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How likely are published findings in the functional neuroimaging literature to be false?
According to a recent mathematical model, the potential for false positives increases with
the flexibility of analysis methods. Functional MRI (fMRI) experiments can be analyzed
using a large number of commonly used tools, with little consensus on how, when, or
whether to apply each one. This situation may lead to substantial variability in analysis out-
comes. Thus, the present study sought to estimate the flexibility of neuroimaging analysis
by submitting a single event-related fMRI experiment to a large number of unique analysis
procedures. Ten analysis steps for which multiple strategies appear in the literature were
identified, and two to four strategies were enumerated for each step. Considering all pos-
sible combinations of these strategies yielded 6,912 unique analysis pipelines. Activation
maps from each pipeline were corrected for multiple comparisons using five thresholding
approaches, yielding 34,560 significance maps. While some outcomes were relatively con-
sistent across pipelines, others showed substantial methods-related variability in activation
strength, location, and extent. Some analysis decisions contributed to this variability more
than others, and different decisions were associated with distinct patterns of variability
across the brain. Qualitative outcomes also varied with analysis parameters: many con-
trasts yielded significant activation under some pipelines but not others. Altogether, these
results reveal considerable flexibility in the analysis of fMRI experiments. This observation,
when combined with mathematical simulations linking analytic flexibility with elevated false
positive rates, suggests that false positive results may be more prevalent than expected
in the literature. This risk of inflated false positive rates may be mitigated by constraining

the flexibility of analytic choices or by abstaining from selective analysis reporting.
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INTRODUCTION

How common are false positive results in the functional neu-
roimaging literature? Among functional MRI (fMRI) studies that
apply statistical correction for multiple comparisons, most use a
nominal false positive rate of 5%. However, Wager et al. (2009) esti-
mate that between 10 and 40% of fMRI activation results are false
positives. Furthermore, recent empirical (Ioannidis, 2005a) and
mathematical modeling studies (Ioannidis, 2005b) argue that the
true incidence of false positives may far exceed the nominal rate in
the broader scientific literature. Indeed, under certain conditions,
research findings are more likely to be false than true (Ioannidis,
2005b).

As described in a mathematical modeling study by Ioannidis
(2005b), analytic flexibility is a key risk factor for inflated rates of
false positive results when combined with selective reporting of
favorable analysis methods. Analytic flexibility is defined here as
the range of analysis outcomes across different acceptable analysis
methods. Thus, if many analysis pipelines are considered valid,
and if different methods yield different results, then analysis flex-
ibility is high. When analytic flexibility is high, investigators may
elect to report methods that yield favorable outcomes and omit
methods that yield null results. This practice is known as selective
analysis reporting. For example, a researcher may notice that

an experiment yields positive results when analyzed using head
motion regression, but not when analyzed without using head
motion regression. The researcher may then choose to describe
the former analysis but not the latter when reporting the results
of the experiment. Indeed, investigators in some research fields
appear to pursue this strategy. Reviews of randomized clinical tri-
als show that many studies change outcome measures and other
methodological parameters between study design and publication.
Critically, these changes tend to make results appear more signif-
icant than they would have been under the original analysis plan
(Chan et al., 2004a,b; Dwan et al., 2008; Mathieu et al., 2009).

A recent survey of fMRI methods shows that methodological
decisions are highly variable from study to study (Carp, 2012).
Across 241 published fMRI studies, authors reported using 32
unique software packages (e.g., SPM 2, FSL 3.3) and 207 unique
combinations of design and analysis steps (e.g., spatial normal-
ization, head motion regression). Parameter settings also showed
considerable variability within each analysis step. For example,
spatial smoothing kernels ranged from 3 to 12mm full width
at half maximum, and high-pass filter cutoffs ranged from 0.33
to 750s. Because many studies did not describe critical analysis
decisions, this survey likely understated the true diversity of
experimental methods in the fMRI literature. In other words,

www.frontiersin.org

October 2012 | Volume 6 | Article 149 | 1


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Brain_Imaging_Methods/10.3389/fnins.2012.00149/abstract
http://www.frontiersin.org/Brain_Imaging_Methods/10.3389/fnins.2012.00149/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JoshuaCarp&UID=17672
mailto:jmcarp@umich.edu
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive

Carp

Analytic flexibility in fMRI research

Table 1 | Pre-processing parameters.

Table 2 | Model estimation parameters.

Despiking

Despiking using AFNI No despiking

Slice-timing correction

Slice-timing correction No slice-timing correction

Spatial normalization

Normalization of Normalization of Normalization with
functional images to

the SPM EPI template

anatomical images to
the SPM T1 template

segmentation using
unified normalization

Spatial smoothing
Smoothing with kernel
of 4mm FWHM

Smoothing with kernel
of 8mm FWHM

Smoothing with kernel
of 12mm FWHM

fMRI researchers may choose from a wide array of acceptable
methodological strategies.

Critically, methodological studies suggest that this variability
in analytic strategies may translate into variability in research out-
comes. Countless studies show that individual methodological
decisions can have important effects on estimates of fMRI acti-
vation. For example, temporal filtering (Skudlarski et al., 1999),
autocorrelation correction (Purdon and Weisskoff, 1998; Wool-
rich et al., 2001), global signal regression (Murphy et al., 2009;
Weissenbacher et al., 2009), and head motion regression (Friston
et al., 1996; Lund et al., 2005) can profoundly influence analysis
outcomes. Activation estimates also vary with the order of analysis
steps (Weissenbacher et al., 2009; Carp, 2011) and across analysis
software packages (Smith et al., 2005; Poline et al., 2006). Further,
combinations of analysis decisions may have interactive effects on
research outcomes (Churchill et al., 2012a,b).

