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Increasing age is associated with subtle but meaningful changes in decision-making. It is
unknown, however, to what degree these psychological changes are reflective of age-
related changes in decision quality. Here, we investigated the effect of age on latent
cognitive processes associated with risky decision-making on the Balloon Analog Risk
Task (BART). In the BART, participants repetitively inflate a balloon in order to increase
potential reward. At any point, participants can decide to cash-out to harvest the reward,
or they can continue, risking a balloon pop that erases all earnings. We found that among
seniors, increasing age was associated with greater reward-related risk taking when the
balloon has a higher probability of popping (i.e., a “high risk” condition). Cognitive model-
ing results from hierarchical Bayesian estimation suggested that performance differences
were due to increased reward sensitivity in high risk conditions in seniors.
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INTRODUCTION
The trajectory of cognitive change associated with aging suggests
that some presumably stable cognitive traits can actually vary
across the lifespan. The prevalence and predictability of these
late life changes suggest that common underlying factors may
contribute to these effects, yet it is difficult to identify and dif-
ferentiate such latent cognitive constructs. A recent meta-analysis
has suggested that age-related change in decision quality varies
when learning is involved (Mata et al., 2011). When task dynam-
ics are explicitly understood, differing decision strategies between
age groups are less likely. In contrast, more ambiguous circum-
stances are characterized by potentially maladaptive decisions in
seniors – specifically in risky situations. Here, we investigated the
effect of age on risky decision-making as assessed by the Bal-
loon Analog Risk Task (BART; Lejuez et al., 2002). We sought
to determine what cognitive factors specifically contribute to per-
formance differences using computational methods that facilitate
an understanding of complex performance patterns. Cognitive
modeling offers a promising method for objectively uncovering
such latent parameters (Busemeyer and Stout, 2002), which may
provide closer reflections of the unobservable computations that
contribute to observable behavior (Yechiam et al., 2005; O’Doherty
et al., 2007).

In the BART, participants repetitively inflate or pump a balloon
in order to increase potential reward. At any point, participants
can decide to cash-out to harvest the reward, or they can continue,
risking a balloon pop that erases all earnings. The BART has good
reliability (White et al., 2008) and generalizability to real life impul-
sive behaviors, as demonstrated by correlations between BART
pumps/pops and self-reported psychopathy, sensation seeking,

impulsivity, drug and alcohol use, gambling, and unprotected
sex (Lejuez et al., 2003; Hunt et al., 2005; Wallsten et al., 2005).
Previous findings have detailed how seniors are characterized
by risk aversive behavior on the BART (Henninger et al., 2010;
Rolison et al., 2011). Intriguingly, these findings stand in con-
trast to results from the meta-analysis that found that seniors
were usually characterized by risk-seeking behavior when opti-
mal performance had to be learned (Mata et al., 2011). While
BART performance is clear to interpret, it is difficult to deter-
mine what motivates different performance styles, especially when
learning is involved. For example, an increased number of pumps
could reflect impulsive risky decision-making, yet it could also
reflect a more optimal decision strategy since participants often
overestimate risk (Lejuez et al., 2002; Rao et al., 2008). More-
over, either of these motivations could be orthogonal to accurate
learning.

In light of recent findings that age-related deficits in execu-
tive control may be unspecific and inaccurate (Verhaeghen, 2011),
cognitive process models offer an opportunity to parse variance
in performance to relevant latent constructs related to decision-
making. For example, cognitive modeling has revealed how age-
related variability in response times may be due to a benign impact
of generalized slowing, not task-specific manipulations that pur-
portedly measure executive control (Ratcliff et al., 2006). More
germane to the current investigation, Wood et al. (2005) have
demonstrated that in the Iowa gambling task, young adults inte-
grate reward expectations across a prolonged trial history, whereas
seniors focus more on the most recent trials and are therefore
more sensitive to incidental violations of probabilistic contingen-
cies. Such cognitive process models offer a method for identifying
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candidate underlying processes that occur behind the scenes of
observable behavior.

Capitalizing on a previously published cognitive model of
BART performance (Wallsten et al., 2005; van Ravenzwaaij et al.,
2011), here we aim to decompose observable behaviors to latent
components reflecting reward sensitivity, behavioral consistency,
and learning-related estimation of task probabilities. These latent
parameters can offer a more specific explanation of the cognitive
processes underlying observable behaviors.

