
ORIGINAL RESEARCH ARTICLE
published: 24 December 2012
doi: 10.3389/fnins.2012.00183

An FPGA-based silicon neuronal network with selectable
excitability silicon neurons
Jing Li 1,Yuichi Katori 2,3 andTakashi Kohno2*
1 Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
2 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
3 FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, Tokyo, Japan

Edited by:
Jonathan C. Tapson, University of
Cape Town, South Africa

Reviewed by:
Emre O. Neftci, Institute of
Neuroinformatics, Switzerland
Theodore Yu, Texas Instruments, Inc.,
USA

*Correspondence:
Takashi Kohno, Graduate School of
Engineering, Institute of Industrial
Science, The University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo
153-8505, Japan.
e-mail: kohno@sat.t.u-tokyo.ac.jp

This paper presents a digital silicon neuronal network which simulates the nerve system
in creatures and has the ability to execute intelligent tasks, such as associative memory.
Two essential elements, the mathematical-structure-based digital spiking silicon neuron
(DSSN) and the transmitter release based silicon synapse, allow us to tune the excitability
of silicon neurons and are computationally efficient for hardware implementation.We adopt
mixed pipeline and parallel structure and shift operations to design a sufficient large and
complex network without excessive hardware resource cost. The network with 256 full-
connected neurons is built on a Digilent Atlys board equipped with a Xilinx Spartan-6 LX45
FPGA. Besides, a memory control block and USB control block are designed to accom-
plish the task of data communication between the network and the host PC. This paper
also describes the mechanism of associative memory performed in the silicon neuronal
network. The network is capable of retrieving stored patterns if the inputs contain enough
information of them. The retrieving probability increases with the similarity between the
input and the stored pattern increasing. Synchronization of neurons is observed when the
successful stored pattern retrieval occurs.
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1. INTRODUCTION
The nervous system transmits signals by cooperation between
neurons and synapses. The neuron generates an overshoot of its
membrane potential (spike) when stimulated by a sufficient large
current. The waveform is distributed to the synapse and causes
neuronal transmitters to be released. The information processing
in the nerve system is autonomous, flexible, and robust against var-
ious signal distortions. The silicon neuronal network is designed
to reproduce activities of the nerve system in real-time. Compared
to the current computers, the silicon neuronal network is based
on the parallel and distributed processing mechanism rather than
the serial centralized framework. This distinctive computational
style is expected to allow real-time and large-scale processing of
advanced task similar to that in the nerve system (Mallik et al.,
2005; Mitra et al., 2009). Besides, the hybrid network constructed
with the silicon and the biological neurons is investigated to learn
complex behaviors in neurons (Le Masson et al., 2002). A silicon
half-center oscillator composed of silicon neurons is proposed
for application as an embedded biomedical device and a motion
controller (Simoni and DeWeerth, 2007).

The ionic-conductance-based model of a neuronal cell
describes its dynamics of ions and ionic channels as exactly as pos-
sible. Though equations of this type of models are generally com-
plex, it can reproduce neuronal dynamics considerably precisely.
Success of the first one, the Hodgkin-Huxley model (Hodgkin and
Huxley, 1952), gave rise to various neuron models of this type.
Silicon neurons that implement this type of models can reproduce
the complex neuronal behaviors, including bursting, tonic firing,

and so on (Mahowald and Douglas, 1991; Simoni et al., 2004;
Yu and Cauwenberghs, 2010). The integrate-and-fire (IF) model
aims to describe the spike generation in neurons with simple
equations without taking ionic dynamics into account (Lapicque,
1907). Later, a leakage term was incorporated to describe attract-
ing nature of the resting state, which formulated the leaky IF (LIF)
model. It is an efficient and compact model but with the tradeoff of
dynamics. Some of neuromorphic chips that implement neuronal
networks with LIF neurons are low power for real-time simulation
and conveniently applicable to various applications, optimization,
recognition, and memory (Chicca et al., 2007; Chakrabartty, 2010;
Arthur et al., 2012). Several efforts to reduce the limitation in
the dynamics of the LIF model resulted to expanded LIF mod-
els including generalized (Jolivet et al., 2004), exponential (Brette
and Gerstner, 2005), and quadratic (Izhikevich, 2006) IF mod-
els. They were implemented to realize simple silicon neurons that
can produce variety of neuronal activities such as spike-frequency
adaptation and autonomous bursting (Rubin et al., 2004; Indiveri
et al., 2010; van Schaik et al., 2010). However, the limited struc-
ture in the LIF model prevents realizing the property of Class II
neurons in the Hodgkin’s classification. A quadratic IF model pro-
posed by Izhikevich (IZH) successfully simulates a wide variety
of neuronal activities by combination of a two-variable differen-
tial equation and reset of the state variables. Whereas most of
the above silicon neurons are realized by the analog electronic
circuit technology, there are several digital circuit implementa-
tions of the LIF (Indiveri et al., 2011) and the IZH (Cassidy and
Andreou, 2008; Thomas and Luk, 2009) models. One of them
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succeeded to realize a large-scale network with 1024 neurons on
a single FPGA chip. In these implementations of the IZH model,
the equations are solved using the floating point operation. One
of the important points in realizing digital silicon neurons that
can simulate various neuronal activities with compact and sim-
ple circuits, is to select a neuron model with such capability and
find a suitable circuit for its implementation. The IZH model is
considerably a good selection because its non-linearity is only
second order and it can be implemented with fewer multipli-
ers than other models with the similar capability. This model,
however, is not fully capable of realizing the graded responses to
the stimulus of Class II neurons. This is because the IZH model
approximate the spike process by reset of the state variables, which
leads to very similar spikes in response to various stimulus. For
example, the maximum membrane potential values in spikes are
uniform (30 mV). Another neuron model named a mathematical-
structure-based Digital Spiking Silicon Neuron (DSSN) model was
proposed (Kohno and Aihara, 2007). This model was designed to
simulate several classes of neurons by simple digital arithmetic cir-
cuits. It was demonstrated that complex behaviors similar to those
in a brain area can be reproduced by an implementation by fixed
point operation circuits, which is expected to reduce the hard-
ware resource requirement in circuit implementation. Because this
model does not approximate the spike process by the reset of the
state variables, it can realize more effectively the graded responses
of Class II neurons than the IZH model. Because the transmit-
ter release at the chemical synapses is controlled by the membrane
potential at the axon terminal, the graded response property of the
neuronal cells is reflected to the amount of synaptic transmitter
release, which is modeled in our silicon synapse as illustrated in
Figure 3. With the DSSN model in Class II mode, the information
of input signal is more directly reflected in the transmitter release
than the other 2 models. With the neuronal models with reset-
ting of the state variables including the IZH model (Figure 3C),
this property is almost ignored although there is a possibility that
it plays some roles in the information processing in the nerve
system.