However, while many studies have examined the effects of
individual analysis procedures or combinations of procedures on
research outcomes, most of these studies have focused on opti-
mizing the selection of analytic pipelines rather than quantifying
variability across pipelines. For example, Skudlarski et al. (1999)
investigated variations between analysis pipelines in receiver oper-
ating characteristic (ROC) measures; Della-Maggiore et al. (2002)
assessed the effects of differing pipelines on statistical power; and
Strother and colleagues (Strother et al., 2004; Churchill et al.,
2012a,b) evaluated pipelines using reproducibility and prediction
metrics. However, while these studies offer valuable insights into
which procedures should be applied and which parameters should
be used, they did not explicitly assess the variability of research out-
comes across analysis pipelines. In contrast, Hopfinger et al. (2000)
did measure variability in activation amplitude across 36 distinct
pipelines. But this study examined just four analysis steps, rather
than the complete pre-processing and modeling pipelines used in
most current fMRI studies, and focused on regional rather than
whole-brain activation results. Altogether, while a wealth of previ-
ous studies have investigated the question of pipeline optimization,
relatively few have considered the question of pipeline variability.

Thus, expanding on previous studies of analytic flexibility, the
present study estimated the variability of fMRI methods across
10 pre-processing and model estimation steps. Between two and
four options were considered for each step (see Tables 1 and 2).

Normalization-modeling order

Normalize before modeling Model before normalization

High-pass filtering
High-pass filtering No high-pass filtering

using a cutoff of 128s

Temporal autocorrelation correction
AR(1) modeling No correction for temporal

autocorrelation

Run concatenation
Runs concatenated No run concatenation

before model estimation

Model basis set
Finite impulse response’,
time points 3-4

versus baseline

1

'

Hemodynamic
response function

Finite impulse response
time by condition
interaction

Head motion regression

Six regressors2 Twelve Twenty-four No motion

regressors® regressors* regression

"Eight basis functions.

?Raw motion parameters.

°Raw and time-shifted motion parameters.

“Raw, time-shifted, squared, and time-shifted squared motion parameters.

Enumerating all combinations of each of the steps yielded a total
of 6,912 unique analysis pipelines. Activation estimates from each
pipeline were then statistically thresholded and corrected for mul-
tiple comparisons using five commonly used techniques, yielding
34,560 unique thresholded activation maps. By examining a range
of analysis pipelines orders of magnitude greater than those con-
sidered in previous studies, the present investigation yields the
most comprehensive picture of methodological flexibility in the
fMRI literature available to date.

MATERIALS AND METHODS

DATA ACQUISITION

The present study re-analyzed a previously published fMRI study
of response inhibition (Aron et al., 2007). Data were drawn from
the Open fMRI database! (Accession Number: ds000008; Task:
001). Fifteen subjects completed three runs of a standard event-
related stop-signal task and three runs of a conditional stop-signal
task. Only data from the standard stop-signal task were consid-
ered here. The task included three trial types. On go trials, subjects
were instructed to make a motor response; on successful stop tri-
als, subjects were instructed to withhold a response and were able
to do so; and on failed stop trials, subjects were instructed to with-
hold a response but failed to do so. Functional data were acquired
using a 3 T Siemens Allegra MRI scanner (TR: 2 s; TE: 30 ms; flip
angle: 90°; voxel dimensions: 3.125 mm X 3.125 mm X 4.0 mm).
Each of the three functional scanning runs included 176 images.
High-resolution T1 MPRAGE images were also acquired for use

Uhttp://www.openfmri.org
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in spatial normalization (TR: 2.3 s; TE: 2.1 ms; voxel dimensions:
1.0mm x 1.33 mm X 1.33 mm). Complete imaging and behav-
ioral data were only available for 13 of the subjects; the remaining
two subjects were excluded from analysis. Further details on sam-
ple characteristics, task specifications, and imaging acquisition are
given in the original report of these data (Aron et al., 2007).

PIPELINE GENERATION

To generate a large collection of analysis pipelines, five pre-
processing decisions and five modeling decisions for which mul-
tiple strategies appear in the research literature were selected.
Pre-processing decisions, detailed in Table 1, included despiking
(despiking or no despiking), slice-timing correction (slice-timing
correction or no correction), spatial normalization (normalization
to a functional template, to an anatomical template, or using seg-
mentation of anatomical images), and spatial smoothing (FWHM
4, 8, or 12 mm). Modeling decisions, detailed in Table 2, included
the order of normalization and model estimation (images were
normalized before or after model estimation), high-pass filtering
(128 s cutoff or no filtering), autocorrelation correction [AR(1)
correction or no correction], run concatenation (run concatena-
tion or no run concatenation), basis set [canonical hemodynamic
response function, finite impulse response (FIR) with the contrast
of time points 3 and 4 versus fixation, and FIR with the interac-
tion of time point by condition], and head motion regression (6,
12, or 24 motion parameters, or no motion regression). Taking
all combinations of these options yielded 6,912 unique analysis
pipelines.

