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We present an FPGA implementation of a re-configurable, polychronous spiking neural
network with a large capacity for spatial-temporal patterns. The proposed neural network
generates delay paths de novo, so that only connections that actually appear in the training
patterns will be created. This allows the proposed network to use all the axons (variables)
to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add
dynamics to the network. We use a time multiplexing approach allowing us to achieve
4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA.
Test results show that the proposed neural network is capable of successfully recalling
more than 95% of all spikes for 96% of the stored patterns. The tests also show that the
neural network is robust to noise from random input spikes.
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INTRODUCTION
The vast majority of neuromorphic systems developed to date use
synaptic weight adaptation to encode information (Boahen, 2006;
Indiveri et al., 2006; Serrano-Gotarredona et al., 2009; Giulioni
et al., 2011; Pfeil et al., 2012). In this paper we present a system
that uses axonal delays to encode and process information.

POLYCHRONOUS NEURAL NETWORK
Polychronization is the process in which spikes travel down axons
with specific delays to arrive at a common target neuron simul-
taneously and cause it to fire, despite the source neurons firing
asynchronously (Izhikevich, 2006). Neural networks based on this
principle are referred to as “polychronous” neural networks which
are capable of storing and recognizing quite complicate spatial-
temporal patterns. Izhikevich (2006) calls these spatio-temporal
patterns groups and concludes that “spiking networks with delays
have more groups than neurons. Thus, the system has potentially
enormous memory capacity and will never run out of groups,
which could explain how networks of mere 1011 neurons (the size
of the human neocortex) could have such a diversity of behav-
ior.” This feature makes a large-scale polychronous spiking neural
network an ideal candidate to be used to implement a short-term
memory for spatio-temporal patterns. Short-term memory is one
of the key parts in cognitive systems.

According to Indiveri and Horiuchi (2011), in their open-
ing editorial for this journal: “One of the Grand Challenges of
Neuromorphic Engineering is to demonstrate cognitive systems
using hardware neural processing architectures integrated with
physical bodies (e.g., humanoid robots) that can solve every-
day tasks in real-time.” Our aim is to address this challenge in
part by studying the hardware implementation of polychronous
networks and the future use of such an implementation as a
short-term memory for spatio-temporal patterns in a cognitive

neuromorphic system. Here, we report on the first step in this
process, i.e., our implementations using FPGAs to implement such
a network.

SPATIAL-TEMPORAL PATTERNS
Figure 1 shows an example of a spatial-temporal pattern involving
five neurons. The threshold voltage of each neuron is set so that
it will fire if two pre-synaptic spikes arrive simultaneously. When-
ever a neuron fires, its spike is transmitted to all connected neurons
via its axonal connections, each of which has its own independent
delay. These spikes will then generate post-synaptic currents at the
connected neurons.

The example pattern starts when neuron 1 fires at time 0 and
neuron 5 fires at time T 1. The spikes from both neurons will arrive
at neuron 3 at time T 1+T 2, and together they will induce neuron
3 to fire at time T 1+T 2. In the same manner, the spikes from
neuron 5 and neuron 3 arrive at neuron 2 simultaneously at time
T 1+T 2+T 3 and will cause neuron 2 to fire. This process will
continue as long as at least two spikes arrive simultaneously at a
neuron in the network.

Two procedures are needed to use a polychronous network
(such as the one presented above) to memorize and recall spatial-
temporal patterns. The first is a training procedure in which the
connection delay values of the axon paths between neurons are
configured in order to meet the required timing relations of a
given pattern. The second is a recall procedure, needed to retrieve
a pattern that has been stored in the neural network through train-
ing. A pattern can be recalled by presenting the first few spikes of
the pattern to the network, after which the network will continue
the pattern if it is recognized. For example, to recall the example
pattern shown above, neuron 1 needs to fire at time T 0 and neuron
5 needs to fire at time T 1. Together they will cause neuron 3 to fire
and the remainder of the pattern will be induced by the network.
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FIGURE 1 | Example of a spatial-temporal pattern. The neurons fire
asynchronously while their spikes arrive at the destination neurons
synchronously, after traveling along axons with appropriate delays. This
time-locked relation is the key feature of the spatial-temporal patterns.