MATERIALS AND METHODS
PARTICIPANTS
Young participants (aged 18–30) were recruited from the Univer-
sity of Amsterdam campus. Senior participants (above age 60)
were recruited from the SeniorLab database (www.seniorlab.nl)
of healthy self-selected older adults. Subjects received course
credits or financial compensation for participation. They gave
written informed consent before experimentation. All procedures
were executed in compliance with relevant laws and institutional
guidelines and were approved by the local ethics committee.
The demographics of the final participant groups are as fol-
lows. Young participants: N = 23, female= 12, mean age= 21,
age range= 18–26; senior participants: N = 29, female= 22, mean
age= 73, age range= 63–87. Young and senior participants did
not differ in their verbal intelligence, as assessed with the Ned-
erlandse Leesvaardigheidstest voor Volwassenen (Dutch Reading
test for Adults; Schmand et al., 1991) or in their working mem-
ory, as assessed with the O-span (Turner and Engle, 1989) scored
using the partial-credit unit scoring system (Conway et al., 2005),
t s < 1.5, ps < 15.

BALLOON ANALOG RISK TASK
Participants performed an adjusted version of the BART. A red
balloon was presented in the center of a computer screen (see
Figure 1). Participants could inflate the balloon by pressing the
space bar, or cash the current virtual value of the balloon into a
virtual bank by pressing the right shift button. On every pump the
balloon could also explode; the probability of explosion was var-
ied in two different risk conditions described below. If a balloon
popped, the value of that balloon was lost to the participant, but
the total amount that was previously cashed to the virtual bank
was unaffected. The current value of the balloon was presented on
the balloon in green digits, and in a separate box on the left side of
the balloon. Two boxes on the right side indicated how much vir-
tual money was earned with the previous-balloon, and how much
virtual money the participant had collected on the virtual bank.

The starting radius of the balloon was 150 pixels; the start-
ing value was C 0.00. On every pump the radius of the balloon
increased with 1.2 pixels and the value of the balloon with C 0.05.
The adjustment of the size and current value (on the balloon and
in the left box) was accompanied by the sound of air entering the
balloon for 100 ms. On every pop a picture of an exploded bal-
loon was presented for 1000 ms, accompanied by the sound of an
explosion. The current value of the balloon and the value in the
previous-balloon box were set to C 0.00 and a new balloon was
presented. On every cash moment a yellow dollar sign was pre-
sented in the middle of the screen for 1000 ms, accompanied by

FIGURE 1 | Balloon Analog RiskTask (BART). Participants inflated a
balloon until they decided to cash-out or until it popped and the accrued
earnings on that trial were lost. Participants completed both high and low
risk blocks of the BART.

the sound of an old cash register. The amount of money in the
bank box and the previous-balloon box were adjusted to include
the current earning, the current value of the balloon was set to C
0.00, and a new balloon was presented. The response window for
the participant was unlimited.

Participants first received two short blocks of training. The first
block consisted of five balloons. In this block participants could
only pump the balloon until it popped; they could not cash-out
yet. The five balloons would pop on the 7th, 18th, 28th, 42nd,
and 56th pumps (in random order). The second practice block
consisted of 10 balloons and was similar to the real task, but
with an explosion probability of 3.75% (average of the two real
blocks). In the test phase, participants were presented with two
blocks of 40 balloons. The chance that the balloon would explode
was 2.5 and 5% within each block. Although this constant proba-
bility is different than the increasing probability schedule used in
most studies of the BART, this manipulation allowed us to explic-
itly assess performance during low (2.5%) and high (5%) risk
conditions.

The order of the blocks was randomized between participants.
Participants were informed about the risk prior to beginning each
block, and they were instructed to try to maximize the amount
of virtual money in the bank. To encourage this, 5% of the vir-
tual money in the bank was paid to the participants in addition to
the payment for participation. Outcome variables for each block
included the average number of pumps on cash trials, the num-
ber of popped balloons, as well as the amount of virtual money
earned at the end of the block. In addition, the ratio of the number
of pumps following a cash-out to the number of pumps following
a pop was included as a measure of reward-based risk taking. The
evolution of performance across time was investigated by splitting
each block of 40 trials into four bins of 10 trials each. This analysis
was performed to investigate if age-related differences were spe-
cific to early trials (as in Rolison et al., 2011), which might suggest
differences in initial learning about task contingencies.

