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We deal with risk versus uncertainty, a distinction that is of fundamental importance for
cognitive neuroscience yet largely neglected. In a world of risk (“small world”), all alterna-
tives, consequences, and probabilities are known. In uncertain (“large”) worlds, some of
this information is unknown or unknowable. Most of cognitive neuroscience studies exclu-
sively study the neural correlates for decisions under risk (e.g., lotteries), with the tacit
implication that understanding these would lead to an understanding of decision making in
general. First, we show that normative strategies for decisions under risk do not generalize
to uncertain worlds, where simple heuristics are often the more accurate strategies. Sec-
ond, we argue that the cognitive processes for making decisions in a world of risk are not
the same as those for dealing with uncertainty. Because situations with known risks are the
exception rather than the rule in human evolution, it is unlikely that our brains are adapted
to them. We therefore suggest a paradigm shift toward studying decision processes in
uncertain worlds and provide first examples.

Keywords: as-if versus process models, neuroscience of decision making, risk and uncertainty, small world versus
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RISK 6= UNCERTAINTY
In 1999, Elkhonon Goldberg and Kenneth Podell distinguished
between adaptive and veridical decision making. Noticing the pre-
dominance of the latter in the cognitive neuroscientific studies at
that time, they concluded that new paradigms were desperately
needed:

In a typical experimental paradigm used in cognitive neu-
roscience, one possible response is correct and others are
incorrect. The determination of what is correct and what is
“incorrect” is inherent in the experimental situation (external
milieu) and does not require any knowledge of the organ-
ism making the choice (internal milieu). The typical exper-
imental paradigms used in cognitive neuropsychology are
deterministic and veridical. (p. 365)

With some disappointment they concluded:“Paradoxically and
almost incomprehensibly, the arsenal of cognitive neuroscience is
virtually completely bereft of paradigms capable of examining how
adaptive (as opposed to veridical) decisions are made” (p. 366).
As a result, they called for innovative experimental procedures
to determine the contribution of the prefrontal lobes to adaptive
decision making.

Goldberg and Podell (1996) hit on a distinction closely related
to one made in economics and decision theory: the distinction
between risk and uncertainty (Knight, 1921). Risk, according to
Knight, refers to situation of perfect knowledge: the decision
maker knows the probabilities of all outcomes for all alternatives.
This makes it possible to calculate the only correct, or optimal,
response. Uncertainty, in contrast, refers to situations where the
probabilities cannot be expressed with any mathematical preci-
sion, neither in frequencies nor in propensities. That is, in an

uncertain world, the probabilities are unknown or unknowable.
As an economist, Knight perceived this distinction to be impor-
tant, since uncertainty may afford opportunities for profit that
do not exist in situations where risks can be calculated (Rakow,
2010).

A related distinction was made by Savage (1954), known as the
founder of modern Bayesian decision theory. Savage introduced
the term “small worlds” for situations of perfect knowledge where
all relevant alternatives, their consequences, and their probabili-
ties are known for certain. According to him, these are the worlds
in which Bayesian theory provides the best answer. Examples are
lotteries and roulette. Small worlds need to be distinguished from
“large worlds,” where part of the relevant information is unknown
or must be estimated from small samples, or the future is uncer-
tain (Savage, 1954; Binmore, 2009). Examples are decisions about
when to plan a picnic, whom to marry, and how to raise your
kids. Decision making under uncertainty is what our brain does
most of the time, while situations of known risk are relatively
rare and found mostly in gambling. Savage made it very clear that
applying Bayesian theory to decisions in large (uncertain) worlds
would be “utterly ridiculous” (p. 16) because there is no way to
know all alternatives, consequences, and probabilities. As a conse-
quence, the brain needs strategies beyond Bayes’ rule to succeed in
an uncertain social and physical environment.

The distinction between risk and uncertainty has not always
been recognized in cognitive neuroscience. In this article, we
make a normative and a descriptive argument regarding this
distinction:

1. The best solution in a world of risk is generally not the best one in
a world of uncertainty. We argue that what the brain should do
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under risk does not necessarily generalize to what it should do
under uncertainty.

2. Cognitive processes in decisions under risk are not the same as in
decisions under uncertainty. We argue that cognitive processes
observed under risk do not necessarily generalize to those the
brain uses under uncertainty. Specifically, we argue:

Risk: Value-based statistical thinking (e.g., Bayesian proba-
bility updating plus utilities) is sufficient for making good
decisions, provided that the problem is computationally
tractable.
Uncertainty: Statistical thinking is no longer sufficient;
heuristic thinking is required.

