hippocampal DG as well as axonal
processes in the hilar region and hippocampal CA3 subfield. (C) Diagram
indicating the lineage and marker expression during adult neurogenesis in
SGZ including tau-3R as a new marker for axonal processes [(A,B)
reprinted from Journal Alzheimer Disease (Llorens-Martin et al., 2011) with
permission from IOS Press].

et al., 2009) that recognizes the microtubule-binding domain of
tau and that, accordingly, detects only unbound tau (Novak et al.,
1991).

Although these studies have been mainly carried out in the hip-
pocampus, the same seems to occur in the SVZ, the other main
neurogenic area in adult rodents (Fuster-Matanzo et al., 2009;
Hong et al., 2011).

HUMAN AND RODENT DIFFERENCES
Can these studies be translated to humans? First it has been
demonstrated that in adult human brain neurogenesis takes place
in the SGZ of the hippocampus while generation of new neu-
rons from SVZ destined to the olfactory bulb is mainly limited to
early childhood and decline in the adulthood (Guerrero-Cazares
et al., 2011; Sanai et al., 2011; Wang et al., 2011). Recently, it
has been demonstrated that 14C concentrations in genomic DNA
correspond to the atmospheric levels at the time of birth of the
individuals, establishing that there is very limited postnatal neu-
rogenesis in the human olfactory bulb (Bergmann et al., 2012).
Whereas in the human adult central nervous system, six different

tau isoforms are expressed that differ in the presence or absence
of exons 2, 3, and 10 (Goedert and Spillantini, 2001) in mice only
tau-4R is expressed in adult neurons. Thus, tau-4R is not present
in fetal human brain in contrast to adult human brain (Goedert
et al., 1989; Kosik et al., 1989; Goedert and Jakes, 1990). The same
has been observed in fetal mouse brain (Janke et al., 1999; Kampers
et al., 1999). Interestingly some differences have been observed in
adult brain in the expression of tau isoforms. Tau-3R isoforms
are not present in mature neurons of adult rodents (Brion et al.,
1993; Spillantini and Goedert, 1998) while the adult human brain
contains both tau isoforms (Avila et al., 2004). Thus, although it is
likely that in human adult dentate gyrus the newborn neurons in
the SGZ also express fetal-tau, this has yet to be demonstrated.

TAU FUNCTION IN ADULT NEUROGENESIS
New neurons require a high degree of plasticity to migrate, dif-
ferentiate, send axons to CA3, and integrate in the granule cell
layer. Tau-4R isoforms promote microtubule assembly at a faster
rate than the tau-3R isoforms (Goedert and Jakes, 1990), suggest-
ing that tau-3R protein may aid newborn neurons to differentiate
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by decreasing microtubule stability. This idea is supported by the
expression of tau protein during brain development. To deter-
mine the role of tau protein in adult neurogenesis, that process
has been studied in tau-KO mice. Thus, two tau-KO lines have
been analyzed. One of those tau-KO lines (generated from a strain
that express exclusively the human tau (Andorfer et al., 2003) and
crossed with wild-type mice) shows a decrease in immunoreac-
tivity of neuroD and DCX-positive neurons (Hong et al., 2010).
However, in the other line (Dawson et al., 2001) number of DCX-
positive cells was similar in tau-KO mice compared with wild-type
(Fuster-Matanzo et al., 2009). Nevertheless, in the last model
DCX-positive cells were uniformly aligned with the SGZ while
some DCX cells in wild-type mice could be found in the granular
cell layer. Quantification of DCX-positive migrating cells demon-
strated that tau-KO mice show a decrease in migration compared
with wild-type animals. Thus, although differences among both
models are not actually clear, it certainly demonstrates that tau has
a role in adult neurogenesis. These results suggest that tau pro-
tein facilitates DCX-positive cells migration. DCX-positive cells
have to migrate from the SGZ to upper layers and send axons
into the CA3 region. This process requires a dynamic microtubule
network. Keeping this in mind, it is not strange to find phos-
phorylation of tau, as phosphorylation decreases the affinity of
tau protein for microtubules. Interestingly, phosphorylated tau is
accumulated in the somatic compartment, something that is also
observed in developing neurons (Brion et al., 1994). These results
suggest that phosphorylation of tau during neurogenesis gives
DCX-positive cells a less stable and more dynamic microtubule
network. The need for a dynamic cytoskeleton is also supported by
the observation that DCX-positive cells expresses tau-3R isoform.

