
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 11 January 2013

doi: 10.3389/fnins.2012.00182

The roles of oxytocin and CD38 in social or parental
behaviors
Olga Lopatina1, Alena Inzhutova1 †, Alla B. Salmina1 and Haruhiro Higashida1,2*
1 Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
2 Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan

Edited by:
Richard Paul Ebstein, Yale University,
USA

Reviewed by:
Yoichi Ueta, University of
Occupational and Environmental
Health, Japan
Kazuhiro Nakamura, Kyoto University,
Japan

*Correspondence:
Haruhiro Higashida, Research Center
for Child Mental Development,
Kanazawa University, Takara-Machi
13-1, Kanazawa 9208640, Japan.
e-mail: haruhiro@med.kanazawa-u.
ac.jp

†Deceased, August 29, 2012.

The nine amino acid peptide oxytocin (OXT) has been directly associated with different
types of behavioral reactions. The formation and maintenance of social relationships in
youth and middle age are important components of human mental health. A deficit in
healthy behavioral formation leads to social isolation and limitation of well-being. Mice are
social animals and are therefore useful for investigating the neurobiological mechanisms of
cognitive process control, including the development of social relationships and social skills.
Studies in mice may broaden our understanding of the human condition. The multifunc-
tional protein CD38/ADP-ribosyl cyclase is highly expressed in the brain, plays an important
role in central OXT release, and regulates social memory. In this review article, we discuss
the mechanisms of social behavior affected by the dysregulation of brain OXT function as
a consequence of a lack of CD38. OXT bound to OXT receptors initiates autoregulatory
positive feedback of OXT release in the hypothalamus and posterior pituitary. OXT bio-
behavioral positive feedback is usually implicated in female reproductive systems, but can
also be observed in social behavior. Exogenous stimuli (OXT treatment in vitro, OXT intra-
venous or intraventricular administration, and nasal OXT delivery) initiate activation of OXT
neurons via PKC-CD38/ADP-ribosyl cyclase cascades and result in the modulation of social
behavior in humans and mice. Based on these findings, we reviewed the functions of OXT
and its properties with respect to the development of therapies for human social behavior
impairments in psychological diseases. In addition, preliminary studies of continuous nasal
OXT administration on subjects with autism spectrum disorders are described.

Keywords: oxytocin, social behavior, social experience, parental care, CD38/ADP-ribosyl cyclase activity

INTRODUCTION
The nine amino acid peptide oxytocin (OXT) plays a dual role
with peripheral and central effects in the regulation of many
physiological and pathophysiological processes, including penile
erection and ejaculation (Uckert et al., 2003; Vignozzi et al., 2004;
Thackare et al., 2006), pregnancy and uterine contractions, milk
ejection (Kendrick and Keverne, 1992; Keverne and Kendrick,
1992), osteoporosis (Elabd et al., 2008; Tamma et al., 2009), dia-
betes (Björkstrand et al., 1996; Gutkowska et al., 2009), cancer
(Cassoni et al., 1996, 2002), the functioning of the cardiovascular
system (Jankowski et al., 1998, 2012; Petersson and Uvnäs-Moberg,
2008), sexual activity (Pedersen and Boccia, 2002, 2006), pain
modulation (Yang, 1994; Condés-Lara et al., 2005), stress, trust
(Kosfeld et al., 2005; Hoge et al., 2012), anxiety (McCarthy et al.,
1996; Heinrichs and Domes, 2008; Campbell, 2010), social interac-
tion and bonding (mother-infant bonding or pair bonding) (Popik
et al., 1992; Benelli et al., 1995; Insel, 1997, 2010; Kendrick, 2000;
Young et al., 2001; Wang and Aragona, 2004; Young and Wang,
2004; Ebstein et al., 2009, 2011; Meyer-Lindenberg et al., 2011),
and parental care (Modney and Hatton, 1994; Kendrick et al., 1997;
Meaney, 2001; Fleming et al., 2002; Feldman and Eidelman, 2007;
Feldman et al., 2011; Liu et al., 2012b). OXT is important for the
processing or retention of direct and indirect social information

(Ferguson et al., 2001; Kavaliers et al., 2006; Modi and Young,
2012). The specific pattern of OXT secretion is related to the char-
acteristics of behavioral reactions (Higashida et al., 2010, 2011,
2012a,b; Salmina et al., 2010).