Despiking was implemented using the 3dDespike tool in AFNI
version 2011_05_26_1456. All other steps were implemented using
SPM 8 release 4010 (Wellcome Trust Centre for Neuroimaging,
UCL, UK) running under Matlab 2011b (The Mathworks, Inc.,
Natick, MA, USA).

Data from each subject were submitted to each analysis
pipeline. Each single-subject model included separate regressors
for go trials, successful stop trials, and failed stop trials. Single-
subject models were combined using random-effects analysis. Test
statistics (i.e., t and F values) were converted to Z-values after
contrast estimation using a transformation adapted from the ttoz
and ftoz utilities in FSL version 4.1.8. All further analysis was based
on random-effects models of the contrast of successful stop trials
versus go trials.

To assess the variability in activation strength across models,
the range of Z-values (referred to hereafter as the analytic range)
was computed for each voxel and for each contrast. In addition,
the range of activation values associated with each analysis step
(despiking, slice-timing correction, etc.) was estimated by com-
puting the mean absolute difference of Z-values over all pairs of
parameter options and over all settings of other analysis para-
meters. For example, to estimate the analytic range attributable
to changes in spatial smoothing kernel, the absolute value of the
differences between (a) 4 and 8 mm FWHM, (b) 4 and 12 mm
FWHM, and (c) 8 and 12 mm FWHM were averaged over all com-
binations of all other analysis parameters for each voxel and each
contrast. Because the analytic range metric used here is based on
variability in Z-values, this metric is sensitive to differences in both
parameter estimates and error variance across pipelines.

Table 3 | Statistical thresholding parameters.

Uncorrected Corrected Cluster

single-voxel single-voxel size

threshold threshold threshold
Monte Carlo @ p < 0.01 p<0.01 n/a Determined by

simulation

Monte Carlo @ p < 0.001 p <0.001 n/a Determined by

simulation
Monte Carlo @ p <0.0001 p <0.0001 n/a Determined by
simulation
False discovery rate n/a p <0.05 n/a
Gaussian random field n/a p<0.05 n/a
theory

Many neuroimaging studies report the locations of peak acti-
vation for contrasts of interest. Indeed, spatial precision is often
advertised as one of the chief virtues of MRI as compared with
other imaging techniques. Thus, the variability of peak activa-
tion coordinates across analysis pipelines was assessed as well.
For each analysis pipeline and each contrast, the coordinates of
the peak activation from each hemisphere were extracted. The
distribution of peak coordinates was then plotted to assess the
spatial dispersion of peak activation locations. To assess vari-
ability in localization within circumscribed regions of interest
(ROIs), coordinates of peak activation were also extracted for each
analysis pipeline within each of two ROIs: a right inferior frontal
gyrus region (comprising the pars triangularis and pars opercularis
regions of the right inferior frontal gyrus) and a right temporal
cortex region (comprising the right superior and middle tempo-
ral gyri). All ROIs were defined using the Automatic Anatomical
Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).

The 6,912 random-effects statistical maps were also thresholded
and corrected for multiple comparisons according to five strate-
gies (Table 3), yielding 34,560 thresholded maps for each contrast.
Activation maps were thresholded using three versions of a Monte
Carlo simulation procedure, as implemented in the Resting-State
fMRI Data Analysis Toolkit (REST; Song et al., 2011)2. These three
thresholding approaches used uncorrected single-voxel thresholds
of p <0.01, p < 0.001, or p < 0.0001. Cluster size thresholds were
then selected to set the cluster-wise false positive rate at 5% for
each approach. Statistical maps were also thresholded using the
false discovery rate (FDR; Genovese et al., 2002) and Gaussian ran-
dom field theory (RFT; Nichols and Hayasaka, 2003) correction
procedures, as implemented in SPM 8. Both the FDR and RFT
procedures used a corrected single-voxel threshold of p < 0.05;
neither of these methods employed cluster size thresholds.

It is important to note that these thresholding methods take
different approaches to the problem of multiple comparisons.
The Monte Carlo and RFT corrections used here attempt to con-
trol the family wise error at 5%. Using these corrections, 5% of
activation maps should contain at least one false positive acti-
vation. In contrast, the FDR correction attempts to control the

Zhttp://www.restfmri.net
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proportion of false positive voxels, such that 5% of significantly
activated voxels should be false positives in a given activation map.
Further, while the RFT and FDR corrections control the false
positive rate at the level of individual voxels, the Monte Carlo
correction controls the false positive rate at the level of clusters.
Because these thresholding strategies approach the problem of
multiple comparisons in different ways, it was expected that dif-
ferent strategies would yield different results. However, all three
strategies appear to be used interchangeably in published stud-
ies, with many reports describing their chosen approach simply as
“correcting for multiple comparisons.”

All code for generating analysis pipelines, calculating analytic
variability, statistical thresholding, and plotting figures is freely
available online’.

RESULTS

ANALYTIC VARIABILITY OF ACTIVATION STRENGTH

Estimates of activation strength showed substantial variability
across analysis pipelines. Analytic range values (i.e., the range
of Z-values across pipelines) for the contrast of successful stop
trials versus go trials are displayed in Figure 1. Range values var-
ied from 1.14 in the right superior frontal gyrus to 8.83 in the
right superior temporal gyrus, with a median analytic range value
of 3.44. Analytic range also varied with mean activation across
analysis pipelines. Mean activation and analytic range for the
successful stop versus go contrast were highly correlated across
voxels [r(44,614) =0.87, p <0.001], such that voxels with the
strongest activation also showed the greatest variability across
analysis pipelines.