Much of cognitive neuroscience does not distinguish between
risk and uncertainty. For instance, consider the claim, made in
various forms, that the brain is Bayesian (e.g., Friston, 2010). Such
a brain will likely provide optimal decisions only in small worlds,
which are rare. Or consider the claim that there are two systems
of reasoning: System 1, which is fast, heuristic, and prone to error,
and System 2, which is slow, in keeping with the laws of probability,
and rational (Sloman, 1996; Kahneman, 2011; for a critique, see
Gigerenzer and Regier, 1996; Keren and Schul, 2009; Kruglanski
and Gigerenzer, 2011). This two-system view does not consider
that the laws of probability are sufficient for rationality in a small
world only. In uncertain worlds, however, heuristics are indis-
pensable. That is, both logic and heuristics are tools for different
classes of problems. For instance, the recent financial crises illus-
trate that statistical tools for estimating risk, Bayesian or otherwise,
failed consistently in the real, uncertain world of finance (Taleb,
2010). They are optimal when risks are known, but not in a world
of uncertainty. Applying normative theories of risk to uncertain
worlds can in fact lead to disasters. With respect to the financial
crash of 2008, Stiglitz (2010) noted: “It simply wasn’t true that
a world with almost perfect information was very similar to one
in which there was perfect information” (p. 243). In sum, norms
derived from assuming known risks do not simply generalize to
norms under uncertainty.

RATIONALITY OF RISK 6= RATIONALITY OF UNCERTAINTY
The point that the calculus of probability can determine the best
action under risk but not under uncertainty is not new; it has been
made as often by statisticians as it has been forgotten by cogni-
tive scientists. Savage (1954) devoted the first half of his seminal
book Foundations of Statistics to Bayesian decision theory, and the
second half to heuristic decisions, such as minimax (choose the
option that minimizes the maximal loss). Arrow (2004) similarly
writes that in uncertain, ill-specified worlds, unbounded ratio-
nality (i.e., expected utility optimization) “has no meaning at all”
(p. 54). What is new are scientific demonstrations that show that
applying an optimization model to an uncertain world can lead
to decisions that are normatively inferior to simple heuristics (see
Gigerenzer et al., 2011). Here is an illustration:

MEAN-VARIANCE OPTIMIZATION LEADS TO INFERIOR RESULTS IN THE
REAL WORLD
Consider financial investment
A normative theory of how to allocate money to N assets is
Markowitz’s Nobel prize-winning mean-variance model. Like all

optimizing theories, it assumes a small world with perfect knowl-
edge about the relevant parameters. Is this theory also optimal in
the real, uncertain world of financial investment, where parame-
ter values are not known for certain but need to be estimated?
De Miguel et al. (2009) compared the mean-variance model with
a heuristic called 1/N, or equality heuristic. The heuristic sim-
ply allocates money to N assets equally. The result was that 1/N
consistently performed better in out-of-sample prediction (an ele-
mentary form of uncertainty). Cross-validation is a prime example
of out-of-sample prediction: the data is divided into two com-
plementary subsets: the in-sample data set, which is used for
fitting the parameters of the competing models and an out-of-
sample data set, which is used for testing how well the models
predict (see also below). Note that in data fitting, that is, when
all data are known, the optimizing model always wins, but not
in prediction. None of 12 other optimization models, Bayesian
or otherwise, could consistently predict better than the simple
heuristic.

This result contradicts the widespread view that heuristics are
always second best to logic and statistical optimization models.
This view makes no distinction between risk and uncertainty.
Researchers in this tradition have evaluated people’s reliance on
1/N negatively and attributed it to their cognitive limitations.
However, ignoring part of the information is what makes heuris-
tics robust for the unknown future, whereas by trying to integrate
all information and estimate the weights, complex strategies such
as the mean-variance portfolio suffer from overfitting the past.
The mathematically sophisticated reader who wants to understand
why and when simple heuristics can be more accurate than com-
plex statistical methods will find an answer in the bias-variance
dilemma (Gigerenzer and Brighton, 2009).