COMPUTATIONAL MODELING
To decompose observable behavior into separable latent elements
we used a hierarchical Bayesian extension of the best-fitting
Wallsten et al. (2005) model, as detailed by van Ravenzwaaij
et al. (2011). In hierarchical modeling, individual participants are
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nested within group (young and senior) and condition (low and
high risk) categories, facilitating simultaneous parameter estima-
tion for each condition for each participant. Wallsten et al. (2005)
tested a variety of cognitive process models to distil latent fac-
tors influencing BART task performance. The best-fitting model
(#3 in Wallsten et al., 2005) assumed that the decision maker
updates the probability of explosion after each balloon, and slowly
learns to estimate the explosion probability. Four free parameters
were fit that describe variability between decision-making styles:
two learning-related parameters alpha (α) and mu (µ), a reward
sensitivity parameter gamma (γ+), and a behavioral consistency
parameter beta (β). These parameters are referred to with Greek
letters for the description of computational algorithms; text will
be used otherwise.

The model for each decision maker begins with the assump-
tion that the probability of the balloon bursting on each trial k
is constant: pbelief

k . This means that the balloon is equally likely
to explode on the first pump as in the fourth, for example. The
first trial starts with an a priori belief of the probability of explo-
sion captured by a beta distribution with free scaling parameters
α0 and µ0. This prior belief is then updated according to Bayes’
rule to calculate an updated belief of bursting. The probability of
explosion for the balloon on any given trial is:

pbelief
k = 1−

α0 +
∑k−1

K=0 nsuccess
K

µ0 +
∑k−1

K n
pumps
K

with α < µ

The prior belief is represented by the ratio 1− α0/µ0. This value
then is updated by adding for the numerator the sum of all suc-

cessful pumps so far (excluding the current trial),
∑k−1

K=0 nsuccess
K ,

and for the denominator by adding the sum of all pumps so far,∑k−1
K n

pumps
K .

The next component in the model specifies the number of
pumps considered optimal. The free parameter γ+ influences the
assessment of the optimal number of pumps by weighting the esti-
mated belief of a pop pbelief

k . Note that larger γ+ values leads to
more pumps. Notably, larger estimated γ+ parameters have been
correlated with a greater propensity for real world risky behaviors,
including drug use, unprotected sex, and stealing as reported in
Wallsten et al. (2005). For trial k the optimal number of pumps
ωk, is as follows:

ωk =
−y+

ln
(
1− pbelief

k

) with y+ ≥ 0

The actual probability of pumping the balloon on any oppor-
tunity l for trial k depends on both the optimal number of pumps
ωk, and on the free parameter β which reflects behavioral consis-
tency. A larger β parameter reflects a sharper, more deterministic
response strategy. For example, if β= 0, then the p

pump
kl = 0.5 and

the decision maker will choose randomly between pumping and
cashing. As β increases, behavior becomes more and more deter-
ministic as defined by the optimal number of pumps (l−ωk). A
logistic equation is used to estimate response choices with free
parameter β:

p
pump
kl =

1

1+ eβ(l−ωk )
with β ≥ 0

In the context of Bayesian statistics, van Ravenzwaaij et al.
(2011) extended previous modeling work on the BART task by
introducing a hierarchical extension for the BART models. The
Bayesian approach combined with hierarchical modeling has sev-
eral advantages over standard approaches (i.e., maximum likeli-
hood estimation), primarily by providing more precise parametric
estimates while simultaneously estimating both subject and group
level effects (Wagenmakers et al., 2008; Wetzels et al., 2010; Lee,
2011).

The hierarchical extension draws individual parameters γ+ and
β from normal distributions around estimated group level para-
meters γ+∗ and β∗. The learning parameters α and µ were kept as
subject level parameters since they present a high degree of cor-
relation and do not significantly affect the precision of γ+ and
β estimates (van Ravenzwaaij et al., 2011). Whereas a standard
maximum likelihood approach to model estimation would esti-
mate parameter values which maximize the (log) likelihood of the
model predicting the data, Bayesian models instead follow a differ-
ent approach. Each model parameter is estimated by a probability
function with a unique mean and variance. These functions are
initially set to a uniform or uninformative distribution and are
updated with experience according to Bayes’ rule.