We implemented a network of the DSSNs and silicon synapses
on a FPGA device. We have developed a silicon synapse model
based on the kinetic ones in (Destexhe et al., 1998) that describes
the transmitter release in the presynapse and information of dura-
tion of a spike. To demonstrate that our implementation is oper-
ating appropriately, we executed an auto-associative memory task,
retrieving a memorized pattern by its fragments, which has been
widely investigated theoretically (Hopfield, 1982; Knoblauch and
Palm, 2001; Sudo et al., 2009). Behaviors of the associative memory
in our network are evaluated by an overlap index (Domany and
Orland, 1987; Aoyagi, 1995). Synchrony of neurons is also inves-
tigated by another index, the phase synchronization index (PSI;
Rosenblum et al., 2001). Similar retrieving ability is also shown
in a network (Arthur et al., 2012) which is composed by the LIF
model based silicon neurons. The LIF model can realize only Class
I neurons whereas the DSSN model in our network can simulate
both Class I and II neurons by selecting appropriate parameters.
In this paper, we report the comparison between the performance
of auto-associative tasks in the networks composed of Class I and
II neurons.

This paper is organized as follows: In the second section, the
model of our silicon neuron and its bifurcation structure are intro-
duced firstly. Then the model of our silicon synapse is presented.
We explain the architecture of the implementation of our sili-
con neuronal network thirdly, including its pipeline structure that
improves the efficiency of circuit area occupation. Fourthly, we dis-
cuss our FPGA implementation and blocks of bidirectional data
transfer with a PC. The experiment results and their analysis are
followed as the third section. The conclusion section follows where
summary, discussion, and views of our future work are presented.

2. MATERIALS AND METHOD
2.1. SILICON NEURON MODEL
We adopted the DSSN model (Kohno and Aihara, 2007) for the
silicon neurons in our silicon neuronal network system. It is a
qualitative model designed from the viewpoint of the non-linear
dynamics, which includes sufficient dynamical structure to realize
the dynamics of Class I and II neurons in the Hodgkin’s classi-
fication (Hodgkin, 1948). It is optimized for implementation by
digital arithmetic circuits and defined by two-variable differential
equations shown as follows:

dv

dt
=
ϕ

τ

(
f (v)− n + I0 + Istim

)
, (1)

dn

dt
=

1

τ

(
g (v)− n

)
, (2)

f (v) =

{
an(v + bn)

2
− cn when v < 0,

−ap
(
v − bp

)2
+ cp when v > 0,

(3)

g (v) =

{
kn
(
v − pn

)2
+ qn when v < r ,

kp
(
v − pp

)2
+ qp when v > r ,

(4)

where v and n denote the membrane potential and a slow variable
that abstractly represents the activity of ionic channels, respec-
tively. Parameter I 0 is a bias constant. In Eq. (1), I stim is the
weighted sum of the postsynaptic inputs from silicon synapses.
Parameters ϕ and τ are time constants. Parameters r, ax, bx, cx,
kx, px, qx for x = n and p, are constants that control the nullclines
of the variables. All the variables and constants in Eq. (1) are
abstracted and do not have a physical unit. By selecting appropri-
ate values for these parameters, both Class I and II neurons can be
realized with parameter set in Tables 1 and 2. Their phase planes,
bifurcation diagrams, and firing frequency are shown in Figure 1.

Figure 1A shows the v − n phase plane of our silicon neuron
model in its Class I mode when I stim= 0. There are three cross-
ing points between the v- and the n-nullclines. They are a stable
equilibrium (S), an unstable saddle point (T), and an unstable
equilibrium (U) from left to right, respectively. Point (S) that cor-
responds to the resting state attracts the state point located near to
it, while (U) repels it. And (T) is known to involve crucially to the
mechanism of the threshold phenomena of the spike generation.
Points (S) and (T) approach each other if I stim is increased. They
coalesce and disappear when I stim reaches I 1, which is called a
saddle-node bifurcation. Point (U) is the only equilibrium point
when I stim gets larger. Figure 1B shows a bifurcation diagram of
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Table 1 | Parameters for Class I mode.