THE ECOLOGICAL RATIONALITY OF SIMPLE HEURISTICS
The fact that simple heuristics often outperform “optimization”
models in situations of uncertainty has been demonstrated many
times over (see Czerlinski et al., 1999; Gigerenzer and Brighton,
2009; Gigerenzer et al., 2011). In order to deal with an uncertain
world, the brain relies on an adaptive toolbox of heuristics. Accord-
ingly, intelligence is defined as the degree of knowing in which
situation to use which heuristic. The scientific study of this nor-
mative question is called the study of the ecological rationality of
a heuristic. For instance, 1/N tends to outperform mean-variance
optimization in situations where predictive uncertainty is high
(stocks are hard to predict), the number of options N is large
(the optimization models have to estimate more parameters which
leads to more error), and the sample size is relatively small. In
uncertain worlds with these features, 1/N can be expected to be
both faster and more accurate than the mean-variance optimiza-
tion. When would mean-variance outperform 1/N ? De Miguel
et al. (2009) estimated that with 50 assets, one would need some
500 years of stock data before the optimization model is profitable.

Humans rely on the 1/N heuristic not only for financial invest-
ment. Many parents who have two or more children try to distrib-
ute their time and love equally. For three or more children, this
heuristic paradoxically predicts interesting inequalities in the long
run because the first and last-born get more time, dependent on
the spacing between births. Tests have provided empirical evidence
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for these predictions (Hertwig et al., 2002). In many situations,
fairness und justice are achieved by distributing resources equally.

Our normative argument has fundamental consequences for
the neuroscience of decision making: Claims that the rational brain
always works by Bayesian calculations are founded on the assump-
tion that what is rational in a world of risk is also rational in an
uncertain world – the world our brain has to deal with most of the
time. These claims are also incompatible with three well-known
restrictions: Bayesian optimization is not feasible if (i) the choice
alternatives are not known for sure, (ii) the mind has more than
one goal, and (iii) even if all alternatives were known and the mind
had only one goal, the calculations can quickly become compu-
tationally intractable, that is, no mind can actually perform them
in a lifetime (Gigerenzer, 2004). Bayesian inference works in small
worlds where there are reliable data for probabilities and only a
few alternatives and cues.

COGNITIVE PROCESSES IN SITUATIONS OF
RISK 6= PROCESSES IN SITUATIONS OF UNCERTAINTY
In the previous section, we argued that what is optimal in a world
of risk is typically not the best in a world of uncertainty. Conse-
quently, an adapted brain relies on different processes according
to the situation. When faced with risk, using heuristics is of little
value, unless the computations become too difficult. When faced
with uncertainty, using logic and statistics is of little value, unless
the part of the problem that is known is being calculated.

We would like to emphasize the importance of the distinction
between risky and uncertain worlds for the neuroscientific investi-
gation of decision making. So far, its focus has been on small world
problems. But just as normative results from studying cognition
in small worlds do not automatically generalize to what people
should do in uncertain worlds, we cannot be sure that descrip-
tive results generalize either. Influenced by small-word theories of
decision making, neuroscientists, and neuroeconomists have nev-
ertheless relied heavily on the “gambling paradigm” as a model
for exploring the neural correlates. In a typical neuroeconomic
paradigm, participants are presented with the choice between two
options, Option A and Option B, which differ with respect to
objective dimensions such as the magnitude and the probability
of reward (as assigned by the experimenter). Reward is largely
defined as monetary value, which the participant will receive after
the functional session. These problems require entirely different
skills and strategies than decisions under uncertainty. For example,
although calculating the expected value might suffice for a lot-
tery, it will not be sufficient for deciding whether to be vaccinated
against swine flu, which share to buy, or whom to marry.

Results such as the finding that “activity in the ventral striatum
during the evaluation of monetary gambles is non-linear in prob-
abilities in the pattern predicted by prospect theory” (Hsu et al.,
2009, p. 2231) may capture the neural activation pattern when
comparing gambles. Concluding that this activity pattern will also
be observed when searching for jobs or mates, however, is not war-
ranted. The pattern predicted by prospect theory in fact disappears
and even reverses when the probabilities are not provided by the
experimenter but the participant instead has to learn these from
experience, a phenomenon known as the description-experience
gap (Hertwig and Erev, 2009). Nor do findings from small worlds

easily translate into a cognitive process model, that is, testing for
the neural correlates of some form of utility model cannot elu-
cidate the cognitive mechanisms in large world problems. In the
words of Colombo and Seriès (2012): “that the brain is a Bayesian
machine does not follow from the fact that Bayesian models are
used to study the brain and the behavior it generates” (p. 2).