The goal of the training procedure is to assign appropriate
connection delays to axons in the polychronous neural network
so that is able to recall a specific pattern. Generally, this task can be
carried out in one of two ways. The first method, which we refer
to as delay selection, supposes that the delay values of the connec-
tions between neurons are random, and fixed at the start of the
training procedure. Random stimulation, together with a weight
adaptation algorithm, such as Spike Timing Dependent Plasticity
(STDP), is applied during training to prune and select appropri-
ate subsets of delays by enhancing the weights of the connections
with the desired delays, while decreasing the weights of the unde-
sired delays (Gerstner et al., 1996). The second method, which we
call delay shift, adapts the actual delay values of the connections
between neurons during training. In biology, such adaptation may
be achieved by changing the length or thickness of dendrites and
axons (Stanford, 1987), the extent of myelination of axons (Stevens
et al., 1998), or the density and type of ion channels (Eurich et al.,
2000).

Although various algorithms based on delay selection have
been developed for polychronous networks (Angelini et al., 2007;
Paugam-Moisy et al., 2008; Rast et al., 2010; Ranhel et al., 2011),
we are not aware of any publication describing a delay shift
approach for polychronous networks, except our previous work
(Wang et al., 2011). Here we present an FPGA implementation of
a polychronous network that uses the delay shift method.

DELAY SHIFT
We propose two mechanisms to implement the delay shift method.
The first one is referred to as delay programming and the second
one is referred to as delay adaptation. The delay programming
approach relies on a connection storing the delay value between
a spike from its input neuron and a spike from its output neuron
when both are induced to fire by some external training input. It
is not a biologically plausible method, but it is efficient in training
and reduces testing time in scenarios where the result will not be
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FIGURE 2 | Delay adaptation. (A) Illustration of delay increment; (B)
Illustration of delay decrement. The green spike represents a spike
generated at the pre-synaptic neuron, the red spike represents the
pre-synaptic spike at the synapse, and the blue spike represents the
post-synaptic spike at the neuron.

affected by the training method. We therefore commonly used it
to initialize the network.

Inspired by STDP, we developed the delay adaptation method
to fine-tune the delays during the training phase. Two exam-
ples of the adaptation of axonal delays are shown in Figure 2,
an increment of the delay (Figure 2A) and a decrement of the
delay (Figure 2B). After the input neuron fires there is an axonal
delay before the pre-synaptic spike arrives at the synapse. If the
post-synaptic spike, induced by other neurons in the network or
by external input, is not simultaneous with the pre-synaptic spike
at the synapse, we may adapt the axonal delay by increasing or
decreasing it by a small amount. This procedure is repeated until
the pre-synaptic spike at the synapse occurs simultaneously with
the post-synaptic spike. In the later part of this paper, we will
present three different strategies for delay adaptation that use dif-
ferent methods to determine the step size of the increments or
decrements.

In the training phase, delay adaptation causes the connections
to attain the desired delays through repeated presentation of the
desired spatial-temporal patterns. The delay programming method
can be regarded as a special case of the delay adaptation method
in which the delay adaptation is completed in just a single step
and never altered. With the delay adaptation method, every time a
pattern is recalled the delay values in the pattern will be updated,
allowing the learned delays to be modified.

MATERIALS AND METHODS
DIGITAL IMPLEMENTATION OF SPIKING NEURAL NETWORKS
To date, all the published polychronous spiking neural networks
have been implemented using software neuron models [with the
exception of our previous work (Wang et al., 2011)] and such
simulations are not capable of achieving real-time emulation of
large-scale neural networks. In Izhikevich (2006), the author pre-
sented that “the small size of the system does not allow us to
explore other cognitive functions of spiking networks. . . One sec-
ond of simulation took more than 1 month on a cluster of 27
3-GHz processors.” In our previous work we described an analog
implementation capable of providing real-time emulation, but it
was limited to a small size (14 neurons and 364 programmable
delay axons). A digital FPGA solution was chosen over an analog
implementation due to the relative ease in developing and debug-
ging such a system. Modern FPGAs provide a large number of
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logic gates and physical memory, allowing large-scale neural net-
works to be created at a low cost. Unfortunately, such a solution
may lead to a loss of biological plausibility.