A suitable numerical routine to sample from the posterior dis-
tributions is offered by the Gibbs Sampling algorithm and Markov
Chain Monte Carlo (MCMC) simulations. MCMC relies on sim-
ulating one or more chains of random values sampled from the
posterior distribution until all the chains have converged. Once
convergence has been reached, successive samples can be assumed
to be drawn from the posterior distribution representing the belief
of the decision maker after experience. It is common procedure
to discard initial samples (burn-in) to assure independence of the
final samples from the starting chain values.

In all of the reported simulations the estimates are based on
15,000 iterations after 10,000 iterations of burn-in. For the para-
meters α and µ, uniform distributions were used as uninformative
priors. For the parameters γ+ and β, Gaussian distributions cen-
tered on their group level means, γ+∗ and β∗ were used. For these
group level parameters γ+∗ and β∗, uniform distribution were
once again used as uninformative priors. Three chains were used
in all simulations with random starting values. MCMC sampling
was implemented via the open package OpenBugs (Lunn et al.,
2009) interfaced through the statistical program R. Chain conver-
gence was assessed by means of the Rhat statistic, a scaling factor
which approaches a value of 1 under chain convergence.

Note that the size of the learning rate parameters alpha and
mu were scaled to the specific task used here (due to the con-
stant probability of explosion) and thus are different from pre-
vious studies that used a larger range (c.f. Rolison et al., 2011).
To facilitate comparison across studies, probability density func-
tions were computed based on the alpha and mu parameters. The
mean and variance of these functions were computed for each
participant in each risk condition; these variables were then com-
pared to examine potential differences in learning that would
affect beliefs in the chance the balloon would not pop (the
prior).

To summarize, like van Ravenzwaaij et al. (2011), we used a
hierarchical estimation procedure to estimate gamma (γ+) and
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beta (β) parameters in the best-fitting Wallsten et al. (2005) model.
However, the two learning rate parameters alpha (α) and mu (µ)
remained subject level, since hierarchical estimates provided worse
fits to the data (i.e., there did not appear to be any group level reg-
ularities in these variables). Therefore our model assumed group
level variance for risk sensitivity and behavioral consistency, and
individual differences only for learning through experience. This
hybrid hierarchical procedure created the best model given that:
(1) it fit better than a baseline model which assumed no learning
(Wallsten et al., 2005) as assessed by Deviance Information Cri-
teria (all DIC learning < baseline, learning mean= 137, baseline
mean= 179), (2) it had full convergence where only gamma and
beta parameters from the fully hierarchical van Ravenzwaaij et al.
(2011) model converged, and (3) the hierarchical fits improved
on the single-subject level estimation used by Wallsten et al.
(2005).

RESULTS
PERFORMANCE
Given that the focus of this paper is on aging, only main or
interactive effects with age are described. There were no main or
interaction effects for age group on the average number of pumps
on cash-out trials (Fs < 1). However, there was a significant inter-
action between risk and age group for number of popped balloons
[F(1, 50)= 4.56, p= 0.038], without a main effect of age [F(1,
50)= 2.21, p= 0.14], see Figure 2. Contrasts revealed that seniors
differed in the number of pops between high and low risk condi-
tions (p < 0.01) and age groups differed in the high risk condition
(p= 0.015). To investigate how performance changed over time,
data from each condition was split into four consecutive 10-block
bins. In the low risk condition, there was a significant inter-
action between age group and time [F(3, 50)= 3.80, p= 0.02],
where seniors had more pumps in the third (p= 0.07) and fourth
(p= 0.05) blocks. In the high risk condition, there was a signif-
icant interaction between age group and time [F(3, 50)= 4.087,
p < 0.01], where contrasts revealed that seniors had more pumps
in the last two blocks specifically (ps < 0.01). These performance
differences occurred in the absence of a difference in the amount
of virtual money earned (Fs < 1.9).

Figure 3 demonstrates how in the senior group, age was cor-
related with the number of pops in the high risk condition
[r(29)= 0.44, p= 0.02] and with the difference in pops between
high and low risk conditions [r(29)= 0.50, p < 0.01]. Age also
correlated with an increased ratio of the number of pumps after a
cash-out compared to number of pumps after a pop in the high risk
condition [r(29)= 0.44, p= 0.02] and with the difference in ratios
between the high and low risk conditions [r(29)= 0.53, p < 0.01].
However, after removal of the largest outlying value only this dif-
ference measure remained significant (high risk p= 0.09). This
integrated set of findings suggests that increasing age is associated
with greater reward-based risk taking.