Par. Value Par. Value

an 8.0 ap 8.0

bn 0.25 bp 0.25

cn 0.5 cp 0.5

kn 2.0 kp 16.0

pn −2−2
−2−4 pp 2−5

−2−2

qn −0.705795601 qp −0.6875

ϕ 1.0 τ 0.003

r −0.205357142 I0 −0.205

Table 2 | Parameters for Class II mode.

Par. Value Par. Value

an 8.0 ap 8.0

bn 0.25 bp 0.25

cn 0.5 cp 0.5

kn 4.0 kp 16.0

pp −2−1
−2−4 pp 2−5

−2−2

qn −1.317708517 qp −0.6875

ϕ 0.5 τ 0.003

r −0.104166 I0 −0.23

our model in the Class I mode, where I stim is the bifurcation para-
meter. It allows overviewing the relationship between dynamics of
v and value of I stim. While I stim< I 1, v converges to (S), which is
the only stable state. The limit cycle is generated when I stim= I 1

whose maximum and minimum values of v are plotted in this
figure. If I stim> I 1, v oscillates along this limit cycle.

Figure 1C shows firing frequency in the Class I mode. The
repetitive firing starts with an arbitrarily zero frequency at the
bifurcation point because the moving speed of the state point near
the saddle-node bifurcation point is slow and decreases to zero
when I stim is decreased to I 1. And it increases monotonically if
I stim is increased, which is the property of the Class I neuron.

Figure 1D shows the v− n phase plane in the Class II mode
when I stim= 0. The v- and the n-nullclines cross each other at
a point, stable equilibrium (S). It changes from stable to unsta-
ble when I stim= I 3 via the Hopf bifurcation. The number of
intersections is always one, which is independent of I stim. In a
bifurcation diagram of Figure 1E, a limit cycle appears if I stim

increases and reaches I 2. When I stim is located between I 2 and
I 3, neurons have two stable states, a resting state and a stable
limit cycle that corresponds to periodical firing. Our neuron fires
if I stim increases above I 3 no matter where the initial state is.
In this case, repetitive firing starts with a non-zero frequency
because there is no mechanism that reduces the speed of the
state point (see Figure 1F), which is the property of the Class
II neuron.

2.2. SILICON SYNAPSE MODEL
As described in the introduction, our silicon synapse is based on
the kinetic synapse model (Destexhe et al., 1998). The synaptic

process in response to a single pulse input in our silicon neuron is
described by the following equation.

dĨs

dt
= α̃ [T ]

(
1− Ĩs

)
− β Ĩs , (5)

where, Ĩ s and [T ] represent the postsynaptic current and the
amount of the released transmitter per impinging spike, respec-
tively. Parameters α̃ and β are the forward and the backward rate
constants which represent the rate of the receptors transitioning
from the closed state to the open state and its opposite, respec-
tively. We assume that [T ] has rectangular pulse waveform whose
maximum value is 1 and minimum value is 0, in similar way as in
(Destexhe et al., 1998). The value of [T ] is determined by the mem-
brane potential of the presynaptic neuron; the pulses of [T ] starts
when the membrane potential crosses over the threshold voltage
(0 in this article) and ends when it crosses down the threshold. For
simplification, we defined a new variable Is =

α̃+β
α̃

Ĩs . Then we get
the following equation.

dIs

dt
=

{
(α̃ + β) (1− Is) when [T ] = 1,

−βIs when [T ] = 0,
(6)

It can be written as follows, if we define a new constant
α = α̃ + β.

dIs

dt
=

{
α (1− Is) when [T ] = 1,
−βIs when [T ] = 0,

(7)

The effect of this scaling factor α̃+β
α̃

can be canceled by another
coefficient c in Eq. (8).

Figure 2 illustrates an example of this simplified synaptic activ-
ity when the presynaptic neuron is in the Class II mode and
α= 83.3 and β = 333.3. The stimulus input I stim applied here
is 0.04 for the first 18.75 ms and increases to 0.06 until 37.5 ms
and finally equals to 0.08. The exponential growth and decay
of the postsynaptic input depends on the time duration of the
transmitter release.

Figure 3 illustrates the time duration of the transmitter release
in our silicon synapse model connected to the DSSN and the IZH
models. The neuron models are at oscillatory state in response to
sustained stimulus current I stim. It is apparent that with the DSSN
model in the Class II mode (Figure 3B), our silicon synapse model
can transmit more detailed information of the I stim than with the
other mode (Figure 3A) and the IZH model (Figure 3C).

The weighted sum of the postsynaptic input I stim in Eq. (1) is
calculated by Eq. (8).