There are three main types of digital implementations for
large-scale neural networks; hardware-based designs, customized
microprocessor systems, and networks built using conventional
microprocessors. Hardware-based designs, such as the one pre-
sented here, use the standard ASIC/FPGA design flow and include
such examples as the EU SCANDLE project, which has 1M neu-
rons (Cassidy et al., 2011) and the SyNAPSE project which consists
of 256 neurons and 65,000 plastic synapses (Merolla et al., 2011;
Seo et al., 2011). Hybrid microprocessor/hardware systems are
another means of implementing a digital neural network. Hard-
ware functional models (similar to hardware accelerators) are used
to generate data, and traditional microprocessors are employed
for further processing. An example of such a system is the STDP
implementation by Belhadj et al. (2008). Digital neural networks
can also be implemented using large networks of embedded micro-
processors, such as in the spiNNaker project (Rast et al., 2010) in
which ARM processors, running software neuron models, per-
form the calculations instead of physical silicon neurons. These
systems are essentially generalized networks that have been highly
optimized for neuron computation.

PROPOSED POLYCHRONOUS NETWORK
Neural network
The structure of the proposed neural network is shown in Figure 3.
It contains two functional modules: a “neuron array” and an “axon
array.”The neurons and the axon modules communicate with each
other via Address-Event Representation (AER) buses (Boahen,
2000).

Each neuron in the neuron array is identical in structure and
has a unique AER address. The axon modules in the axon array are
also identical in structure, and have both unique and configurable
addresses. The axon modules generate pre-synaptic spikes, which
are received by the neurons. The neurons will then generate post-
synaptic spikes if more than a certain number of pre-synaptic

spikes arrive simultaneously (see Figure 1). In the example of
a spatial-temporal pattern shown in Figure 1, two simultaneous
pre-synaptic spikes arrive close enough to cause each subsequent
neuron to fire. In the actual implementation, we avoid coinci-
dence detectors with only two input since they are easily affected
by cross-talk caused by the overlap of spatial-temporal patterns.
To decrease the likelihood of such cross-talk between patterns, we
used coincidence detectors with four inputs and a threshold of
three spikes.

The post-synaptic spikes are sent to the axon modules in
the axon array, which propagates these post-synaptic spikes with
axonal-specific delay values and generates pre-synaptic spikes at
the end of the axons. In the proposed neural network, the commu-
nication between any two neurons must be conducted via the axon
modules in order to implement the polychronous network. There
is an additional module in Figure 3 labeled as the “pattern genera-
tor and checker,” which is an external module used to perform the
training and recalling functions.

AER bus
The AER bus and protocol used in this system differs slightly from
the standard AER bus and protocol (Boahen, 2000). We do not use
handshaking, so we have omitted the request and acknowledge
signals. Instead we use “active” lines to tell the receiver (neurons
or axon modules) that a spike has been placed on the bus. Since
we are addressing the arrays as a linear array, i.e., with a single
binary address, as opposed to the row/column addressing with
two binary addresses used in a standard AER bus (Boahen, 2000),
our bus tends to be wider. The width of the address bus is decided
by the size of the neuron array. For instance, if the neuron array has
4096 neurons, the address bus comprises 12 bits with an address
range from 0x000 to 0xFFF. Without the active line, a 12 input OR
gate would be needed in every module to check if an address is
present on the bus.

Two different AER buses are used in our spiking neural network.
The first one is referred to as the AER post-synaptic bus, and is
used to transmit post-synaptic spikes generated by the neurons
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FIGURE 3 | Structure of the proposed polychronous neural
network. The neuron array generates post-synaptic spikes and then
sends them to the axon array, which propagates these post-synaptic
spikes, with programmable axonal delays, and generates the

pre-synaptic spikes at the end of the axons. These pre-synaptic spikes
are sent to the neuron array to cause the neurons to fire. The
connectivity and delay of the axons in the axon array are all
configurable.
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to the axons. It uses a single active line in addition to the binary
address of the event. The pattern generator and checker module
is also connected to this bus for training and recalling purposes.
The second AER bus is referred to as the AER pre-synaptic bus
and it is used to transmit pre-synaptic spikes generated by the
axon modules to the neurons (see Figure 4). Each neuron receives
input from four neurons via four axons in our network. The pre-
synaptic bus therefore uses four active lines, one for each synapse
of the neuron.