With respect to OXT, we reported that CD38, a type II trans-
membrane protein, which controls leukemia malignancy in blood
cells (Malavasi et al., 2008), is expressed in the brain and required
for OXT secretion in mice (Jin et al., 2007). CD38 possesses ADP-
ribosyl cyclase activity (Lee, 2012) that produces cyclic ADP-ribose
(cADPR) from β-NAD+, which is an abundant substrate in the
brain. cADPR is proposed as an intracellular second messenger, in
that cADPR functions as a cofactor for Ca2+mobilization through
Ca2+-permeable channels (Ca2+-induced Ca2+-release, CICR)
from ryanodine-sensitive Ca2+ pools, resulting in increases of
cytosolic free Ca2+ concentrations ([Ca2+]i). Therefore, it is pos-
tulated that some cellular events such as secretion or cell migration
depend on the formation of cADPR.

In this review, we discuss recent research on the multiple func-
tions of OXT and CD38 in social and parental behaviors. We pro-
pose cellular and systemic mechanisms for OXT and CD38 in social
and parental behaviors, and we draw a schematic model of the sig-
naling mechanism in a comprehensive manner. Finally, we focus
on both single nucleotide polymorphisms (SNPs) of the human
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CD38 gene in relation to autism spectrum disorders (ASDs) and
repetitive treatment of ASD patients with nasal administration of
OXT.

OXYTOCIN AND SOCIAL RELATIONSHIPS IN HUMANS
Oxytocin is involved in different types of mammalian social behav-
ior from rodents to humans in both sexes (Striepens et al., 2011).
Social memory, as part of social behavior, is based on the abil-
ity to recognize conspecific forms (kin, mates, offspring, allies,
and enemies) and is crucial for social life (DeBruine et al., 2008).
In humans, faces provide important information about identity.
OXT improves an individual’s ability to produce normative rat-
ings of others’ emotions based on pictures of the eye regions
of healthy adults (Domes et al., 2007). The blood OXT level is
correlated with feelings of attachment (Tops et al., 2007; Camp-
bell, 2008; Marazziti et al., 2009; Strathearn et al., 2009). OXT
levels in the brain are increased in individuals with higher con-
structive approaches (Dai et al., 2012) compared to those with
attachment avoidance (De Dreu, 2012). OXT may play an impor-
tant health-promoting role in positive couple interactions (Ditzen
et al., 2009).

The physiological functions of OXT in the regulation of men-
tal health are confirmed by numerous studies of neuropsychiatric
disorders. Individuals with obsessive compulsive disorder (OCD),
ASDs, eating disorders, addiction, schizophrenia, and posttrau-
matic stress disorder (PTSD) show dysregulation of OXT levels
(Leckman et al., 1994; Frasch et al., 1995; Marazziti and Cas-
sano, 2003; Marroni et al., 2007; Meinlschmidt and Heim, 2008;
Ishak et al., 2011). Trauma (Pierrehumbert et al., 2010) and
PTSD (Marazziti and Cassano, 2003), as well as depression in
women (Cyranowski et al., 2008), are associated with high pul-
satile OXT levels, and very low OXT levels are associated with
schizophrenia and ASD (Goldman et al., 2008; Kéri et al., 2009;
Yamasue et al., 2009; Higashida et al., 2012b; Modi and Young,
2012).

The formation and maintenance of social relationships in youth
and middle age are essential components of human mental health.
Gaining an understanding of the neural, humoral, and genetic
factors that regulate social behavior is crucial for human well-
being (Kendrick, 2006). A deficit in healthy behavioral formation
(ASD, schizophrenia, or social phobia) leads to social isolation.
Thus, researchers need to understand the molecular mechanisms
that sustain the establishment and modulation of relationships
between individuals, especially in the context of treatment and
drug therapy for patients. At present, little is known about the
molecular mechanisms of OXT secretion in the context of social
behavior in humans (Meyer-Lindenberg et al., 2011). Therefore,
adequate animal models of OXT-mediated behavioral reactions
are urgently required. Mice are social animals and are useful as
models for investigating the neurobiological mechanisms of cog-
nitive process control, which lead to the development of social
relationships and skills. Studies in these animals may broaden our
understanding of the human condition (Baker, 2011). A number
of studies on the neurobiological bases of social behavior with
mouse models have been performed; these studies were enriched
with genetic technology in the form of gene “knockout” model
mice.

OXYTOCIN, SOCIAL MEMORY, AND CD38 IN RODENTS
Male mice deficient in the gene encoding OXT (oxytocin knockout
mice, Oxt−/−) displayed deficits in social recognition (Ferguson
et al., 2000; Modi and Young, 2012) that could be reversed by
intracerebroventricular infusion of OXT, and an infusion of an
OXT antagonist inhibited social recognition in wild-type mice
(Ferguson et al., 2001). This deficit was specific for social recog-
nition: Oxt−/− mice showed no impairments in other forms of
learning or olfactory sensitivity and discrimination (Ferguson
et al., 2000). Similar impairments in social recognition occurred in
female Oxt−/− mice (Choleris et al., 2003). Oxt−/− mice showed
increased anxiety and stress responses to psychogenic and certain
physiological stimuli (Mantella et al., 2003; Amico et al., 2004).
OXT receptor (OXTR) knockout mice (Oxtr−/−) emitted fewer
ultrasonic vocalizations (USV), had higher levels of aggression,
and showed social memory impairment (the latter of which could
be abolished by OXT administration) compared to wild-type lit-
termates (Takayanagi et al., 2005; Crawley et al., 2007; Macbeth
et al., 2009; Sala et al., 2011).