I i
stim = c

N∑
j=1

Wij I
j
s (8)

where, parameters i and j are the indices of the neurons, I i
stim is

the stimulus input of neuron i and N is the number of neurons.
The parameter c is a coefficient used to scale I stim into an appro-
priate range and ensure that neurons fire regularly. It equals to
0.060546875 for Class I mode and 0.03125 for Class II mode in
this paper. Weight Wij indicates the strength of the connection
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FIGURE 1 | Phase planes, bifurcation diagrams, and firing frequency
of our silicon neuron model in its Class I and Class II modes. (A)
Phase plane in the Class I mode. Istim =0. (B) Bifurcation diagram in the
Class I mode, where the bifurcation parameter is Istim. I1 =0.005. (C)

Frequency of repetitive firing in the Class I mode. (D) Phase plane in the
Class II mode. Istim =0. (E) Bifurcation diagram in the Class II mode.
I2 =0.009, I3 =0.013. (F) Frequency of repetitive firing in the Class II
mode.

from neuron j to neuron i. The larger absolute value of the weight
Wij means the stronger effect from neuron j to i. A neuron excites
(inhibits) its postsynaptic neuron if Wij is positive (negative).

2.3. ARCHITECTURE OF SILICON NEURONAL NETWORK
We designed a Hopfield-type silicon neuronal network in which
neurons connect to all the other neurons and whose block diagram
is shown in Figure 4.

It is composed of multiple (Nf) silicon neuronal network mod-
ules (SNNMs). An SNNM executes calculation for multiple Nv

silicon neurons and synapses sequentially. The SNNM is com-
posed of three units: a DSSN, a silicon synapse, and an accumulator
units. The DSSN unit calculates the membrane potential v which
is received by the silicon synapse unit to generate the postsynaptic
input Is. An accumulator unit in an SNNM calculates the weighted
sum of Is, which is added with the bias constant I 0 to give stimulus
current to the DSSN unit in the same SNNM. Equations (9–11)
show the function of the DSSN unit and the silicon synapse unit
configured with the Class I neuronal parameters (see in Tables 1

and 2 for values of Class I and Class II parameters). Where, 1t
equals 0.000375 in these equations.

v (t +1t )

=


v (t )+ 1tϕ

τ

(
8v2 (t )+ 4v (t )− n (t )+ I0 + Istim

)
when v < 0,

v(t )+ 1tϕ
τ

(
−8v2 (t )+ 4v (t )− n (t )+ I0 + Istim

)
when v ≥ 0,

(9)

n (t +1t )

=


n (t )+ 1t

τ

(
2v2 (t )+ v (t )+ 1

4 v (t )− 16728
215 − n (t )

)
when v < r ,

n(t )+ 1t
τ

(
16v2 (t )+ 8v (t )− v (t )+ 2560

215 − n (t )
)

when v ≥ r ,

(10)
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Is (t +1t ) =

{
Is (t )+1tα (1− Is (t )) when [T ] = 1,

Is (t )−1tβIs (t ) when [T ] = 0,

(11)

The multiplication operation can be replaced by a shift operation
if the multiplier is a power of two, by which the required hardware
resource is reduced. In the DSSN model, the value of the parame-
ters was selected to realize the bifurcation structure but not the
detailed waveform of spikes. We could find appropriate values for
the coefficients in our model equations in powers of 2 and sums
of 2 power-of-2 numbers. Other parameters like qn and qp are not
powers of 2 because they are not coefficients and are not involved
in the multiplication. Here, we represent v and n using 18-bit
signed fixed point with 15-bit fractions. We chose 18-bit based
on the size of the multipliers in commonly used FPGA devices in
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FIGURE 2 | Numerical simulation of postsynaptic current generation of
the Class II neuron. Istim =0.04 when 0< t ≤18.75 ms; Istim =0.06 when
18.75< t ≤37.5 ms; Istim =0.08 when t >37.5 ms, α=83.3, β = 333.3.

these days. We confirmed that our silicon neuronal network does
not change its dynamic behaviors when bit precision is increased.
Figures 5A,B show block diagrams of the circuits that calculate
the right-hand side of Eqs (9) and (10), the v- and the n-circuits,
respectively. Symbols ×, +, and MUX in the figure represent a
multiplier, an adder, and a multiplexer, respectively. A multiplexer
selects one of input signals with the control signal and forward
the selected input to the output port. A multiplier is shared for all
the multiplicative operations because they share the same input
v. Therefore, a DSSN costs 1 multiplier, 10 adders, and 5 multi-
plexers. These logic units are classified with 3 stages which run in
sequence and cost 3 clocks. The postsynaptic input Is is calculated
by a circuit whose block diagram is illustrated in Figure 5C, which
is composed of 2 adders, 1 multiplexer without the multiplier, and
they run within 2 clocks.

In an accumulator unit, each update step needs (Nf×

Nv− 1)×Nv addition and Nf × N 2
v multiplication operations

according to the Eq. (8) and all these operations can be done
within Nf × N 2

v + 1 clocks because an adder circuit integrates
the result of the multipliers that are operated in parallel. We used
parallel structures to execute this large number of operations and
reduce the number of clocks in a step. For example, if we use 4
multipliers and adders in parallel, the clock number is reduced
to 1/4 except for the last clock for an addition. The time cost of
one update step for the DSSN unit and the silicon synapse unit is
Nv+ 4 clocks. Figure 6 shows the clock cycles for one update step
of the network. These three units execute the calculation in their
pipelined structure. The accumulator unit calculates I stim from

the 1st clock until the (
Nf ×N 2

v
4 + 1)th clock. The DSSN unit starts

running at the (
Nf ×N 2

v
4 − Nv + 3)th clock and total costs Nv+ 2

clocks because it contains 3 stages as shown in Figure 5. While the
silicon synapse unit costs Nv+ 1 clocks because of 2 stages in it.