A further difference in our AER implementation is that there
is no arbiter to deal with collisions when two addresses are placed
on the bus simultaneously. Not having an arbiter reduces hard-
ware costs, but a collision will generate an incorrect address on
the bus and the spikes will be sent to the wrong receiver. It might
seem counterintuitive to not have an arbiter in a neural network
that aims to detect coincidences. However, spikes on the bus will
only last for less than a microsecond, while the time window in
which the four spikes in our polychronous network are consid-
ered coincident is 1 ms long. Spikes will therefore be unlikely to
be exactly synchronous and collisions will be rare. When they
happen, they can be viewed as a type of noise that the polychro-
nous network is relatively robust against. We will present further
details on how we deal with this in the final paragraphs of the
Section “Time-Multiplexed Axon Array,” once we have presented
the detailed FPGA implementation of the axon array to the reader.

Neuron array
Figure 4A shows the structure of the neuron array: a number of
identical neurons (each with its own address) are placed in parallel
in the array and share one input bus (the AER pre-synaptic bus)
and one output bus (the AER post-synaptic bus). The size of the

neuron array is a trade-off between performance and hardware
cost. We have implemented six different sizes of neuron arrays,
ranging from 128 to 4096 (4k) neurons. The performance for dif-
ferent sizes will be presented in the results section. In this paper we
use a network consisting of 4k neurons for illustrative purposes.

The neurons in the neuron array work as coincidence detectors
that detect how many pre-synaptic spikes have arrived simultane-
ously. Figure 4B shows the structure of the coincidence detector
neurons. It has one address comparator, four synapses, one coin-
cidence detector, one delay module, and one spike generator. The
address comparator compares the address of the incoming pre-
synaptic spikes with the address of the neuron. The four active
lines control which synapse will be used to generate a post-synaptic
potential which is then sent to the coincidence detector.

The coincidence detector will generate a coincidence signal if
at least three of the most recent four inputs are coincident. This
coincidence signal is delayed for a certain amount of time, which
simulates the neural delay between synaptic inputs and the post-
synaptic output spike, and is then sent to the spike generator, which
will generate a post-synaptic spike and place its address on the AER
bus.

Axon array
The structure of the axon array is shown in Figure 3. It is very sim-
ilar to the structure of the neuron array as it consists of a number
of identical axon modules placed in parallel. The proposed axon
array is capable of achieving much higher resource utilization than
the axon-select method used in our previous work (Wang et al.,
2011). In that work, we proposed a supervised learning rule that
generates spatial-temporal patterns based on a fixed connectivity
between neurons. The conclusion from that work was that there
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FIGURE 4 | Structure of (A) the neuron array; (B) the coincidence detector
neuron. About 4k identical coincidence detector neurons (each with a unique
address) are placed parallel in the neuron array. These neurons receive
pre-synaptic spikes from the axon modules in the axon array via the AER
pre-synaptic bus. They generate post-synaptic spikes and send these spikes

to the axon modules in the axon array via the AER post-synaptic bus. The
neurons are used as coincidence detectors (see Figure 1). If three out of four
pre-synaptic spikes (with the same address) arrives within a time window
(e.g., 1 ms), the coincidence detector neuron, the address of which matches
the address of these spikes, generates a post-synaptic spike.
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were always some axonal delay paths that remain unused. To uti-
lize all axonal delay paths we switch our strategy from selecting
existing axonal delay paths to generating delay paths de novo, so
that only connections that actually appear in the training patterns
will be created. Additionally we configured the system such that
there can be any number of axonal delay paths between any two
neurons in the network.

Figure 5 shows the structure of the axon module: it has five
address registers, one ramp generator, and four identical axonal
delay paths. The address registers are used to store the input
address and the four output addresses for the axonal delay paths.
To place one axon module between neurons, we need to config-
ure its address registers. The ramp generator will generate a digital
count that increases linearly with time after a reset by a start signal.
This digital axonal delay carries out delay programming and delay
adaptation in the same manner as the analog VLSI programmable
axonal delay in (Wang et al., 2012).