In an uncertain world, there is broad experimental evidence
that humans and other animals rely on a toolbox of heuristics.
These are based on evolved and learned core capacities and include
(for details, see Gigerenzer and Gaissmaier, 2011):

– Recognition-based heuristics: Recognition heuristic (RH; see
below); fluency heuristic1.

– Equality-based heuristics: 1/N (see above); tallying (weight
reasons equally).

– One-good-reason heuristics: take-the-best (see below); fast-and-
frugal trees2.

– Social heuristics: tit-for-tat; imitate-the-majority.

What would a neuroscientific investigation of heuristic decision
making look like? One approach is to study the neural correlates of
heuristic processes, such as search rules, stopping rules, and deci-
sion rules (e.g., Volz et al., 2006, 2010; Khader et al., 2011; Rosburg
et al., 2011). In what follows, we provide two illustrations for how
to go beyond lotteries and study the neural correlates of the use of
cognitive heuristics in an uncertain world.

NEURAL CORRELATES OF HEURISTIC DECISIONS IN
UNCERTAIN WORLDS
Note that studying decision making under uncertainty (as opposed
to risk) does not require squeezing the complexity of the large
world into the laboratory. It simply requires studying tasks where
not all alternatives, consequences, and probabilities are known for
sure or provided by the experimenter.

RECOGNITION HEURISTIC
Consider a simple heuristic that humans and other animals use
to make inferences about an uncertain world (Goldstein and
Gigerenzer, 2002):

Recognition heuristic: If one of two objects is recognized and
the other is not, then infer that the recognized object has the
higher value with respect to the criterion.

1The fluency heuristic is a simple heuristic that can be used to exploit recognition
memory and is defined in the following way: If two objects are recognized, and one
of objects is more fluently retrieved, then infer that this object has the higher value
with respect to criterion; where retrieval fluency is defined as how long it takes to
retrieve a trace from long-term memory (c.p. Schooler and Hertwig, 2005).
2Fast-and-frugal decision trees are simple rules for categorization; they are fast-
and-frugal since they allow a classification decision at each level of the tree (c.p.
Martignon et al., 2011). For binary predictors, a fast-and-frugal tree has n + 1 exists,
while a full tree has 2n exits. An example is the Simple Triage and Rapid Treatment
(START) procedure, which is used to categorize patients into those who need imme-
diate medical treatment and those whose treatment can be delayed (Super, 1984).
By using the START, “a paramedic sequentially checks up to five diagnostic cues to
decide which category a person falls into; a decision can be made after each cue is
checked” (Luan et al., 2011, p. 316). By using such a simple and transparent decision
tree, the decision maker/paramedic does not need to search for and integrate all the
relevant cues so as to reach a sound decision.

www.frontiersin.org July 2012 | Volume 6 | Article 105 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Volz and Gigerenzer Decisions under risk versus uncertainty

For instance, consider the question whether Milan or Mod-
ena has more inhabitants. If one has heard of Milan but not of
Modena, the inference is that Milan is the larger city. Note that
the RH requires semi-ignorance to be applicable, meaning that if
one has heard of both (or neither) objects, it will not be effective.
Experimental studies indicate that a large proportion of subjects
rely on it in uncertain situations, such as when predicting which
tennis player will win in Wimbledon or which political candidate
to vote for, and by animals when choosing food (Gigerenzer and
Goldstein, 2011). These studies report a substantial correlation
between the proportion of judgments that follow the RH and the
validity of recognition for the task, suggesting an adaptive use of
the heuristic.

There are two competing hypotheses in the literature: that
people use the RH in an adaptive or in an automatic way. The
adaptive use requires two processes. The first assesses whether or
not the alternatives are recognized and hence whether the RH
can be applied in principle. The second process assesses whether
the RH should be applied, which is essentially a judgment about
the heuristic’s ecological rationality, that is, the match between
mind and environment. In contrast, the automatic use entails
only one process: automatically choosing the recognized alterna-
tive, without considering why recognition should be predictive of
the criterion. Such an automatic strategy would also be successful
for the Milan–Modena question, where recognition is so highly
correlated with city size.