However, social behavioral deficits could be caused not only
by the lack of OXT and OXTR genes, but also by disturbance
of the molecular mechanism involved in the cascade of OXT
release. Deletion of the Cd38 gene in mice leads to deficits in
social behavior due to abnormal central OXT secretion (Jin et al.,
2007; Liu et al., 2008). CD38/ADP-ribosyl cyclase is a trifunc-
tional enzyme, which is involved in the catalysis of cADPR from
NAD+. This enzyme regulates intracellular calcium levels and
is also responsible for hydrolysis of this molecule, as well as the
total NAD+-glycohydrolase activity (Howard et al., 1993; Lee and
Aarhus, 1995; Magni et al., 2004; Salmina et al., 2010; Lee, 2012).
CD38 is expressed in murine (Ceni et al., 2003; Jin et al., 2007) and
human brains (Mizuguchi et al., 1995; Munesue et al., 2010) and
accounts for the majority of ADP-ribosyl cyclase activity in vitro
(Malavasi et al., 2008; Lee, 2012). Cyclase activity corresponding
to CD38 was detected in the brain during early embryonic mouse
development, and the postnatal activity was enhanced until adult
stages (Ceni et al., 2003, 2006).

OXYTOCIN AND CYCLIC ADP-RIBOSE
Oxytocin is mainly synthesized in the paraventricular hypothal-
amic nucleus (PVN) and supraoptic nucleus (SON), stored in
Herring bodies and released into systemic circulation from the
posterior pituitary (Oliver and Schäfer, 1895; Richard et al., 1991;
Figure 1). ADP-ribosyl cyclase activity was demonstrated in the
hypothalamus and posterior pituitary of the mouse brain; the
activity in the hypothalamus was dominant (Jin et al., 2007). Cd38
gene knockout mice (Cd38−/−) show impairment of glucose-
induced increases in cADPR, Ca2+ concentration, and insulin
secretion in pancreatic β-cells and the absence of Ca2+ oscilla-
tions in T cells (Takasawa et al., 1998; Kim et al., 2008). The lack of
CD38 results in decreased ADP-ribosyl cyclase activity, lower levels
of cADPR formation, and dysfunction of CICR; these deficiencies
lead to alterations in OXT secretion in the hypothalamus and pitu-
itary (Jin et al., 2007; Lopatina et al., 2010). This CD38-dependent
secretion was specific to OXT but not to other transmitters, such
as dopamine in the striatum or vasopressin in the hypothalamus
(Jin et al., 2007). Other types of voltage-dependent Ca2+ channels
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FIGURE 1 | Deletion of the Cd38 gene affects ADP-ribosyl cyclase activity, oxytocin release, and social behavior in male mice throughout their
lifespans: significance of weaning.

are also involved in oxytocinergic neurons (Tobin et al., 2011).
Recently, we showed that OXT release is also sensitive to hyper-
thermia and Ca2+ influx via TRPM2 channels (Amina et al., 2010;
Liu et al., 2012a).

SIGNAL TRANSDUCTION AND CD38 IN RODENTS
The reproductive experience, rodent pup stimulation (sucking
and olfactory signals), neurotransmitters, and hormones respon-
sible for establishing parental behavior can activate many recep-
tor complexes. For example, social (paternal) experience coin-
cides with the efficiency of OXTR binding (Parker et al., 2001;
De Jong et al., 2009). Receptor stimulation leads to the ele-
vation of neuronal calcium levels and activation of the pro-
tein kinase C (PKC; Fleming et al., 1999). OXT is released
from the axons of hypothalamic neurons, interacts with OXTR,
and stimulates production of inositol 1,4,5-trisphosphate (IP3)
and diacylglycerol (DAG) through the actions of phospholipase
C (PLC; Gimpl and Fahrenholz, 2001) and PKC (Figure 2).
Thus, this PLC- and IP3-dependent Ca2+ signaling pathway may
function in the mechanism of autoregulation of OXT release
(Lambert et al., 1994), i.e., the direct action of OXT on OXT
neurons mediated by OXTR. The positive feedback mechanism
of OXT release plays a critical and physiological role in caus-
ing uterine contractions during labor and milk release during
breastfeeding in rodents (Moos et al., 1984; Neumann et al., 1994,
1996).