While each analysis step contributed to variability in activa-
tion strength across pipelines, different steps were associated with
distinct patterns of variability across brain regions. For the con-
trast of successful stop trials versus go trials, the analytic range
values for choices of smoothing kernel (Figure 2) and model
basis set (Figure 3) were greatest in regions of maximal mean
activation, including superior temporal gyrus and precuneus. In
contrast, the effects of despiking (Figure 2) and head motion
regression (Figure 3) were generally greatest toward the edges of
the brain, particularly in ventral frontal regions. Other steps, such
as slice-timing correction and spatial normalization, exerted idio-
syncratic patterns of focal effects in a variety of regions across the
brain (Figure 2), whereas autocorrelation correction was associ-
ated with diffuse patterns of change across the brain and ventricles
(Figure 3).

Finally, range maps were moderately correlated across analysis
steps. The mean absolute correlation across voxels between range
maps for all pairs of analysis steps was r = 0.49, with an average
explained variance of R? =0.26. In other words, while different
analysis steps exerted spatially correlated effects on analysis out-
comes across the brain, correlations among step-wise variability
maps explained a minority of the variance associated with other
analysis steps.

Thus, estimates of activation strength showed considerable
variability across analytic pipelines; voxels that showed highly
significant activations under some pipelines yielded null results
under others. Pipeline-related variability was strongly correlated

3https://github.com/jmcarp/fmri-pipe

with average activation, such that activation estimates were most
variable in regions showing the greatest overall activation. Finally,
different analysis steps showed correlated but distinct patterns of
influence across the brain.

ANALYTIC VARIABILITY OF ACTIVATION LOCATION

Activation localization also varied widely across analysis pipelines.
To describe the spatial dispersion of peak activation locations,
the coordinates of the most significant activation were extracted
for each hemisphere and for each pipeline. As seen in Figure 4,
the results showed a considerable degree of consistency across
pipelines: many pipelines yielded maximal activation in the supe-
rior temporal gyrus, the supramarginal gyrus, and the right infe-
rior frontal gyrus. Within these regions, however, peak locations
were widely dispersed, with activations extending along the length
of the sylvian fissure. And many pipelines yielded peak locations
outside these regions. In the left hemisphere, 672 unique peak loca-
tions were observed, with standard deviations of 12.8, 38.5, and
21.8 mm along the x-, y-, and z-axes, respectively. Activation peaks
extended along the anterior-posterior axis from the middle frontal
gyrus (y =63.0) to the middle occipital gyrus (y = —108.875);
along the lateral-medial axis from the middle temporal gyrus
(x=—71.75) to the middle occipital gyrus (x =—18.625); and
along the inferior-superior axis from the posterior cerebellum
(z=—50) to the postcentral gyrus (z=80.0). In the right hemi-
sphere, 534 unique peaks were observed, with standard deviations
of 12.6, 30.4, and 16.4 mm. Peaks ranged along the anterior-
posterior axis from the superior frontal gyrus (y =56.75) to the
middle occipital gyrus (y = —108.875); along the medial-lateral
axis from the posterior cerebellum (x =—15.5) to the superior
temporal gyrus (x =72.0); and along the inferior-superior axis

from the posterior cerebellum (z = —50.0) to the postcentral gyrus
(z=75.0). In all, peaks were identified in 69 of the 128 regions
defined by the AAL atlas.

The foregoing analysis investigated pipeline variability in the
localization of left- and right hemisphere activation peaks. How-
ever, investigators may be more interested in the localization
of peak activation within specific brain regions rather than an
entire cerebral hemisphere. To explore pipeline variability within
circumscribed ROIs, peak activation coordinates were extracted
for each pipeline within ROIs comprising the right inferior frontal
gyrus and the right temporal cortex. This analysis identified 223
unique activation peaks in the right inferior frontal gyrus and
197 unique peaks in the right temporal cortex. As displayed in
Figure 5, activation peaks were distributed widely across the
right inferior frontal gyrus. Peaks in the right temporal cortex
were relatively concentrated toward the center of the region, but
nevertheless extended to span nearly the entire anterior-posterior
and inferior-superior axes of the mask.

In sum, the localization of activation peaks also revealed
both consistency and variability across analysis pipelines. While
many pipelines yielded peak hemispheric activation locations in
a network of regions thought to be related to response inhibi-
tion (Aron et al., 2004), peak locations were scattered widely
throughout these regions, as well as additional regions throughout
much of the brain. Analysis of peak activation distribution within
inferior frontal and temporal regions also revealed considerable
variability in localization across pipelines.
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Mean Activation Analytic Range

FIGURE 1 | Variation in activation strength across analysis pipelines. pipelines. Images are presented in neurological orientation, with the left
Mean activation denotes the average Z-value for each voxel across all hemisphere displayed on the left. Note that color scales differ across
analysis pipelines; analysis range denotes the range of Z-values across all panels.

Despiking Slice Timing Correction
+;@ +20@

F5Q e eE

Spatial Normalization

FIGURE 2 | Variation in activation strength attributable to pre-processing choices. Images are presented in neurological orientation, with the left
hemisphere displayed on the left. Note that color scales differ across panels.
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hemisphere displayed on the left. Note that color scales differ across panels.