At the beginning of the training, axon module[0] (see Figure 3)
is enabled and all the other axon modules are disabled. When
the first post-synaptic spike in a training pattern arrives, axon
module[0] will latch the address of this spike as its input address
and enable axon module[1]. Each axon module will configure its
addresses (input address and output addresses) only once, unless a
full system reset is performed. The output addresses will be config-
ured after the input address is configured. As there are four output
addresses, one for each of the destination neurons, it will take four
iterations for one axon module to finish the configuration of its
output addresses (using the addresses of the next four sequential
post-synaptic spikes in the training pattern after its input address
is configured).

The delay programming is carried out in the same way as the
address configuration. At the beginning of the training, when the
first post-synaptic spike arrives at axon module[0], it will reset the
ramp generator and begin counting. The ramp generator will send

the value of the counter (ramp_out) to the four axonal delay paths.
The delay of each axonal delay path is programmed (referred to
as ramp_latched) when the output addresses are being configured
(when the next four sequential post-synaptic spikes from the train-
ing pattern arrive) and it will not be programmed again until after
a reset.

After the delay programming, when a post-synaptic spike
arrives and its address matches the input address of one axon
module, the ramp generator will start counting again. The axonal
delay path will compare the output of the ramp generator with the
programmed delay. A pre-synaptic spike will be generated when
the output of the ramp generator exceeds the programmed delay
with an address stored in the output address register.

The delays can also be configured using delay adaptation rather
than delay programming. In the delay adaptation algorithm the
axonal delay is increased or decreased based on the delay between
pre-synaptic spike and post-synaptic spike (see Introduction). In
this mode, the axonal delay path needs to do two things: mea-
sure the firing time of these two spikes and calculate the difference
between them; and adapt the axonal delay stored in the latch.

To calculate the time difference, we need to know when the pre-
synaptic spike arrives, and when the post-synaptic neuron fires.
The time at which the neuron fires is represented by the output
of the ramp generator. The time at which the pre-synaptic spike
arrives is represented by the programmed axonal delay stored in
the latch. By comparing these two values, the delay can be obtained.
One major advantage of this structure is that all these variables
are local (in one axon module) and they can be adapted without
affecting the other axon modules.

There are three strategies for altering the delay value of each
axon. The first strategy is to correct the delay to the desired value
in one step, simply changing the value of the programmed delay to
the value of the ramp generator. This case is similar to the delay-
programming mode. The second strategy is to change the value
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FIGURE 5 | Structure of the axon module. The axon module receives
post-synaptic spikes generated by the neuron in the neuron array via the AER
post-synaptic bus. The axon module propagates these spikes with

axonal-specific programmable delays and generates pre-synaptic spikes at the
end of the axons. The address registers are used to store the input address
and the four output addresses for the axonal delay paths.
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of the programmed delay by a single binary count. The last strat-
egy is to change the delay proportionally to the calculated time
difference. This could be a linear proportion (i.e., multiplying by
a coefficient) or a non-linear proportion (such as an exponential
relation).

We have implemented all three strategies. The first method is
identical to just using the delay-programming method and the
second method, which uses a single step, is impracticably slow and
produces similar results to the third method with a coefficient of
0.5. Therefore only the results obtained by using the third strategy
will be presented and discussed in Section “Results.”

FPGA IMPLEMENTATION
This section will focus on the implementation of the whole system
including the proposed neural network, the“Pattern generator and
checker,” and the debug block. We will also present how all these
blocks are integrated. The system was implemented using Verilog
HDL on a Virtex 6 FPGA with the system clock running at 66 MHz.

Time-multiplexed axon array
An implementation that directly maps all the axon modules to
hardware is too expensive and will limit the size of the axon array.
As this system is designed for real-time emulation, there is no
requirement for a high time resolution. Typical axonal delays in
mammalian cortex range from 0.1 to 44 ms (Swadlow, 1985, 1994),
meaning that a resolution higher than 100 µs will be enough for
emulating biological axons. The system clock runs at 66 MHz and
100 µs× 66 MHz= 6600 which is the maximum clock cycles we
have within 100 µs.

We propose a time-multiplexed axon array which comprises
4096 virtual axon modules (see Figure 6). It has one physical
axon module, a RAM, and a time-multiplexer. The structure of
the physical axon module is identical to the structure described
previously (Figure 5). All the values (such as the addresses, the
programmable delay, and so on) of the physical neuron are stored
in the RAM, similar to the way a general CPU works. The time-
multiplexer processes the virtual axon modules sequentially. For
any given virtual axon module, the time between two opera-
tions will take 4096/66 MHz≈ 62 µs which is still smaller than
the 100 µs resolution desired.