MODEL RESULTS
The cognitive model fit four parameters for each participant dur-
ing each condition: learning rate parameters alpha and mu, reward
sensitivity parameter gamma, and behavioral consistency parame-
ter beta. The reported parameter estimates were all drawn after

convergence of chains (Rhat= 1). The young and senior groups
were drawn from the same posterior distributions in low and high
risk conditions. This suggests that the individual estimates of the
probability of non-explosion (calculated as a beta distribution
from the alpha and mu parameters) would be the same between
age groups for each condition. When comparing the means of
the distributions there was a significant effect of risk, with the
high risk condition having lower estimated probabilities of non-
explosion [F(1, 50)= 40.30, p < 0.01], yet there were no main or
interactive effects with group, and no effects for the variance of
the distributions.

To check whether learning changed over the course of the
hard condition, the means of these distributions for each of the
four blocks of 10 trials were estimated. There were no significant
differences between age groups in the estimated probability of
non-explosion over time (all ps > 0.11). In fact, the young group
actually had marginally higher estimates of non-explosion in three
out of four bins, providing evidence that differential performance
in seniors was not due to a more optimistic learned belief. In con-
junction with the finding of increased pops late in the high risk
condition, these null effects suggest that the age groups were not
characterized by differential learning of explosion probabilities
during task performance.

There were no main or interactive effects with age for the beta
(behavioral consistency) parameter (Fs < 1). However, there was a
significant interaction between risk and age group for the gamma
(reward sensitivity) parameter [F(1, 50)= 4.79, p= 0.033], with
no main effects (Figure 2C). The only significant contrast was
between age groups in the high risk condition, where seniors
were characterized by greater reward sensitivity [t (51)= 2.46,
p= 0.017]. Condition-specific gamma parameters did not sig-
nificantly correlate with age, pumps, pops, virtual earnings, or
the post-cash:post-pop ratio in either age group. Thus, this
model parameter reflects a distinct measure of reward-related
decision-making.

DISCUSSION
This investigation revealed that increased age was associated with
altered BART performance reflective of greater reward sensitiv-
ity during high risk decisions. In fact, age directly correlated with
both pops and post-reward risk taking in the high risk condition
without an increase in earnings. This performance style did not
appear to depend on differences in learning: seniors had greater
high risk reward sensitivity in the context of similar estimation of
reward probabilities.

AGE-RELATED ALTERATION OF PERFORMANCE
Seniors did not differ from the young group in the overall amount
of virtual money earned in either risk condition, and the number
of pumps on cash-out trials was not significantly different from
the young group. While seniors were characterized by a greater
number of popped balloons than young adults, and increasing age
amongst seniors predicted a greater number of pops, it is difficult
to determine whether these performance features reflect a behav-
ioral indicator of poor decision-making. In short, it is difficult to
know if seniors were suboptimal impulsive performers or if they
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FIGURE 2 | Performance means (SEM) for BART outcomes and model
parameters. (A) Although the average number of pumps was nominally
larger in seniors, age groups did not significantly differ from each other with
the exception of late trials in the low risk condition. (B) Age groups
significantly differed in the average number of popped balloons in the high risk

condition, particularly later in the block. (C) The decision quality underlying
these patterns is difficult to interpret, since groups did not differ in the
amount of virtual earnings. However, cognitive modeling revealed that these
performance differences were associated with a heightened reward
sensitivity parameter in seniors in the high risk condition.

were simply following a different strategy – there was no ultimate
difference in earnings between the groups.

The review of Mata et al. (2011) concluded that age-related
decision changes appear to be due to impairments in learning.
These age-related changes were most often associated with an
increase in risk-seeking behaviors, with the specific exception of
two previous findings from the BART. These studies described how
seniors were more risk averse (fewer pumps) when tested with only

ten trials (Henninger et al., 2010; Rolison et al., 2011), yet behav-
ioral trends converged with younger participants over a greater
number of trials (Rolison et al., 2011). As shown in Figure 2,
age-related differences in this investigation did not appear to be
due to early task performance or learning. Rather, the age-related
differences reported here were most prevalent late in each task.