FIGURE 3 | Variation in activation strength attributable to model estimation choices. Images are presented in neurological orientation, with the left

High-Pass Filtering

ANALYTIC VARIABILITY OF ACTIVATION SIGNIFICANCE

The previous analyses revealed substantial quantitative variation
in analysis outcomes (i.e., activation strength and location) across
pipelines. Analysis of statistically thresholded images revealed that
qualitative analysis outcomes (i.e., activation significance) varied
with respect to methodological decisions as well. The 6,912 statisti-
cal maps were thresholded and corrected for multiple comparisons

using five strategies: three variants of a Monte Carlo procedure,
as well as FDR and Gaussian RFT corrections (Table 3). These
parameters yielded 34,560 unique thresholded maps for each
contrast.

For the successful stop versus go contrast, the proportion of
significantly activated voxels (excluding non-brain voxels) var-
ied from 0 to 26.3%, with a median of 4.6%. Monte Carlo
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FIGURE 4 | Spatial distribution of peak activation locations across
analysis pipelines across the cerebral hemispheres. Shaded spheres
indicate the locations of activation peaks. Sphere colors denote the base-10

Right Hemisphere

logarithm of the number of pipelines yielding maximal activation for that
location; colors range from blue, indicating a single pipeline, to red, indicating
526 pipelines.

Right Inferior Frontal Gyrus

FIGURE 5 | Spatial distribution of peak activation locations across
analysis within anatomically defined regions of interest (ROls). Red
contour lines indicate the boundaries of the ROls. All images represent lateral
views of the right hemisphere. Shaded spheres indicate the locations of
activation peaks. Sphere colors denote the base-10 logarithm of the number

Right Temporal Cortex

of pipelines yielding maximal activation for that location. For the right inferior
frontal gyrus ROI (left panel), colors range from blue, indicating a single
pipeline, to red, indicating 639 pipelines. For the right temporal cortex ROI
(right panel), colors range from blue, indicating a single pipeline, to red,
indicating 844 pipelines.

simulation with a single-voxel threshold of p <0.01 proved to
be the most liberal procedure, with a median of 12.8% of
brain voxels activated. Monte Carlo simulation with single-
voxel thresholds of p <0.001 and p <0.0001 yielded median
activation proportions of 5.4 and 1.9%, respectively. Using FDR
correction yielded a median activation proportion of 10.8%.
RFT correction was the most conservative approach, with a
median of 0.16% of brain voxels activated. Critically, all five
thresholding methods aimed to control the whole-brain false

positive rate at 5%. Thus, these results suggest that some
thresholding approaches are far more conservative than oth-
ers, even when targeting the same corrected false positive
rate —a point that has been raised in previous studies (e.g.,
Lieberman and Cunningham, 2009) but that merits being repeated
here.

To characterize the likelihood of significant activation across
all 34,560 thresholded maps, the proportion of pipelines yielding
significant activation was computed for each voxel (Figure 6). This
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FIGURE 6 | Activation significance across analysis pipelines using
three variants of a Monte Carlo thresholding procedure. Significance
proportion denotes the fraction of thresholded maps yielding significant
activation for each voxel. Discordance index denotes the level of
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disagreement across threshold maps. Images are presented in
neurological orientation, with the left hemisphere displayed on the left.
Note that color scales range from 0 to 1 for significance proportion and
from 0 to 0.5 for discordance index.

index did not reach 1 (or 100%) for any voxel for the successful
stop versus go contrast. In other words, no voxels showed sig-
nificant activation under all analysis and thresholding pipelines.
However, some voxels consistently showed significant activation
over nearly every analytic approach. The peak significance propor-
tion in the right superior temporal gyrus reached 0.93. A subset of
voxels in the right inferior frontal gyrus and right middle occip-
ital gyrus also showed significant activation across a majority of
pipelines, with peak significance proportions of 0.77 and 0.83,
respectively. In contrast, many voxels deep within the arcuate fas-
ciculus yielded significance proportions of zero: these voxels did
not show significant activation under any combination of ana-
lytic and thresholding strategies. Somewhat paradoxically, voxels

showing relatively consistent activation (i.e., high significance
proportion indices) also exhibited relatively strong quantitative
variability across analysis pipelines (i.e., high analytic range values;
R? =0.64); analytic range values in the voxels of peak significance
proportion in the right superior temporal gyrus, the right inferior
frontal gyrus, and the right middle occipital gyrus were 8.13, 6.57,
and 7.05 Z-units, respectively. Finally, nearly all voxels yielded
non-zero significance proportions: 90.3% of brain voxels showed
significant activation for at least some thresholded maps.

Thus, some voxels were significantly activated for nearly all
analysis pipelines; others did not yield significant activation
under any pipelines. However, some voxels yielded less consis-
tent results across pipelines. This disagreement about qualitative
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FIGURE 7 | Activation significance across analysis pipelines using false
discovery rate and Gaussian random field theory error corrections.
Significance proportion denotes the fraction of thresholded maps yielding
significant activation for each voxel. Discordance index denotes the level of

Discordance Index

“

disagreement across threshold maps. Images are presented in neurological
orientation, with the left hemisphere displayed on the left. Note that color
scales range from 0 to 1 for significance proportion and from 0 to 0.5 for
discordance index.

analysis outcomes was assessed at each voxel using the discordance
index:

discordance = minimum(significance proportion, 1 — signifi-
cance proportion).