Figure 7 shows the time-multiplexed axon array in more detail.
Each axon contains four identical axonal delay paths, a program-
ming index generator, an axon-module index generator, an SRAM
for the configured address (configured_address_array), a register
to hold the current address of the input spike (AER_addr_latch),
and an adder. The axonal delay paths each contain a delay adaptor,
a spike generator, and an SRAM to store the output of the ramp
generator (ramp_out).

The axon-module index generator is a central component as it
informs other components as to which virtual axon module is cur-
rently being computed. It is composed of a 12-bit counter, with the
value of this counter being referred to as the axon-module index.
After power up, the axon-module index is reset to 0x000 and is
incremented by one on each clock cycle.

The axon-module programming index generator informs the
other components as to which virtual axon module is to be con-
figured, and also consists of a 12-bit counter. After power up, it is

time-multiplexed axon array

1x physical

axon module

AER pre-synaptic bus

AER post-synaptic bus

4096 virtual axon modules

time-

multiplexer

RAM

FIGURE 6 | Structure of the time-multiplexed axon array. The physical
axon module computes the data for one virtual axon module in one clock
cycle. The time-multiplexer provides the physical axon array with its input
data, which is read from the RAM, and writes the computed output data to
the RAM in one clock cycle.

initialized to 0x000 and it is increased by 1-bit whenever a post-
synaptic spike arrives, until it reaches its maximum value (0xFFF).
When this value is reached, all the virtual axon modules will have
been used and no further configuration for addresses and delay
programming is possible.

The configured address array is used to store addresses and is
composed of one dual-port SRAM with a memory depth of 4096
and a width of 12 bits. Each axon module has one input address
and four output addresses. Each of these four output addresses is
identical to one of the input address of each of the next four axon
modules, respectively, and therefore only one address register is
needed for each virtual axon module.

During training, the address of an arriving post-synaptic spike
is written into the configured address array, with the program-
ming index used as the writing address. The output port will send
out the contents on every clock cycle (as virtual axon modules are
evaluated cycle-by-cycle). For simplicity, the timing specifications
related to the memory are not presented. Whenever a post-synaptic
spike arrives during a recall procedure, the AER_addr_latch regis-
ter will hold the address of this spike for the next 4096 clock cycles
(one clock cycle for each virtual axon), before clearing it.
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FIGURE 7 | Schematic of the time-multiplexed axon array.

The system uses a comparator to check if the latched address
matches the configured addresses of each virtual axon module.
If a match is detected, the ramp generator of that virtual axon
module is started. The adder increments the output of the ramp
generator serially on each clock cycle until it reaches its maxi-
mum value. Multiple address matches are possible as more than
one axon module may be configured with the same address as a
neuron may appear in different positions in one or more patterns.

The axonal delay path stores the delay value and generates a
pre-synaptic spike. It comprises an SRAM (delay_array) to store
the delay, a spike generator, and a delay adaptor. It is instanti-
ated four times in hardware on the FPGA to create four identical
copies. The axonal delay path can be used to implement both the
delay-adaptation mode and the delay-programming mode.

When using delay programming, the delay adaptor is bypassed
and the output of the ramp generator is sent directly to the
SRAM as input along with the programming index. Whenever
a post-synaptic spike arrives, the output of the ramp generator is
written into the SRAM at the memory address computed from the
programming index.

When using delay adaptation, the delay adaptor will initialize
each stored delay with a random value. The delay adaptor calcu-
lates the difference between the output of the ramp generator and
the programmed axonal delay (see Axon module). If the value is

not zero, the delay stored will be adapted according to one of the
three strategies mentioned above. Delay adaptation is carried out
for each virtual axon module serially and cyclically.

All the SRAM used in the axon is composed of block RAM
built into the FPGA and in order to achieve maximum capacity
(for storing spatial-temporal patterns), the utilization of this hard-
ware resource needs to be maximized. We chose a memory with a
size of 4k× 9 bits= 36k bits, as the size of the on-chip block RAM
in the Xilinx Virtex 6 family is either 18 or 36k. Any block mem-
ory used has to be constructed from RAMs of these two sizes and
any fragments are wasted. To fully utilize the available memory, an
implementation with 4096 virtual axons was chosen.