The probabilistic task structure used here may have contributed
to different findings between the current investigation and two
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FIGURE 3 | Age correlated with the number of popped balloons and
post-cash: post-pop ratio of the number of pumps in both the high risk
condition, as well as the increase between the high and low risk
conditions.

previous investigations. As opposed to other studies of the BART,
the probability of a pop in the current investigation did not
increase with each pump; rather it remained a constant value over
time. While this modification facilitated the comparison of two
discrete levels of risk, it may also contribute to differences in repli-
cation across studies. These current findings broadly converge with
the conclusion of Mata et al. (2011) that learning-related change in
cognitive capacities may lead to poorer decision-making. However,
the current findings suggest that seniors may still be character-
ized by risky decision-making even when learning abilities are
comparable with younger subjects.

COGNITIVE MODELING SUGGESTS AGE-RELATED ALTERATION OF
REWARD SENSITIVITY
Cognitive modeling is useful for revealing latent parameters that
underlie complicated patterns of behavior, especially when some
behaviors (pops) but not others (pumps, earnings) significantly
differ between groups. Hierarchical Bayesian estimation revealed
that group level performance differences were reflective of vari-
ance in a latent reward sensitivity parameter, and did not relate
to a change in behavioral consistency. This dissociation between
reward sensitivity and response variability processes is supported
by a rat study that demonstrated how inactivation of differ-
ent cortical structures (mPFC and OFC, respectively) selectively
alters these two performance features (Jentsch et al., 2010). Crit-
ically, participants had a similar estimation of the task structure
and probability of explosions, suggesting that apparent increases
in reward sensitivity were not due to poorer learning of risky
probabilities.

A larger reward sensitivity parameter will directly scale with an
increased probability of inflating the balloon on each trial. While
the ANOVA was non-significant for a group difference in pumps,
it can be seen in Figure 2A that seniors had a larger number of

pumps in the high risk condition compared to young participants
[in fact, this difference was nearly statistically significant in the
high risk condition: t (51)= 1.95, p= 0.056, but not in the low
risk condition: t < 1]. Convergent with this trend, increasing age
predicted riskier decision-making following successes (Figure 3).
Behavioral findings were suggestive of riskier decision-making in
the high risk condition, but the statistical evidence did not sup-
port a strong conclusion from performance differences. Cognitive
modeling provided strong support for a determination of altered
decision-making, revealing an increased sensitivity to reward in
seniors during high risk trials. In sum, an increased sensitivity to
reward in high risk trials led seniors to pump more often, leading
to both greater pops and higher cash-out earnings on a smaller
number of trials; these outcomes equated over trials to similar
virtual earnings between age groups.

POTENTIAL NEURAL SYSTEMS INVOLVED IN ALTERED
DECISION-MAKING IN OLD AGE
There are tremendous individual differences in performance on
reward-based decision-making tasks amongst seniors. These dif-
ferences likely implicate a host of differentially contributing mech-
anisms that underlie altered decision-making. For example, while
many seniors still perform comparably well to young participants
on the Iowa Gambling Task, a much larger percentage of seniors
perform poorly (Denburg et al., 2005). Poor-performing seniors
also fail to show anticipatory skin conductance increases prior
to advantageous choices (Denburg et al., 2006). Other investiga-
tions have described how seniors have reduced neural activity and
diminished affective tone during loss anticipation (Wood et al.,
2005; Samanez-Larkin et al., 2007). These previous findings sug-
gest that a decoupled neuro-visceral response may contribute to
an alteration in risky decision-making.

In line with other studies of risk and reward (Kuhnen and
Knutson, 2005; Wrase et al., 2007), neuroimaging investigations
have detailed how a wide range of frontal cortical and striatal
areas are increasingly active in the BART task in conjunction
with riskier decisions (Rao et al., 2008, 2010). Parkinson’s patients
with impulse control disorders have lower resting blood flow and
lower blood flow reactivity in the striatum during the BART
(Rao et al., 2010). This specific type of Parkinsonian patient
is also influenced by dopamine agonists to increase the num-
ber of pumps (Claassen et al., 2011). These imaging and phar-
macological findings clearly implicate increased cortico-striatal
activity with impulsive risk taking during the BART task. Both
decreased neuro-visceral integration during risk and increased
cortico-striatal reactivity to reward offer plausible hypotheses for
age-related neural changes that could underlie the pattern of
effects observed here.

CONCLUSION
This investigation revealed that increased age was associated
with altered behavioral performance reflective of greater reward
sensitivity during high risk decisions. Age-related structural
or functional change in neural systems underlying neuro-
visceral integration and reward responsiveness are plausible
candidates for this specific developmental change in decision
quality.
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