In rats, the binding of OXT to OXTR causes biochemical
and transcriptional changes that account for the immediate and
long-term neuromodulatory effects of OXT (Erwin et al., 2011).
Blocking OXTR reduces lactation-related behaviors (Pedersen and
Boccia, 2003; Bosch and Neumann, 2008), increases anxiety-
related behaviors (Bosch and Neumann, 2008), and affects mater-
nal offensive and defensive behaviors (Bosch et al., 2005; Febo
et al., 2009). An in vitro study showed that OXT stimulates its
own release from tissue blocks containing both SON and PVN
(Moos et al., 1984). Many neuronal OXT responses are important
for particular behavioral or physiological functions. Elucidat-
ing the signal transduction mechanisms mediating the effects of
released OXT on cellular characteristics may reveal the princi-
ples of critical autoregulation for the functioning of the mam-
malian brain (Dayanithi et al., 2000; Landgraf and Neumann,
2004).

We were interested in the mechanism by which CD38/ADP-
ribosyl cyclase is activated after OXTR stimulation in the hypothal-
amus (which leads to secretion of OXT) and how this mechanism
is related to social recognition or social behavior in the Cd38−/−

strain (Jin et al., 2007; Liu et al., 2008).

OXYTOCIN AND CYTOSOLIC CALCIUM IN THE
HYPOTHALAMUS
Our in vitro experiments with the hypothalamus and posterior
pituitary of adult male mice (Lopatina et al., 2010) indicated
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FIGURE 2 | Oxytocin positive feedback control and oxytocin signaling in psychophysiological development.

the involvement of the CD38/Cyclic ADP-ribosyl systems in
the autoregulation of OXT secretion. The maximum increase
in ADP-ribosyl cyclase activity (in crude membranes prepared
from the hypothalamus and posterior pituitary of adult male
mice in response to 10 nM OXT) was 1.6-fold higher than the
pre-exposure levels in the hypothalamus, while the activity was
increased by 2.8-fold in response to 10 pM OXT in the pituitary
(Lopatina et al., 2010). Simultaneous application of vasotocin,
an OXTR antagonist, significantly inhibited the OXT-induced
increase in ADP-ribosyl cyclase activity. Intracellular cADPR lev-
els increased during incubation with OXT for 5 min in a dose-
dependent manner. ADP-ribosyl cyclase was also activated by
kinases via the OXT signaling pathway, which was sensitive to
5 nM staurosporine (a non-selective inhibitor of protein kinases)
and 100 nM calphostin C (a specific PKC inhibitor) in both tis-
sues. The results confirmed that OXT-mediated OXT release in
male mice, and this process was dependent on both cADPR
and Ca2+, which are mediated by PKC (Figure 2). The OXT-
induced reactions in the signal cascade were sensitive to PKC
inhibitors.

The OXT release was observed in tissue blocks acutely isolated
from the mouse hypothalamus, in which the nerve terminals of
the oxytocinergic neurons were not present (Jin et al., 2007). Thus,
OXT secretion observed in such conditions is caused by cell soma,
recurrent axons, and axonal swellings. This somato-axonal OXT
release was closely correlated with intracellular Ca2+ dynamics.
More importantly, the endoplasmic reticulum Ca2+ stores play a

major role in Ca2+ homeostasis in identified OXT neurons because
no release was detected in depletion of stored Ca2+ under the
Ca2+-free condition (Higashida et al., 2010; Salmina et al., 2010).
Because a Ca2+-free medium is assumed to block synaptic trans-
mission, the above results suggest a direct action of OXT on OXT
neurons (Figure 2).

The OXT-induced Ca2+ elevation is due to cADPR-induced
Ca2+ release from intracellular stores mediated by ryanodine
receptors in a PKC-dependent manner, followed by Ca2+ mobi-
lization due to activation of the IP3 receptors, which was not
sensitive to PKC in the mouse hypothalamus (Lopatina et al.,
2011). PKC is involved in the stimulation of ADP-ribosyl cyclase
activity-mediated [Ca2+]i increase, and facilitation of OXT release.
Autoregulation is usually attributed to the female reproductive sys-
tem. Fleming et al. (1999) previously demonstrated that maternal
experience initially stimulates enhanced PKC synthesis and activa-
tion of c-fos gene expression in the maternal system [e.g., medial
preoptic area (MPOA)]. Reproduction-related stimuli cause pos-
itive feedback release of OXT within the brains of lactating rats
(Brunton and Russell, 2010). Our data on parental behaviors
and social recognition, and the findings of our in vitro study
indicate that social (reproductive) experience activates OXT neu-
rons, increases hypothalamic CD38/ADP ribosyl cyclase activity,
stimulates OXT release from the axons and potentially from the
dendrites, and induces OXT autoregulation (Lopatina et al., 2011;
Higashida et al., 2012b). These observations together indicate that
positive feedback of PKC- and cADPR-dependent OXT release
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FIGURE 3 | An oxytocin release feedback loop and potential molecular
targets for pharmacotherapy of alterations in social behavior.