This index ranged from 0 (when either 0 or 100% of analysis
pipelines yielded significant activation) to 0.5 (when exactly 50%
of pipelines yielded significant activation). Discordance indices
were high, often reaching the theoretical maximum value of 0.5,
in voxels surrounding regions of peak significance proportions
(Figures 6 and 7). For example, voxels bordering the bilateral
superior temporal gyrus and the right inferior frontal gyrus
showed consistently high disagreement across analysis pipelines.
These discordance rings around activation foci likely reflect
the effects of differing spatial smoothing kernels on activation
extent. Additional regions of disagreement included the pre-
cuneus (discordance index = 0.50), anterior cingulate cortex (dis-
cordance index = 0.44), and middle cingulate gyrus (discordance
index =0.30).

Altogether, estimates of the spatial extent of significant activa-
tion and the proportion of thresholded maps showing significant
activation revealed substantial flexibility across methodological
strategies. Furthermore, regions showing strong disagreement
across pipelines were observed throughout the brain, both in the

neighborhood of peak significance proportions and in additional
isolated clusters.

DISCUSSION
According to a mathematical model of bias in scientific research
(Ioannidis, 2005b), the prevalence of false positive results in pub-
lished reports increases with the flexibility of research outcomes.
Research outcomes are flexible to the extent that (a) researchers
have access to a broad range of experimental design and data ana-
lytic strategies and (b) different research strategies yield different
research outcomes. A recent survey of methods used in the fMRI
literature shows that research strategies are highly flexible across
published studies, with nearly as many unique methodological
pipelines as studies in the sample (Carp, 2012). However, the extent
to which flexible research strategies translate into flexible research
outcomes remains unclear. Thus, the present study sought to esti-
mate the flexibility of research outcomes across a wide range of
complete analysis pipelines applied to a single fMRI experiment.
The present results revealed both consistency and variability
across analysis pipelines. Some results were highly stable across
pipelines. For example, voxels in the right superior temporal gyrus,
the right inferior frontal gyrus, and the right middle occipital
gyrus showed significant activation for the successful stop versus
go contrast for atleast 77% of the 34,560 thresholded maps consid-
ered here. Thus, although quantitative responses (i.e., activation
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strength and location) in these regions proved variable across
pipelines, their qualitative responses (i.e., activation significance)
were quite stable. In other words, although we can be very confi-
dent that the level of stop-related activation in right inferior frontal
gyrus is greater than zero, there is much greater uncertainty about
the strength of this activation or its precise location within the infe-
rior frontal gyrus. These observations are consistent with the view
that the right inferior frontal gyrus is specialized for inhibitory
control (e.g., Aron et al., 2004). These results also largely uphold
the conclusions of the original stop-signal experiment by Aron
and colleagues (2007).

However, results also varied considerably from one pipeline
to another. Estimates of activation strength were highly variable
across analytic pipelines: in regions of peak overall activation, sig-
nificance estimates varied by over 8 Z-units. The localization of
peak activation also proved to be strongly pipeline-dependent.
Hundreds of unique peak coordinates were observed for each
contrast, with peak locations scattered throughout much of the
brain. For example, the contrast of failed stop trials versus base-
line yielded activation peaks in 83 of the 128 regions defined by
the AAL atlas. Finally, estimates of statistical significance showed
substantial variability across pipelines as well. For example, for the
successful stop versus go contrast, the proportion of activated brain
voxels ranged across pipelines from 0 to 26.3%. While some vox-
els were consistently activated, others showed strong disagreement
across analysis pipelines.

The flexibility of research outcomes illustrated here, along with
mathematical models linking flexible research methods with ele-
vated false positive rates (Ioannidis, 2005b), suggests that the risk
of false positive results in fMRI research may be greater than
expected. Nearly every voxel in the brain showed significant acti-
vation under at least one analysis pipeline. In other words, a
sufficiently persistent researcher determined to find significant
activation in virtually any brain region is quite likely to succeed.
By the same token, no voxels were significantly activated across all
pipelines. Thus, a researcher who hopes not to find any activation
in a particular region (e.g., to rebut a competing hypothesis) can
surely find a methodological strategy that will yield the desired null
result. If investigators apply several analysis pipelines to an exper-
iment and only report the analyses that support their hypotheses,
then the prevalence of false positive results in the literature may
far exceed the nominal rate.

It is important to note, however, that analytic flexibility only
translates into elevated false positive rates when combined with
selective analysis reporting. In other words, if fMRI researchers
reported the results of all analysis pipelines used in their studies,
then the flexibility documented here would not be problematic. To
the author’s knowledge, there is no evidence that fMRI researchers
actually engage in selective analysis reporting. But researchers in
other fields do appear to pursue this strategy. Surveys comparing
research protocols to published articles show that a majority of
randomized clinical trials add, omit, or replace study outcome
variables — and, critically, that investigators are more likely to
report significant outcomes than non-significant outcomes (Chan
et al., 2004a,b; Dwan et al., 2008; Mathieu et al., 2009). Similarly,
studies of putative brain volume abnormalities in patients with
mental health disorders report far more positive results than would

be expected given their power to detect such effects, likely reflecting
the selective reporting of favorable analysis outcomes (loannidis,
2011). Thus, if fMRI researchers behave like researchers in other
fields, then the methodological flexibility illustrated here would
indeed imply an elevated rate of false positive results in the fMRI
literature.