All of them finish their calculation at the (
Nf ×N 2

v
4 + 6)th clock.

Thus the relationship between the period of an update step 1t
and the running clock of the system fs is described in the following
Eq. (12).

1t =
1

fs

(
Nf × N 2

v

4
+ 6

)
. (12)
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FIGURE 3 |The time duration of the transmitter release in our silicon synapse model connected to the DSSN model in (A) Class I and (B) Class II
modes and (C) the IZH model. Each neuronal model is in the oscillatory state in response to the sustained stimulus Istim.
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synapses sequentially. The SNNM is composed of three units: a
DSSN, a silicon synapse, and an accumulator units. The DSSN unit

calculates the membrane potential v which is received by the silicon
synapse unit to generate the postsynaptic input Is. An accumulator
unit in an SNNM calculates the weighted sum of Is and added with
the bias constant I0 gives stimulus current to the DSSN unit in the
same SNNM.

2.4. FPGA IMPLEMENTATION
We implemented our silicon neuronal network on a FPGA. The
Digilent Atlys FPGA board equipped with Xilinx Spartan-6 LX45
FPGA is selected to construct an all-to-all connected 256-neuron
network (Nf= 16 and Nv= 16). Here, we use block RAMs to store
synaptic weights and 4 multipliers in parallel for the accumula-
tor unit. The multipliers and a part of adders are implemented in
the DSP elements. Device utilization after synthesis by ISE design
tool is listed in Table 3. We integrated a communication mod-
ule that transfers data between the PC and the FPGA device via
the USB port. Control signals are sent to the FPGA and neu-
ronal firing information of the network are sent back to the PC.
The architecture of the total system is illustrated in Figure 7. The
DDR2 memory is utilized as a buffer to avoid the speed con-
flict between data generation in the network and data transfer
through the USB bus. Our silicon neuronal network starts calcu-
lation when it receives the start signal and initial state stimulus
from the PC.

3. RESULTS
We evaluated the functionality of our silicon neuronal network cir-
cuit by constructing an auto-associative memory network, which
retrieves stored memory patterns in response to an input similar
to one of them. The auto-associative memory task is one of the
most fundamental task for the fully connected silicon neuronal
networks because the analysis of spike generation and phase lock-
ing are available to evaluate the properties of the network. This
network is composed of 256 silicon neurons and 2562 synapses.
We considered binary memory patterns denoted by xu

i ∈ {−1, 1} ;
xu

i represents the state of the ith neuron in the uth stored pat-
tern. The weight matrix of this network is calculated by corre-
lation learning using these patterns as follows (Hopfield, 1984).

Wij =

 1
p

p∑
u=1

xu
i xu

j when i 6= j ,

0 when i = j ,
(13)
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FIGURE 5 | Block diagrams of the v -, n-, and Is-circuits. Symbols ×, +,
and MUX mean a multiplier, an adder, and a multiplexer, respectively.
Selection signal to the multiplexer sgn(v ) is the sign bit of v and the same
to sgn(v–r ). Values marked with * represent the multiplication that is
realized by a right or a left shift operation. Multiplication by a negative value
is realized by multiplication by its absolute and then bit inversion and
increment. (A) The block diagram of the v -circuit, which costs 1 multiplier, 5
adders, and 1 multiplexer. (B) The block diagram of the n-circuit, which
costs 1 multiplier, 5 adders, and 4 multiplexers. The logic units in (A,B) are
compiled into the 3-stage pipeline structure. (C) The block diagram of the
Is-circuit, which costs 2 adders and 1 multiplexer. This unit has the 2-stage
pipeline structure. A multiplier is shared in (A,B) because their inputs are
the same.

where p≡ 4 is the number of the stored patterns. Those patterns
we used here are shown in Figure 8A as black-white pictures
with 16× 16 pixels, where black and white represent xu

i = 1
and xu

i = −1, respectively. The external inputs we applied to the
network are based on a stored pattern, but with certain amount
of errors. We prepared input patterns with different amount of
errors for each of 4 stored patterns by randomly inverting pixels.
The error rates vary from 5 to 50% with 5% steps. We show an
example of these patterns, which were generated from the stored
pattern 1 in Figure 8B.

The overlap defined in (Domany and Orland, 1987; Aoyagi,
1995) was calculated to quantify the similarity between the state
of neurons and a stored pattern. The following equations describe

the overlap Mu between the state of neurons and the uth stored
pattern.

Mu (t ) =
1

N
|

N∑
j=1

xu
j exp

(
iφj (t )

)
|, (14)

where N is the number of neurons and φj(t ) is the phase value
of the jth neuron given at time t by Eq. (15) (Rosenblum et al.,
2001).

φj (t ) = 2πk + 2π
t − t k

j

t k+1
j − t k

j

,
(

t k
j ≤ t < t k+1

j

)
(15)

where t k
j is the time when the membrane potential of the jth

neuron grows over the threshold and the transmitter starts to be
released in response to the kth spike. All neurons in our network
fire regularly where phase ϕj(t ) codes the state of the jth neuron.
Thus, according to Eq. (14), we defined that the network success-
fully retrieves the stored pattern if the relevant overlap equals to 1.

Because the synchronization between neurons is important in
such phase-coded network, we analyzed it by the phase synchro-
nization index (PSI) which is proposed in (Rosenblum et al., 2001).
It is calculated by Eq. (16) and takes a value in [0, 1]. The full
synchrony is detected if the PSI equals to 1.