in the hypothalamus and pituitary is important for correct and
efficient social conduct in relation to social stimulation (Figure 2).
OXT initiates activation of OXTR+ neurons through the PKC-
CD38/ADP-ribosyl cyclase cascade, thus leading to modulation of
social behavior in mice. Such a mechanism may also be an impor-
tant component of human social behavior adjustment to external
stimuli (Figure 1).

OXYTOCIN LEVELS IN CD38 KNOCKOUT MICE
To explain this tendency, we measured the plasma OXT levels
in the CD38 knockout mice (Liu et al., 2008). Interestingly, the
plasma OXT levels were comparable in both genotypes during
the first 3 weeks after birth until weaning; this was followed by
a significant reduction of plasma OXT levels in Cd38−/− mice
after the weaning period (>3 weeks). In Cd38−/− mice, ADP-
ribosyl cyclase activity was markedly lower in the hypothalamus
and pituitary from the first postnatal day and was consistently
lower thereafter until the adult stage in comparison with Cd38+/+

mice (Figure 3). The reduced severity of behavioral abnormali-
ties in Cd38−/− pups was due to partial compensation by high
levels of plasma OXT. Therefore, the weaning time in Cd38−/−

mice seems to be a critical period for distinguishing different
plasma OXT levels as the mice transition from the infant to the
adult stage. We speculated that Cd38−/− pups take in OXT from
the dams’ milk, which helps them recover from their own OXT
secretion deficits (Higashida et al., 2010). We found that OXT
was abundant in the mammary gland tissue and milk of lactating
dams of both genotypes. Milk OXT may be transported into the
bloodstream.

This supports the suggestion that maternal behavior is directed
at infant care not only by sustaining protection and nurturing,
but also by permitting a longer period of brain development after
birth (Pedersen, 1999; Feldman and Eidelman, 2007). As expected,
human studies showed that plasma and salivary OXT levels in
mothers are associated with parent and child’s social engagement,
affect synchrony, and positive communicative sequences between

the parent and child (Feldman and Eidelman, 2003; Feldman et al.,
2004, 2010, 2011).

CD38 AND OXYTOCIN SECRETION IN MICE
The plasma and cerebrospinal fluid (CSF) OXT levels were signif-
icantly lower in Cd38−/− mice than Cd38+/+ mice, but the OXT
levels were elevated in the hypothalamus and pituitary, in compar-
ison with wild-type mice. These data clearly demonstrate normal
OXT production and packaging into vesicles in the hypothala-
mic neurons and posterior pituitary nerve endings in Cd38−/−

mice, but altered OXT release into the brain and bloodstream (Jin
et al., 2007; Higashida et al., 2012b). Indeed, the behavioral phe-
notypes of Cd38−/− mice could be normalized by even a single
subcutaneous OXT injection and also by infusion of a virus car-
rying the human CD38 gene into the third ventricle of knockout
mice; this result indicates the requirement of CD38-dependent
OXT secretion for development of special types of social behav-
ior (Jin et al., 2007; Higashida et al., 2010; Salmina et al., 2010;
Figure 2).

We also identified significant abnormalities in maternal nur-
turing behavior in Cd38−/− postpartum mice under stressful
conditions, such as pup–dam separation (Jin et al., 2007). Female
Cd38−/− mice displayed disrupted maternal behavior in the
retrieval test. Wild-type dams retrieved all five test pups very
quickly and directly to the nest arena, whereas Cd38−/− dams
took a significantly longer time to begin retrieval, moved around
continuously, and often dropped the pups during retrieval (sug-
gesting memory loss of the way to the nest), resulting in the pups
becoming scattered in different places. However, after reunion,
Cd38−/− dams fed the pups sufficiently for them to grow to the
same weight as the controls (Jin et al., 2007; Lopatina et al., 2011;
Higashida et al., 2012a).

SOCIAL BEHAVIORS IN CD38 KNOCKOUT MICE
We now describe the social behavior in Cd38−/− mice in rela-
tion to the brain and plasma OXT levels in the context of
CD38/ADP-ribosyl cyclase activity-dependent mechanisms of
OXT secretion. We especially focus on infant male behavior, social
skills in adult males, and parental (maternal and paternal) behavior
in Cd38−/− mice (Figure 3). In addition, we summarize the ADP-
ribosyl cyclase/cADPR-controlled [Ca2+]i signaling involved in
the autoregulatory positive feedback of OXT release in the hypo-
thalamus and posterior pituitary, resulting in special types of social
behavior.