Critically, selective analysis reporting may occur without the
intention or even the awareness of the investigator. For example,
if the results of a new experiment do not concord with prior stud-
ies, researchers may adjust analysis parameters until the “correct”
results are observed. Researchers may also elect not to describe the
results of all analysis pipelines due to space limitations in journal
articles or to preserve the narrative flow of a manuscript. Finally,
researchers may simply not be aware of the risks posed by selective
analysis reporting. Thus, although the practice of selective analysis
reporting is deeply problematic, it need not reflect any malice on
the part of the researchers who engage in it.

It is also important to note that bias related to analytic flexibil-
ity and selective analysis reporting is not unique to fMRI research.
Indeed, previous studies have argued that selective analysis report-
ing can lead to false positive results in studies of randomized
controlled trials (Chan et al., 2004a,b), brain volume abnormali-
ties in psychiatric disorders (Ioannidis, 2011), and in the broader
research literature (Ioannidis, 2005b). Selective analysis reporting
can contaminate research results in any empirical field that allows
for multiple analytic approaches — in other words, for nearly all
empirical studies.

LIMITATIONS

Although the present study revealed a wide range of research
outcomes for a single experiment, the approach used here likely
underestimated the true flexibility of fMRI analysis methods. The
present study considered two to four parameters for each analy-
sis step, but many more parameters appear in the literature. For
example, while this study considered three normalization tar-
gets, a methodological survey of recent fMRI studies (Carp, 2012)
revealed a range of at least ten unique normalization targets. Sim-
ilarly, while high-pass filtering cutoffs ranged from 0.33 to 750 s in
this methodological survey, the present study only considered two
filtering parameters: a cutoff of 128 s or no temporal filtering.

In addition, a number of key analysis steps were not consid-
ered in the present study. For example, the present approach did
not investigate the effects of different strategies for coregistration
between structural and functional images, for brain extraction
and segmentation, for signal normalization, or for physiological
noise reduction — e.g., as implemented in RETROICOR (Glover
et al., 2000) or PHYCAA (Churchill et al., 2012c¢). Similarly, this
study did not consider tools for the correction or deletion of noisy
slices, brain volumes, or subjects, which may exert strong effects
on analysis outcomes (Tohka et al., 2008; Power et al., 2012).

Furthermore, this study relied largely on analysis steps imple-
mented in the SPM 8 software library. However, fMRI researchers
use several versions of SPM and a wide variety of different software
packages, with 32 unique libraries reported across a recent survey
of fMRI studies (Carp, 2012). Studies may also combine analysis
routines from multiplelibraries, further increasing the flexibility of
methodological approaches in the fMRI literature. This flexibility
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across software options may also contribute to analytic flexibil-
ity. Different libraries may offer different strategies for the same
analysis step. Further, even if multiple packages attempt to imple-
ment the same algorithms, ambiguities inherent in the translation
from natural and mathematical language to computer programs
may nonetheless result in differences between implementations
(Ince et al.,, 2012). Indeed, informal comparisons suggest that
choices of software package can have substantial effects on analysis
outcomes (Poline et al., 2006).

The present study also relied on a relatively small sample size
of 13 subjects. This sample size may have rendered many of the
pipelines underpowered to detect true effects, leading to high rates
of false negative results. However, the median sample size of single-
group fMRI studies is approximately 15 subjects (Carp, 2012).
Thus, while the present study is likely to be underpowered, it is
also about as underpowered as the typical study of its kind. Thus,
analytic flexibility in this sample is likely to be broadly represen-
tative of typical fMRI studies. Nevertheless, future studies should
repeat this analysis using larger sample sizes to determine how or
whether estimates of methods variability change with statistical
power.

In addition, the extent to which the analysis pipelines investi-
gated in this experiment resemble the true distribution of pipelines
in the research literature is unclear. To the extent that the distri-
bution of pipelines considered here differs from the distribution
in the research literature, the present study may either underes-
timate or overestimate the true flexibility of analysis outcomes.
For example, one third of the pipelines considered here estimated
parameters for spatial normalization using the unified segmen-
tation approach of SPM 8. But perhaps fewer or more than one
third of published fMRI reports appear to use this approach. Anal-
ogously, all of the pipelines considered here included some form of
correction for multiple comparisons. But a substantial fraction of
published studies appear not to use such corrections (Carp, 2012).
Thus, the pipelines examined in this study may not be fully rep-
resentative of the pipelines used in published reports. However,
because many published studies do not explicitly report which
analysis steps and parameters were used (Carp, 2012), it is chal-
lenging to determine the true distribution of analysis pipelines in
the literature. Future studies should continue to investigate the
prevalence of different analysis pipelines and the effects of these
pipelines on research outcomes.

Finally, it is important to note that the present study did not
address the issue of which analysis pipelines should be used.
Instead, this study merely sought to estimate the flexibility of
research results across pipelines. As described in the Introduc-
tion, many previous studies have considered the problem of
pipeline optimization (e.g., Strother et al., 2004; Churchill et al.,
2012a,b).

RECOMMENDATIONS

What steps can investigators take to mitigate the risk of false pos-
itive results posed by flexible analysis methods in fMRI studies?
As discussed above, the true range of fMRI methods cannot be
estimated unless research reports describe analysis pipelines in
detail. Thus, researchers should thoroughly describe the analysis
methods chosen, as well as the reasoning behind those choices.