PSI (t ) =
1

N
|

N∑
j=1

exp
(

i2φj (t )
)
|, (16)

where φj(t ) is the phase value defined by the Eq. (15). Here we
chose the coefficient 2 in the exponential part to scale neuronal
phases because phase differences between neurons are 0 orπ when
the input pattern coincides to one of the stored patterns.

We applied an impulse stimulus input I stim for 16.875 ms which
refracts an input pattern. The network is expected running 45
update steps in this period and one update step costs 0.375 ms
when the clock is 2746.67 KHz according to the Eq. (12). In a neu-
ron the initial I stim corresponds to the pixel with value of 1 and
−1, I stim is large and small, respectively. These I stim values are
0.125 and 0 for Class I neurons and 0.0425 and 0 for Class II. Then
I stim equals to 0.074 and 0.0295 for Class I and II neurons after the
impulse. In this task, these I stim were added to I 0 for simplicity just
after the system reset signal (clears registers for v and n to zero) is
disactivated. In applications such as connection with event-based
biomorphics sensors including silicon retina and cochlea (Liu and
Delbruck, 2010), the stimulus input may be applied via the sili-
con synapses dedicated to receive external inputs and pulse width
limiter circuits in case the sensors output too long pulse.

We refer to our neuronal network as in the Class I mode
when all of the neurons are in the Class I mode and the same
to the Class II mode. Figure 9 shows the raster plots of the
memory retrieval in the Class I mode and the input pattern
includes Figure 9A 10%, Figure 9B 20%, and Figure 9C 30%
errors (see Figure 8B). The input pattern appearing in the
network at 15.375 ms. Then the neurons’ activity is controlled
by the dynamics that depend on the value of the weights
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FIGURE 6 | Clock cycles for an update step of our network. The
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SNNM. The logic units, 4 adders and 4 multipliers which belong to the
accumulator unit cost Nf ×N2

v
4
+ 1 clocks because (Nf ×Nv − 1)×Nv addition

and Nf × N2
v multiplication are required in an accumulator unit. The first

stage in the DSSN unit runs at the ( Nf ×N2
v

4
− Nv + 3)th clock, just after the

calculation of Istim of the first neuron. The second and the third stages run
with 1 clock and 2 clocks delay after it. In the silicon synapse unit, the first
stage starts running after the membrane potential v of the first neuron is
obtained in the DSSN unit. So all of the logic units finish their calculation at
the ( Nf ×N2

v
4
+ 6)th clock.

Table 3 | Device utilization on FPGA device.

Logic utilization Utilization Available

Slice registers 14,198 (26%) 54,576

LUTs 18,556 (68%) 27,288

Block RAMs 73 (63%) 116

DSPs 48 (82%) 58

USB

Controller

DDR2

Memory PC

DSSN Network

USB control

block

Memory control

block

FPGA Device

FPGA Board

FIGURE 7 |The architecture of the whole system.

stored in the network. The stored pattern 1 in Figure 8A
and it’s reversed pattern alternately appear from 55.875 ms in
Figure 9A, from 56.625 ms in Figure 9B, and they do not
appear in Figure 9C, which means unsuccessful memory retrieval.
Figure 10 shows the process of memory retrieval and the
properties of synchrony of the neural activities when the network
is in the Class I mode and 5 of patterns in Figure 8B were

(A)

(B) 

1           2           3           4

5%       10%      15%       20%      25%

30%      35%       40%       45%      50%

A

B

FIGURE 8 | (A) Stored patterns and (B) a set of input patterns generated
based on the stored pattern 1.

applied as inputs. If the input pattern contains errors less than
or equal to 20%, the network immediately achieves successful
memory retrieval (M 1= 1) and maintains the retrieved pattern
for the remaining time. If overlaps stabilize, the state of the
network is assumed to be a steady state. In this state of the net-
work, the stored pattern is exactly retrieved on each firing cycle
(Figures 10A,B), and the PSI reaches unity, which indicates that
the neural activities are fully synchronous(Figures 10F,G). When
the input pattern contains 30% errors (Figure 10C), the over-
lap M 1 transiently increases to unity at the beginning and then
decreases to M 1≈ 0.8538 around 0.19275 s, and the PSI also tran-
siently increases to unity and then decreases according to the
changes in the overlap (Figure 10H). When the errors are further
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FIGURE 9 | Raster plots of the memory retrieval in the Class I
mode and the input pattern includes 10, 20, and 30% errors shown
in Figure 8B. The input pattern is observed at 15.375 ms in both (A–C).

The stored pattern 1 and it’s reversed pattern alternately appear from
55.875 ms in (A), and from 56.625 ms in (B). However, they do not
appear in (C).

increased (Figures 10D,E), an accurate stored pattern cannot be
retrieved with errors remaining on the output pattern and the PSI
is also largely decreased (Figures 10I,J). In Figure 11, we plotted
the relation between the overlap and PSI, where PSI is 1 if our
network retrieves a stored pattern completely.