Cd38−/− mice grew well and showed the same weight gain
as wild-type (Cd38+/+) mice (Jin et al., 2007; Liu et al., 2008).
Alterations in locomotor activity and exploration are important
consequences of the paradigms used to study specific processes,
such as learning, memory, and anxiety. The individual and group
locomotor activities (induced by separation stress from the dam)
were significantly higher in 7-day-old Cd38−/− mouse pups than
in Cd38+/+ controls (Liu et al., 2008; Figure 1). Locomotor abnor-
malities are associated with human psychiatric diseases (Gil-Bea
et al., 2007; Touma et al., 2008; Silverman et al., 2011; Won et al.,
2011); these diseases are difficult to model in rodents because of
the variability of symptoms and the absence of verbal commu-
nication (Onaivi et al., 2011). Nevertheless, a number of relevant
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behavioral and social changes have been documented in transgenic
mouse models of neurodevelopmental disorders (Branchi et al.,
2001; Brooks et al., 2005; Crawley, 2007; Moy et al., 2007, 2008;
Wöhr et al., 2011).

OXYTOCIN AND REPRODUCTION EXPERIENCE IN MICE
The search for the mechanisms that control the transmission of
the OXT bio-behavioral feedback loop indicated that social expe-
rience may modulate brain plasticity (Insel and Young, 2001),
and OXT production and functions are based on behavioral and
neural changing mechanisms as well as on genetic mechanisms
(Modney and Hatton, 1994; Fleming et al., 1999). One of the
constituent parts of social experience is the reproductive expe-
rience (including mating, pregnancy, and parturition; Figure 1).
The reproductive experience is also an important factor for the
expression of maternal behavior, and additional parenting experi-
ence is necessary to confer induction of parental maternal behavior
(Okabe et al., 2010; Liu et al., 2012b; Nagasawa et al., 2012).
OXT-induced long-term potentiation is affected by mothering
(Tomizawa et al., 2003). The initial (primiparity and mother-
ing) reproductive experience results in behavioral, hormonal,
and neural changes in the mother that markedly alter subse-
quent reproductive experiences (Pawluski et al., 2006). There-
fore, we examined the positive effect on reproductive experi-
ence in parental behavior by multiparous Cd38−/− dams. They
retrieved pups faster than primiparous Cd38−/− mice, whereas
there were no significant differences between primiparous and
multiparous Cd38+/+ dams in the retrieval test (Lopatina et al.,
2011). The plasma OXT levels were significantly increased in
multiparous dams compared to primiparous dams of both geno-
types. In addition, OXT levels in the hypothalamus and pituitary
were lower in Cd38−/− dams than wild-type controls because
OXT is released into the brain and blood in experienced mice.
ADP-ribosyl cyclase activity in the hypothalamus, but not in
the pituitary, was slightly increased in Cd38+/+ dams. Thus,
mouse maternal OXT is related to the reproductive experience
and positive maternal behavior (Figure 3). Whether this mech-
anism is significant for human maternal behavior remains to be
elucidated.

Associations between peripheral OXT and parenting were
also found in fathers, suggesting that OXT neuronal pathways
may be activated through the provision of paternal care (Feld-
man et al., 2010, 2011; Liu et al., 2012b). The experiments on
the paternal behavior in mice showed that only 40% of first-
time Cd38+/+ sires displayed paternal care in the retrieval test
(Lopatina et al., 2011). Both first- and second-time Cd38−/−

sires showed only 10% retrieval behavior. The time required
to retrieve five pups to the nest was shorter for second-time
Cd38+/+ sires, and this time was associated with increased hypo-
thalamic ADP-ribosyl cyclase activity. Induction of ADP-ribosyl
cyclase activity leads to stimulation of OXT release and elevated
plasma OXT levels as observed in dams. Therefore, the reproduc-
tive experience improves parental behavior, especially in Cd38−/−

dams, suggesting the involvement of OXT systems in repro-
ductive experience-mediated remodeling of the neuroendocrine
system.