In 2006, we tested these hypotheses with the help of func-
tional magnetic resonance imaging (fMRI; Volz et al., 2006).
To see whether RH-based decision processes depend on addi-
tional judgments of ecological rationality, which should draw on
brain areas beyond those known to reflect recognition memory
processes, we ran two experiments. In experiment 1, participants
were presented with the names of two cities and asked to indi-
cate which city in each pair is larger (recognition plus inference).
In experiment 2, participants were presented with the names of
two cities and asked to indicate which city they knew in each
pair (recognition only). Comparing the activation results of the
two experiments, we found that decision processes in both exper-
iments 1 and 2 drew on medial parietal areas, which are assumed
to reflect recognition memory processes. In contrast, specifically
RH-based decision processes (in experiment 1) drew addition-
ally on the anterior medial prefrontal cortex, which is taken to
reflect judgments of the ecological rationality of the RH in terms of
assessing one’s own sense of recognition. Thus, RH-based decision
processes go beyond automatically choosing the recognized alter-
native and are guided by judgments about the ecological rationality
of the RH, as reflected by activation in anterior medial prefrontal
cortex.

The study illustrates how fMRI can be used to compare compet-
ing hypotheses about the selection of heuristics: here, hypotheses
on automatic versus adaptive use.

TAKE-THE-BEST HEURISTIC
The RH draws on the core capacity of recognition of names, faces,
or other stimuli. If both objects are recognized, the RH is not
applicable, but the take-the-best heuristic (TTB) is. Like the RH,

take-the-best models how people infer which of two objects has
a higher value on a criterion based on cue values retrieved from
memory (Gigerenzer and Goldstein,1996). The heuristic is defined
by three building blocks:

Take-the-best heuristic:

(i) Search rule: search through cues according to their validity.
(ii) Stopping rule: stop search on finding the first cue that

discriminates between the objects.
(iii) Decision rule: infer that the object with the positive cue value

has the higher criterion value.

Thus, according to this cognitive process model, information
search is terminated as soon as a cue discriminates between the
alternatives; other cues are not activated. For instance, if a person
has heard of both Milan and Modena and recalls that Milan is a
state capital (the most valid cue) but Modena is not, that person
would stop search for further cues and infer that Milan has the
larger population.

Note that take-the-best implies a lexicographic step-by-step
process with limited search. This process is quite different from
weighting-and-adding all cues, which is assumed in models that
postulate the integration of all cues, such as in value-based deci-
sion models. Experimental studies have provided strong evidence
that many people’s memory-based inferences are consistent with
the predictions of take-the-best (and inconsistent with those of
adding-and-weighting models) in situations where its use is eco-
logically rational (e.g., Rieskamp and Otto, 2006; Bröder, 2011).
Specifically, experts appear to rely on simple search and stop-
ping rules more often than novices (Garcia-Retamero and Dhami,
2009).

Can cognitive neuroscience provide evidence for the hypothesis
of limited search, as defined in the stopping rule of take-the-best?
Khader et al. (2011) used fMRI to test the assumption that heuris-
tics simplify decision making by activating long-term memory
representations of only those attributes that are necessary for the
decision, since it is unclear from behavioral studies alone whether
using heuristics is indeed associated with limited memory search
(with the exception of reaction time studies; see Bröder and Gaiss-
maier, 2007). Accordingly, the authors monitored the activation
of specific long-term memory representations while participants
made memory-based decisions using the take-the-best heuristic.

Khader et al. (2011) taught their subjects to make decisions
using the TTB heuristic while measuring their hemodynamic
response. Particularly, they let their participants first learn by
trial and error to associate each of 16 fictional company names
with a specific stimulus pattern of four binary cues (objects,
houses, locations, faces). Then, participants learned how to make
decisions using the TTB heuristic for a fictional job selection
scenario (i.e., which of two applicants is more suitable for a
job). Thereafter, participants learned by trial and error (i) the
importance of the different attributes for predicting which of two
companies would be more successful, e.g., the attribute hierarchy
objects > houses > locations > faces; and (ii) which stimulus was
predictive of higher success, that is, the attribute direction. In each
phase, participants learned until they satisfied a criterion.
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In the actual decision making task, participants were pre-
sented with only the names of two companies and then had to
infer, by using the TTB heuristic, which company will be more
successful in the next year. To do so, participants had to retrieve
all the relevant attribute information from long-term memory.
The attributes with which the two companies were described
consisted of visual information known to be represented in dif-
ferent parts of the posterior cortex, e.g., in a face-specific and in
a house-specific region of interest. That allowed the authors to
examine activation within these regions of interest as a function
of the number of the to-be-retrieved attributes. Given the cog-
nitive process model of the TTB heuristic, Khader et al. (2011)
expected the activation in the regions of interest to be systemati-
cally modulated by the relative importance of the information for
making a decision. Their specific analyses revealed a controlled
retrieval shown by a selective boosting of activation, specifically
in those regions that represent the attributes that were relevant
for the decision. For example, activation strongly increased in the
face-specific region solely in those trials in which faces were rel-
evant for the decision. Furthermore, a prolonged response to an
attribute was found only when it was relevant late in the deci-
sion process, when the attribute was low in importance. All in
all, the data showed a “selective modulation of neural activation
that follows the retrieval order according to TTB” (p. 11), which
the authors take to support the notion of controlled retrieval
processes.