Each virtual axon module is updated every 62 µs
(4096/66 MHz), and therefore the longest delay the ramp gen-
erator can generate is 29

× 4096/66 MHz≈ 32 ms. This value can
be easily changed if desired, by either changing the clock frequency
or the bit width of the counter.

If the output of the ramp generator exceeds the programmed
delay, a pre-synaptic spike will be generated with the AER address
stored in the SRAM for the configured address. This programmed
delay corresponds to one of the four axonal delay paths in each
virtual axon module. To achieve a reliable commutation, the pulse
width of this pre-synaptic spike is set to 16 clock cycles and dur-
ing that period no other pre-synaptic spike will be generated, as it
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Wang et al. FPGA polychronous spiking neural network

would generate an incorrect address. In other words, a theoretical
maximum of 4096/16= 256 axon modules can be active during
any 62 µs cycle for this configuration.

As mentioned previously (see AER Bus), not having an arbiter
reduces hardware costs, but a collision will generate an incorrect
address on the bus and a spike will be sent to the wrong receiver.
To increase the possibility that the spikes are sent to the correct
receivers, we increase the pulse width of the spikes. So even if there
is a collision on the AER bus, it will most likely not be for the full 16
clock cycles, so that spikes can still be sent to the correct receivers
at the start and end of the collision. For the duration of the overlap,
a spike will indeed be sent to a wrong address, but its effect will
quickly die out in the system when it is not part of a learned set of
time-locked relations. This is a feature typical of a polychronous
spiking neural network. The more clock cycles a spike lasts, the
more robust the communication will be. On other hand, the more
clock cycles a spike lasts, the larger the chance of a collision. For
flexibility, the pulse width is designed to be configurable from 1
to 16 clock cycles. Our test results show that a pulse width of four
clock or more clock cycles provides reliable communication. More
details will be presented in Section “Results.”

Multiplexed neuron array
As was the case for the axon array, a full physical implementation
of the neuron array would be too expensive in terms of hardware.
Time multiplexing could also be used to implement the neuron
array using the same topology as the time-multiplexed axon array
shown in Figure 6. A physical neuron takes the place of the physical
axon module and, whereas the axon array uses the axon-module
index generator to control the virtual axon modules, the neuron
array uses a neuron index generator to control the virtual neurons.

This time-multiplexed neuron array works well when the prob-
ability of pre-synaptic spikes arriving at two different neurons
within the 62 µs update cycle is low, i.e., the total number of axons
in the network is low. When a pre-synaptic spike is generated by the
axon array, it will take the time-multiplexed neuron 4k clock cycles
(62 µs) to check if this spike is destined for any of the 4k virtual
neurons before it can process another spike from the axon array. If
another spike arrives during this period, it will be dropped, which
would lead to a decrease in performance of the neural network, as
measured by successful recall of stored patterns. The more patterns
that are stored in the network, the more axons are needed, and the
more likely simultaneous spikes become. In our tests, we found
that the network would start performing poorly when the num-
ber of virtual axons became larger than four times the number of
virtual neurons.

To implement networks with many more axons than neurons,
we propose a structure with several physical neurons that are then
time-multiplexed. We found that only a small percentage (less
than 5%) of the neurons in the neural array are active at any
given time, so only a small number of physical neurons need to be
implemented (e.g., 128 physical neurons for a 4k neuron array).

The structure of the multiplexed neuron array is shown in
Figure 8. It consists of two sub-blocks: a physical neuron array and
a controller. They communicate with each other via two internal
AER buses: the AER physical pre-synaptic bus and the AER physical
post-synaptic bus. The controller receives pre-synaptic spikes from
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FIGURE 8 | Structure of the multiplexed neuron array. In the multiplexed
neuron array, 4k virtual neurons are achieved by using 128 physical neurons
and one controller. The controller sends the pre-synaptic spikes to the
physical neurons depending on the usage of the physical neurons. The
controller receives the spikes generated by the physical neurons and sends
these spikes (with a remapped address) to the axon modules in the axon
array.

the axon array and assigns them to the physical neurons for the
generation of post-synaptic spikes which will be sent to the axon
array. From the point of view of the axon array, the multiplexed
neuron array appears as a neuron array with 4096 neurons.