SOCIAL INFORMATION TRANSMISSION IN MICE
In mammals, transmission of social information is critical for
the establishment of all aspects of social behavior, sociability,
and sociality: humans use language, while mice have USV, which
may be a measure of social communication in mice (Crawley,
2004). Studies have used pup vocalizations as a sensitive behavioral
endpoint (Iijima and Chaki, 2005; Scattoni et al., 2008). One
standard test for vocalization in mice is the ultrasonic distress
call of pups separated from the dam or removed from the nest
(Winslow et al., 2000; Branchi et al., 2001; Shu et al., 2005). Mouse
pups emit isolation-induced USVs that have the characteristics
of songs, which consist of several different syllable types and the
temporal sequencing includes the utterance of repeated phrases.
The isolation-induced USVs are emitted by both Cd38+/+ and
Cd38−/− pups and have the same frequency (∼70 kHz) and dura-
tion (∼60 ms). The number of USVs was significantly (1.6-fold)
lower in Cd38−/− pups than in Cd38+/+ pups. Reduced USVs
in mice are a useful parameter relevant to the second diagnostic
symptom of autism, impaired communication (Klin et al., 2007;
Scattoni et al., 2008). Our findings in Cd38−/− mice are very simi-
lar to the communicative alterations found in Oxt−/− and Oxtr−/−

mice (Nishimori et al., 1996; Ferguson et al., 2000; Winslow et al.,
2000; Takayanagi et al., 2005; Crawley et al., 2007). However,
Cd38−/− mice have smoother patterns of behavioral expression
than mice lacking the Oxt or Oxtr genes.

SOCIAL RESPONSES AND CD38 IN MICE
The formation and maintenance of social relationships are com-
plex processes that involve several stages of information processing
in the human brain. Investigations of social behavior in animals
generally focus on a single level of processing at a given time
point (Lim and Young, 2006). However, social recognition is nec-
essary for the establishment of social bonds between individuals.
Understanding the neurobiological bases of social recognition and
the use of social information transmission in mice can allow
translation of the proximal mechanisms of sociality to humans
(Tang-Martinez, 2003; Choleris et al., 2004). Individual recog-
nition can be operationally defined as unique modifications; an
animal behaves toward another animal by relying on past expe-
riences that are specific to individuals (Gheusi et al., 1994). The
Cd38 gene deficit is associated with social amnesia in social recog-
nition tasks (Ferguson et al., 2000; Choleris et al., 2004), which
detect the natural propensity of mice to investigate an intruder
mouse that is presented repeatedly. In normal behavior, the social
response of the resident mouse declines to very low levels (habitu-
ation). Cd38−/− males did not habituate to intruder females after
repeated encounters and displayed sustained high levels of inves-
tigation at all encounters with the same female, whereas Cd38+/+

male mice exhibited a significant decline in the investigation time
and positive social memory (Jin et al., 2007; Higashida et al.,
2012b). This amnesia resembles the memory deficit observed
in Oxt−/− and Oxtr−/− mice (Ferguson et al., 2000; Takayanagi
et al., 2005). A single subcutaneous injection of OXT rescued
the social memory deficits of Cd38−/− mice because OXT may
enter the brain, probably due to the blood–brain barrier (BBB)
permeability for OXT or some other pathways (McEwen, 2004;
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Bartz and Hollander, 2006; Hollander et al., 2007; Jin et al., 2007;
Churchland and Winkielman, 2012). Social and individual recog-
nition facilitates social interactions in group life and is considered
to be one of the key evolutionary underpinnings of sociality
(Altizer et al., 2003; Kavaliers et al., 2005; Choleris et al., 2009;
Figure 1).

OXYTOCIN, CD38, AND AUTISM SPECTRUM DISORDERS
A recent series of studies in humans showed that nasal infusion
of OXT increases trust (Kosfeld et al., 2005; Baumgartner et al.,
2008), mindreading (Domes et al., 2007), and generosity (Zak
et al., 2007), indicating an important role of OXT in human social
behavior (MacDonald and MacDonald, 2010; MacDonald et al.,
2011). Furthermore, OXT reduces repetitive behavior in adults
with autism and Asperger’s disorder (Hollander et al., 2003).