Unfortunately, many published reports do not explicitly describe
critical design and analysis decisions (Carp, 2012). Standardized
reporting guidelines may help fMRI researchers to communicate
methodological choices in greater detail. Such guidelines, which
have been widely adopted by academic journals that publish stud-
ies of randomized controlled trials (Moher et al., 2001), diagnostic
accuracy (Bossuyt et al., 2003), and observational epidemiology
(von Elm et al., 2007), can significantly improve the quality of
methods reporting (Plint et al., 2006). Although no consensus
guidelines for the reporting of fMRI methods exist at present, the
reporting recommendations by Poldrack et al. (2008) provide a
useful starting point.

Flexibility in research methods may be particularly problem-
atic when it is undisclosed (Simmons et al., 2011). For example, a
hypothetical group of investigators might analyze an experiment
using a range of methodological strategies and discover that only
a few strategies yield positive results. If these investigators only
report the pipelines that favor their hypotheses, then readers may
not realize that the results of the experiment depend on (per-
haps arbitrary) methodological decisions. Thus, it is critical that
fMRI researchers report all analysis pipelines used in the course
of data analysis, whether or not those pipelines yielded results
favorable to the researchers’ hypotheses. For example, if a research
team initially used a canonical hemodynamic response function to
model activation time series but later opted to use a finite impulse
response basis set instead, the results of both strategies should be
described in full. Similarly, if researchers discover that a contrast
of interest yields significant activation using Monte Carlo correc-
tion but not using FDR correction, both sets of activation maps
should be reported. If investigators only describe a single analy-
sis pipeline, they should also certify that no additional pipelines
were used. Finally, reviewers can work to mitigate selective analysis
reporting as well. Indeed, Simmons and colleagues (2011) argue
that “reviewers should require authors to demonstrate that their
results do not hinge on arbitrary analytic decisions.” If authors
fail to indicate that they have fully described all analysis pipelines,
reviewers should require them to do so; if reviewers suspect that
critical results may depend on arbitrary methodological decisions,
they may ask authors to defend their choices or to report the results
of equally valid decisions.

Sharing data and analysis code may also help to unmask hid-
den flexibility in the analysis of fMRI experiments. If raw data
for an experiment are freely available, then interested readers may
reanalyze experiments on their own, searching out the analytic
boundary conditions of reported results. Several promising data
sharing initiatives focusing on resting-state imaging (the 1000
Functional Connectomes Project)*, structural imaging (the Open
Access Series of Imaging Studies database)’, and task-based par-
adigms (the Open fMRI database)® are currently underway. Data
from the present study were drawn from the Open fMRI database;
analysis code is freely available online (see text footnote 3).

False positive results driven by analytic flexibility may also
be mitigated by curtailing the range of available methodological

4http://fcon_1000.projects.nitrc.org
Shttp://www.oasis-brains.org
®http://openfmri.org
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strategies. For example, investigators may develop standardized
analysis pipelines that they apply to all of their experiments.
Researchers may also simply adhere to the default options in
their software packages of choice. However, while both of these
approaches have the potential to reduce analytic flexibility and
selective analysis reporting, they may not yield optimal analy-
sis pipelines. Continued methodological research can also shrink
the space of analytic approaches. For example, Sladky et al.
(2011) argue that studies should perform slice-timing correc-
tion (but see also Poldrack et al., 2011, pp. 41-42); Purdon and
Weisskoff (1998) suggest that studies should correct for tempo-
ral autocorrelation; and Lund et al. (2005) argue that studies
should include head motion regression. Following these rec-
ommendations alone would reduce the number of pipelines in
the present study from 6,912 to 1,296; additional research on
optimal procedures and parameters may further reduce experi-
menter degrees of freedom. Pipeline optimization tools developed
by Strother and colleagues can also be used to reduce analysis
flexibility (e.g., Strother et al., 2004; Churchill et al., 2012a,b).
These tools automatically identify the analysis pipelines that max-
imize reproducibility and prediction metrics estimated from the
data on a subject-by-subject basis. Thus, using these methods
reduces the risk that investigators might use a range of analy-
sis pipelines and selectively report those that yield favorable
results.

While these recommendations have the potential to reduce bias
due to analytic flexibility and selective analysis reporting, they do
not address other sources of error and bias. For example, while
reporting the results of all analysis pipelines would (by definition)
eliminate selective analysis reporting, it does not guarantee that
any of the reported pipelines is optimal. As noted above, con-
tinued research on pipeline optimization may help to resolve this

problem. In addition, none of these recommendations can address
the problems of intentional misrepresentation or fraud. The vol-
untary guidelines described here cannot prevent researchers from
covertly engaging in selective analysis reporting and claiming not
to have done so — or from manipulating or fabricating results.
Fortunately, though, relatively few scientists appear to engage in
outright fraud (John et al., 2012).

CONCLUSION

The present study reveals both consistency and flexibility in the
analysis of fMRI experiments. While some research outcomes
were relatively stable across analysis pipelines, others varied widely
from one pipeline to another. Given the extent of this variability, a
motivated researcher determined to find significant activation in
practically any brain region will very likely succeed —as will another
researcher determined to find null results in the same region. To
mitigate the effects of this flexibility on the prevalence of false posi-
tive results, investigators should either determine analysis pipelines
a priori or identify optimal pipelines using data-driven metrics. If
researchers use multiple pipelines to analyze a single experiment,
the results of all pipelines should be reported — including those
that yielded unfavorable results. If implemented, these steps could
significantly improve the reproducibility of research in the fMRI
literature.
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