Thus, by using fMRI the authors could provide evidence in
favor of the cognitive process model’s prediction for the decision
phase, i.e., using the TTB heuristic is indeed associated with a con-
trolled activation of decision-relevant attribute representations.
As in the case of the RH, the imaging study was used to compare
two competing models, exhaustive search as assumed in standard
weighting-and-adding models and limited search as defined by
take-the-best.

STUDY THE NEURAL CORRELATES OF PROCESS MODELS,
NOT AS-IF MODELS
Why are experimental studies with situations of known risk, such
as lotteries, so popular? This is especially puzzling given that lotter-
ies, roulette, and other tasks with known risks are quite a recent in
human history. One answer is that they facilitate application of sta-
tistical optimization models, such as expected utility and Bayesian
updating, which are also quite recent achievements in human his-
tory. However, studies of cognitive processes have provided little
evidence that the mind engages in expected utility calculations
during decision making; instead, there is reliable evidence for the
use of heuristics (see Ford et al., 1989; Payne et al., 1993; Friedman
and Sunder, 2011). For instance, Friedman and Sunder (p. 1) con-
cluded in their review of the literature on risky choice from 1950
to 2010:

No such functions [utility or similar Bernoulli functions]
have yet been found that are useful for out-of-sample pre-
dictions. Nor do we find practical applications of Bernoulli
functions in major risk-based industries such as finance,
insurance, and gambling.

The important methodological concept is “out-of-sample pre-
diction.” Expected utility theory or its variants such as prospect
theory can easily fit their parameters to the data after the fact,
but the real test is in prediction, not fitting. “Out-of-sample”
means that the parameters of a model, heuristic, or optimiz-
ing, are fitted to one part (e.g., half) of the sample and the
other part is tested. This is an elementary form of uncertainty,
where not all data are known. Most importantly, neoclassical
economists have never claimed that the brain computes expected
utilities but explicitly emphasize that optimization models do
not describe the cognitive process. Following Friedman’s (1953)
as-if methodology, economists consider these models only as
tools for prediction, making deliberately “wrong” assumptions
that are mathematically convenient. Unfortunately many cog-
nitive neuroscience studies appear to be unaware of this con-
ceptual problem and search for the neural correlates of “as-if”
models.

CONCLUSION
We distinguished between two kinds of problems humans face:
worlds of risk or worlds of uncertainty. In a world of risk (small
world), all relevant alternatives, their probabilities, and their con-
sequences are known for sure and the future is certain. In contrast,
in a world of uncertainty (large world) part of the information is
unknown or has to be estimated from small samples, and surprises
can happen. The second distinction we introduced is between what
decisions people make (the outcome) and how they make them
(the process). Answering the first question leads to as-if models;
answering both questions leads to process models. We argue that
the two distinctions are correlated: As-if models tend to match
small world studies, whereas process models tend to match large
world studies.

We pointed out the strong focus on decision making under
risk in neuroscientific studies, which pay little attention to how
the brain makes adaptive decisions in an uncertain world. That
becomes problematic when the normative and descriptive results
are generalized to how the brain deals with an uncertain world.
In addition, we provided evidence that the normative solution
under risk is not the best one under uncertainty. We also pro-
vided evidence that the cognitive processes for decisions in a
world of risk are not the same as in a world of uncertainty.
The study of behavior in lotteries – and other small world
tasks – does not address the question of how humans make
decisions when the conditions for rationality postulated by the
model of neoclassical economics are not met, a question empha-
sized by Simon (1989). In large worlds, people cannot opti-
mize but instead “satisfice” by relying on the brain’s adaptive
toolbox.

In sum, the current focus of cognitive neuroscience studies on
situations where all risks are known and optimization is possible
imposes limits on the understanding of adaptive brain processes,
both normatively and descriptively. The neural correlations of
cognitive processes such as heuristic search, stopping rules, and
aspiration levels have little chance of being detected and may
even be taken for correlates of expected utility and other as-if
theories.
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