Our neuronal network in the Class II mode achieves success-
ful memory retrieval when the errors are less than or equal to
30% (Figures 12A–C) where the neurons exhibit synchronous
activity (Figures 12F–H). When the errors in the input pattern
are larger than 30%, the network cannot achieve successful mem-
ory retrieval (M 1< 1; Figures 12D,E), and the synchronization
largely decreases to PSI ≈ 0.4 (Figures 12I,J). Thus the relation-
ship between the performance of the memory retrieval and the
synchrony in the Class II mode is similar to that in the Class I
mode (Figure 13).

In order to investigate the reproducibility of the memory
retrieval performance, we tested more cases to evaluate robust-
ness against input errors in the Class I and II mode networks. We
performed 12 trials of above experiment using 12 sets of input
patterns which are generated based on 4 stored patterns and 3
sets for each stored pattern. The 10 different error rates varying
from 5 to 50% of input patters are tested. We calculated the frac-
tion of successful memory retrieval, which attains Mu= 1 in the
steady state of the network dynamics (Figure 14). In the Class
I mode, our neuronal network achieves the successful memory

retrieval in all the cases when errors in a input pattern are less
than or equal to 10%; the fraction of successful memory retrieval
decreases with errors increasing. The fraction becomes 0 when
errors are larger than 40% in the Class I mode network. On the
other hand, the Class II mode network shows completely success-
ful memory retrieval even with the 25% errors. The fraction of the
successful memory retrieval decreases but still keeps around 90%
with the 30% errors, while it is only around 10% for the Class I
mode network. These results suggest that the Class II mode net-
work performs better than the Class I mode network when the
associative memory task is executed.

4. CONCLUSION
We have reported our silicon neuronal network based on the dig-
ital operational circuit, which can be efficiently implemented in
a FPGA device. Our silicon neuron is implemented by using the
DSSN model where neuronal behaviors are abstracted using math-
ematical techniques so that it is capable of realizing behaviors in
both Class I and II neurons with small number of multipliers
to reduce the hardware resource requirement. Because the state
variables are not reset in the spiking dynamics, it is expected
that this model can describe the dependence of spike waveform
on the stimulus far more effectively than the LIF and the IZH
models where resetting of the variables is one of the points that
reduce the complexity in their models and their implementations.
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FIGURE 10 | Responses of associative memory on the Class I
mode network when the patterns in Figure 8B was applied.
Planes (A–E) show the overlaps when the input pattern contains from
10 to 50% errors. In each plane, four colored curves labeled as M1,

M2, M3, and M4 are overlaps between the state of the neurons and
the stored pattern 1, 2, 3, and 4, respectively. Planes (F–J) show the
synchronized properties when the input pattern contains from 10 to
50% errors.
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It restricts dynamics in the spikes by assuming their maximum
values are uniform. The IZH model actually can realize various
neuronal activities including that of Class II neurons, which the
LIF model cannot, though its spikes have a very similar waveform
(Figure 3C). Meanwhile, simplicity in our model is maintained
by reducing the number of multiplications, which is effective to
realize compact digital circuit implementations. By utilizing the
techniques of the phase plane and the bifurcation analyses, we
successfully found the parameters for Class I and II models where
the coefficients are selected in powers of two or sums of two such
numbers. It allows us to replace the multiplications in our model
by shift and add operations except for calculation of the square
of variable v. Thus, our model can be implemented with single
multiplier, which is the same to in (Cassidy and Andreou, 2008).
Their circuit cannot realize the graded response of Class II neurons
because they are implementing the IZH model. In addition, our
silicon neuron circuit can be expanded to a 3-variable version with
no additional multiplier, which can produce autonomous burst-
ing similar to in the IZH model (Kobayashi et al., 2011). It was
also shown that our model can reproduce very complex neuronal

Frontiers in Neuroscience | Neuromorphic Engineering December 2012 | Volume 6 | Article 183 | 10

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Li et al. Silicon neuronal network

1.0

0.5

0.0

M
u

1.0

0.5

0.0

M
u

1.0

0.5

0.0

M
u

1.0

0.5

0.0

M
u

1.0

0.5

0.0

M
u

1.0

0.5

0.0

P
S
I

1.0

0.5

0.0

P
S
I

1.0

0.5

0.0

P
S
I

1.0

0.5

0.0

P
S
I

1.0

0.5

0.0

P
S
I

10% 10%

Time(s)

20% 20%

0 0.2 0.4 0.6 0.8 1.0
Time(s)

0 0.2 0.4 0.6 0.8 1.0

Time(s)
0 0.2 0.4 0.6 0.8 1.0

Time(s)
0 0.2 0.4 0.6 0.8 1.0

Time(s)
0 0.2 0.4 0.6 0.8 1.0

Time(s)
0 0.2 0.4 0.6 0.8 1.0

Time(s)
0 0.2 0.4 0.6 0.8 1.0

Time(s)
0 0.2 0.4 0.6 0.8 1.0

Time(s)
0 0.2 0.4 0.6 0.8 1.0

Time(s)
0 0.2 0.4 0.6 0.8 1.0

30% 30%

40% 40%

50% 50%

A

B

C

D

E

F

G

H

I

J

FIGURE 12 | Responses of associative memory on the Class II
mode network when the patterns in Figure 8B was applied.
Planes (A–E) show the overlaps when the input pattern contains from
10 to 50% errors. In each plane, four colored curves labeled as M1,

M2, M3, and M4 are overlaps between the state of the neurons and
the stored pattern 1, 2, 3, and 4, respectively. Planes (F–J) show the
synchronized properties when the input pattern contains from 10 to
50% errors.

behaviors including chaotic ones by the fixed point representation
(Kohno and Aihara, 2007) that requires less hardware resource
than the floating point representation, which are used in (Thomas
and Luk, 2009). Our silicon synapse model qualitatively describes
process of the transmitter release, receptor activation, and genera-
tion of synaptic current described in the kinetic models (Destexhe
et al., 1998). It was implemented without using multipliers by
selecting 1tα and 1tβ in power of two numbers. The salient
feature of the synaptic output in our model is the time course
of rise and decay that is dependent on the spike width. However
it is usually neglected in other silicon neuronal networks (Cas-
sidy and Andreou, 2008; Thomas and Luk, 2009; Arthur et al.,
2012).