Studies have reported associations between parental and infant
OXT levels with the degree of contingent parenting (Feldman and
Eidelman, 2003, 2007; Feldman et al., 2004). Maternal postpartum
behavior has long-term effects on infants’ cognitive, neurobe-
havioral, and social-emotional growth. Mother-infant touch and
contact stimulate OXT release (Matthiesen et al., 2001). OXT and
CD38 are related to higher levels of parental care and longer
episodes of gaze synchrony with infants (Feldman et al., 2012).
Maternal OXT is related to sensitive and emotional behavior (Gor-
don et al., 2010; Strathearn et al., 2012) and an increased blood
oxygenation-level dependent (BOLD) functional magnetic reso-
nance imaging (fMRI) response to infant stimuli in brain areas
rich with OXTR (Strathearn et al., 2009). Paternal OXT is cor-
related with tactile stimulation and exploratory play with tasks
oriented toward their infants (Gordon et al., 2010; Weisman et al.,
2012). Mothers and fathers who provided high levels of tactile
contact to their infants showed an increase in salivary OXT fol-
lowing parent–infant interactions, but no increase was observed
among parents who provided low tactile contact (Feldman et al.,
2010). In a similar way, high and low licking-and-grooming pat-
terns of rat and mouse dams have differential impacts on OXT
expression. In humans, there is a general consensus that both
prenatal and postpartum OXT enhance the formation of close
bonds with the infant and reduce maternal stress reactivity (Nel-
son and Panksepp, 1998; Neumann, 2008; Campbell, 2010). OXT
inhalation increased the fathers’ responsiveness to their toddlers,
particularly in the father-specific pattern (Naber et al., 2010; Weis-
man et al., 2012). Variations in the OXTR gene were related to the
degree of maternal sensitivity to OXT (Bakermans-Kranenburg
and van Ijzendoorn, 2008; Feldman et al., 2010). The importance
of SNPs of OXTR has been discussed in relation to ASDs (Ebstein
et al., 2010; Insel, 2010). OXT activates neural circuitries related to
empathy in women exposed to the crying of an infant (Riem et al.,
2011). The central and peripheral OXT measurements revealed
meaningful differences in parenting behavior in humans, simi-
lar to the roles in other mammals. The matching of rodent and
human studies is valuable for translational research in this field of
medicine.

CD38 mRNA is expressed in many different regions in the
human brain, including the hypothalamus, where CD38 colo-
calizes with oxytocinergic neuronal structures (Munesue et al.,
2010). OXT plasma levels are lower in ASD patients than in

individuals without this disorder (Modahl et al., 1998; Mune-
sue et al., 2010). A mutation in the CD38 gene is associ-
ated with ASD and lower OXT levels (Munesue et al., 2010).
CD38 expression in human lymphoblastoid cell (LBC) lines
obtained from subjects with ASD and their “unaffected” par-
ents demonstrated significant reduction of expression in affected
subjects (Lerer et al., 2009, 2010; Ebstein et al., 2012). The
therapeutic potency of all-trans retinoic acid increases CD38
expression (Ebstein et al., 2011). There are significant correla-
tions between CD38 expression, VABS score and IQ in humans
(Riebold et al., 2011). Similar allele frequencies for the geno-
typed SNPs in men and women and similar correlations between
plasma OXT, CD38, or human OXTR SNP variants and parent-
ing behavior have been observed between human mothers and
fathers (Feldman et al., 2012). However, the predictive effect of
CD38 expression was not confined to the trust-related condi-
tion. Therefore, they suggested a role of CD38 in basal OXT
release rather than OXT release associated with emotional events
in humans (Kiss et al., 2011); although, no direct evidence was
presented.

SUBJECTS WITH AUTISM SPECTRUM DISORDERS TREATED
BY OXYTOCIN
Indeed, positive feedback of OXT-induced OXT release was
recently observed in human males. OXT was shown to enhance
visual scanning of faces, particularly the eye region, as compared to
a placebo. Plasma or salivary OXT levels are significantly increased
after intranasal OXT administration (Andari et al., 2010; Huffmei-
jer et al., 2012). Nasal OXT treatment has minor effects in improv-
ing cognitive empathy and socially motivated learning (Hurle-
mann et al., 2010). However, nasal OXT administration facilitates
trust and reduces social anxiety in conditions of social phobia and
borderline personality disorder (Kosfeld et al., 2005; Bartz and
Hollander,2006; Heinrichs and Domes,2008; Guastella et al., 2009;
Guastella and MacLeod, 2012). OXT improves social cognition
in autistic individuals (Domes et al., 2007; Bartz and Hollan-
der, 2008; Guastella et al., 2010). Nasal OXT spray can modify
social signals and the social feedback process in high-functioning
autistic patients (Andari et al., 2010; Bartz et al., 2010; Hiro-
sawa et al., 2012). Thus, several OXT-controlled processes have
been implicated in different types of mammalian social behav-
ior. In addition, there are three reports that indicate symptomatic
improvement of male and female ASD patients with long-term OT
treatment (Munesue et al., 2010; Higashida et al., 2012b; Kosaka
et al., 2012).

CONCLUSION
In summary, recent data suggest novel mechanisms underlying
social behavior and confirm new molecular targets for phar-
macological corrections of behavioral changes associated with
neurodevelopmental disorders. The plasma OXT level is a reli-
able marker reflecting central oxytocinergic functions in humans.
Rodent models are useful in this research field to investigate the
molecular mechanisms underlying the disturbance of central and
peripheral OXT regulation and to develop new perspectives in
the therapy of human diseases characterized by social behavior
deficits.
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