An increase in hippocampal neurogenesis has been observed in
Alzheimer disease, the main tauopathy (Jin et al., 2004). However,
the relationship among tau protein from adult newborn neurons
and tauopathies is limited. Some data show that expression of tau
protein with three mutations found in frontotemporal demen-
tia with parkinsonism associated to chromosome 17 (FTDP-17)
results in a decrease of the dentate gyrus ventral blade, appar-
ently due to a reduction in the proliferation of neuronal pre-
cursors (Llorens-Martin et al., 2011). Also, triple transgenic mice
harboring three mutant genes (beta-amyloid precursor protein,
presenilin-1, and tau) have an impaired ability to generate new
neurons in the DG of the hippocampus (Rodriguez et al., 2008).
Nevertheless it should be remarked that in most of those neurode-
generative disorders, tau protein presents alterations in tau isoform
splicing and is phosphorylated in the same epitopes found in adult
neurogenesis (Buee et al., 2000).

TAU-3R, A NEW MARKER TO STUDY ADULT NEUROGENESIS
Fluorescent retrograde tracers (Hastings and Gould, 1999) and
retroviral expression of green florescent protein have been used
to visualize new axons (Toni et al., 2008). However, inflammation,
degeneration, or DG structure alteration may be an important
technical disadvantage that should be taken into account. We
propose tau-3R as a new molecular marker to be used in adult
neurogenesis (Figure 1C). As reviewed above, this tau isoform
labels new axons from newborn granule cells which send axons

into the CA3 region from SGZ. Tau protein isoform with three
microtubule-binding domains is a marker of those axons follow-
ing an antigen retrieval protocol (Llorens-Martin et al., 2012). The
labeling of sagittal sections with tau-3R colocalizes with a sub-
population of DCX-positive cells. Several molecular markers have
been used to analyze production of these new neurons, although
no markers for new axons have been described. Thus, most of the
actual investigations in adult neurogenesis only focus their stud-
ies in the somatodendritic compartment, while the axonal one
has not been extensively analyzed because the lack of appropriate
immunological tools.

Adult hippocampal neurogenesis is influenced by external stim-
uli, such as physical exercise, and by intrinsic conditions like age
and disease. Thus, young exercised mice show higher number of
tau-3R labeled immature axons in the granule cell layer of the
mouse hippocampus (Llorens-Martin et al., 2012). Another model
where a modulation of adult neurogenesis is observed is aging.
During aging, a decrease in the number of immature neurons has
been reported (Lazarov et al., 2010) and, in good agreement, a
reduction in the number of immature axons labeled with tau-3R
antibody can be observed (Llorens-Martin et al., 2012).

A common feature of several neurodegenerative diseases is
the alteration of adult hippocampal neurogenesis rate (Lazarov
et al., 2010). Thus, a murine model of FTDP-17, in which mutated
human tau expression is known to be related to a dramatic reduc-
tion in the number of immature neuroblasts (Llorens-Martin
et al., 2011), immature axons appear slightly disorganized in the
hilar region and a reduced number of tau-3R positive axons can
be appreciated in this region. Furthermore, aged AβPPind,sw
mice with abundant hippocampal amyloid-β plaques cannot
be detected neither immature neuroblasts nor immature axons
(Llorens-Martin et al., 2012).

CONCLUSION
To summary, recent studies favor the suggestion that tau-3R pro-
vides a dynamic microtubule network in DCX-positive cells which
allow a proper axonal growing in adult neurogenesis. This role is
facilitated by tau phosphorylation. From a practical point of view,
tau-3R can be a new molecular marker to be used in adult neuro-
genesis. This tau isoform labels new axons from newborn granule
cells. Taking into account that several molecular markers have been
used to analyze production of these new neurons but no markers
for new axons have been described, we conclude that labeling of
sagittal sections with tau-3R would be an efficient marker and a
valuable tool to study new axons in the SGZ. A “proof of princi-
ple” of the power of that tau-3R labeling has been demonstrated
showing modulation of tau-3R positive axons under physiologi-
cal conditions (exercise and aging) and diverse neurodegenerative
(FTDP-17 and Alzheimer disease) models.
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