We constructed a fully connected network of 256 neurons on
a Digilent Atlys FPGA board equipped with a Xilinx Spartan-6
LX45 FPGA. Calculating one step of a neuron needs 257 multipli-
cations and 267 additions. This large amount of calculation was
solved by the pipelined and parallel structure based on the tradeoff

between hardware resource requirement and updating speed of the
network.

The functionality of our silicon neuronal network and the sig-
nificance of the Class II model in our silicon neuron were demon-
strated by an auto-associative memory task. Its performance was
evaluated by storing 4 patterns and applying inputs similar to them
but including errors. The result shows that our silicon neuronal
network has potential of retrieving the stored pattern even when
the input pattern contains error and the neurons fire synchro-
nously in case of successful retrieving. The Class II mode network
has higher retrieving probability than the Class I mode network
which is caused by differences of dynamical properties in Class I
and II neurons. We can expect that the retrieving probability of
our network is better than (Arthur et al., 2012) because it can only
realize Class I neurons. It is known that one of the major difference
between Class I and II neurons is the dependence of the spike form
on the input strength. In Class II neurons, it depends strongly on
the input, whereas it is almost constant in Class I neurons. We
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FIGURE 14 | Retrieving probability for the Class I and II mode
networks. Randomly generated 12 sets of patterns based of the 4 stored
patterns (Figure 8A) were used as the input.

expect that this difference is playing at least a partial role in the
performance of the auto-associative task, which will be elucidated
in our future works. In this paper, our silicon neuronal network
was tested only in its fully connected network topology without
any adaptive learning rules. Because any connecting topology can
be realized by disabling appropriate connections in the fully con-
nected one, our system is ready to be tested in any settings. Under
such restrictions, our results support that our silicon neuronal
network can execute one of the most fundamental tasks for the
neuronal networks and its distinctive feature of realizing Class II
neurons can improve retrieving performance.

The custom neuromorphic chips investigated by both FACETs
and NeuroGrid are the compact analog circuits which are com-
posed of the silicon neurons based on the detailed neuron models

(Bruderle et al., 2010; Choudhary et al., 2012). Their circuit is
compact and consumes lower power but is generally sensitive to
the noise and the fabrication mismatch. SpiNNaker simulates the
detailed neuronal model which runs in the software on the embed-
ded ARM processors with a high speed clock (Jin et al., 2010).
Such systems generally consume higher power in comparison to
our silicon neuronal network which is based on the optimized for
implementation model and implemented by the compact and ded-
icated hardware running with a low speed clock. In SyNAPSE, the
digital circuit implementation of the LIF model is used (Arthur
et al., 2012), which we already have mentioned above. For real-
time operation as an artificial nerve system, our silicon neuronal
network requires very low clock frequency around several thou-
sands of kilo hertzs. Each silicon neuron has 256 synaptic inputs,
which will be increased up to about 10,000, which is a typical num-
ber of synaptic connection of a neuronal cell in the neocortex. In
such case, the clock frequency will be about a hundred mega hertz
(about 40 times faster than current frequency). Digital circuits
with such range of clock frequency can be implemented by the
near-threshold logic technology which consumes very low power.
And it also consumes less power in cheap FPGAs. Thus our system
can be suitably applied to robot controllers and compact intelligent
sensor devices. For example, there is a possibility that our silicon
neuronal network is connected to the event-based biomimetic sen-
sors via additional silicon synapses dedicated to external inputs
and realize an intelligent sensor such as retina-like image sen-
sors. On the other hand, our silicon neuronal network can operate
much more faster than the nerve system even in entry-level FPGA
devices. Actually, our system can operate with 100 MHz system
clock, which 40 times accelerated in comparison to the real-time
operation. Thus, our system can be applied as a high speed sim-
ulator of neuronal networks composed of the qualitative neuron
models, which is utilized as an important tool for the connection-
ists. Compared with the event-based network (Chicca et al., 2004),
our network is expected to catch sensitive event information for
its high speed operation and low power consumption.

In our future works, we will evaluate performance of our silicon
neuronal network in the auto-associative task more in detail from
theoretical viewpoints. It includes the comparison of the perfor-
mance between our DSSN model’s and the IZH model’s networks
as well as the evaluation of the memory capacity and the effect of
introducing the STDP learning rules into both of the networks.
This will elucidate more clearly how the neuron classes affect the
performance of the auto-associative memory task. The large-scale
network will also be pursued that can be implemented in a single
FPGA chip, which will be applied to realizing intelligent sensors
including retina-like image sensors. We expect possibility that the
selectivity of neuron classes in our silicon neuronal network can
improve such devices.
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