Physical neuron array. The physical neuron array can be
regarded as a miniature version of the neuron array shown in
Figure 3 as it has the same topology: 128 identical neurons (each
with its own address) are placed in parallel in the array and share
one input bus (AER physical pre-synaptic bus) and one output
bus (AER physical post-synaptic bus).

The number of physical neurons needed in the array depends
on the number of axons in the neural network. The more virtual
axons, the more physical neurons are needed. We have imple-
mented various sizes of the physical neuron array ranging from
16, 64, 128, and 256 neurons (to ensure a full utilization of the
AER bus, it should be a power of 2). The results showed that the
size of 128 is large enough without missing any pre-synaptic spikes
even at the highest firing rate. We will use this configuration for
illustration.

The physical neuron is implemented using a coincidence detec-
tor that generates a post-synaptic spike when three or more pre-
synaptic spikes arrive within 1 ms of each other. After generating
a post-synaptic spike, a 1 ms refractory period is employed to pre-
vent the generation of multiple post-synaptic spikes for a single
event, and to better emulate biological behavior.

Figure 9 shows the structure of the physical neuron. When a
spike arrives from the AER pre-synaptic spike bus at one of the
physical neuron’s four synapses, the corresponding 1 ms timer is
activated. (Note that the virtual neurons can have many more than
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FIGURE 9 | Structure of the physical neuron. The physical neuron is
implemented using a coincidence detector that generates a post-synaptic
spike when three or more pre-synaptic spikes arrive within 1 ms of each
other.

four synapses.) If that timer is already active, then the spike is sim-
ply ignored. The four timers are needed so that three spikes that
are not exactly simultaneous, but that arrive within 1 ms of each
other can still generate an output spike via the comparator. The
output spike generation will be delayed from the time that the third
spike arrives by a certain amount. This delay is used to emulate
the integration time of a real (biological) coincidence detecting
neuron. In such a neuron, the delay between the generation of a
spike and the arrival of the pre-synaptic spikes is a function of
the temporal dispersion of these pre-synaptic spikes. For instance,
if all four pre-synaptic spikes arrive simultaneously, the integra-
tion time will be relatively small, while if only three pre-synaptic
spikes arrive within 1 ms with two 500 µs spike intervals, then the
integration time would be longer.

Rather than implementing real integration of pre-synaptic
inputs, which would use a significant amount of hardware
resources in a digital implementation, we use the sum of the values
of the timers when the third spike arrives and delay the generation
of the post-synaptic spike by this amount.

Controller. The controller comprises three components: a regis-
ter array, a timer array, and a neuron index generator. The register
array contains 128 12-bit registers that store the addresses of the

pre-synaptic spikes (referred to as virtual address) from the axon
array. The timer array comprises 128 identical 1 ms timers. Each
physical neuron is linked to one register and one timer. These
two arrays are controlled by the neuron index generator, which
is composed of a 7-bit counter. It plays a similar role to that of
the axon index generator in the time-multiplexed axon array. The
axon index generator controls the virtual axon modules, whereas
the neuron index generator controls the physical neurons (as well
as the linked registers and timers). The output value of this neuron
index generator is used as the address of the physical neurons.

As mentioned before, the controller dynamically assigns phys-
ical neurons to each incoming pre-synaptic spike. The physical
neurons, which are coincidence detectors, are used to detect how
many pre-synaptic spikes have arrived within 1 ms of each other.
When a spike arrives from the axon array and a physical neuron
has been assigned for the arriving spike’s address, the spike will
be sent to that neuron. Otherwise it will be sent to an unassigned
neuron, which will then be labeled as assigned by the controller.
Once the timer of that neuron has expired (after 1 ms), the neuron
will be freed and labeled as unassigned by the controller.

The neuron index generator compares the address of any newly
arriving pre-synaptic spike with the values (stored addresses) in
the register array concurrently. If a match is detected and the timer
linked to that register is active, this indicates that the linked neu-
ron has been assigned for coincidence detection. The controller
will then send this spike to that neuron. If no match is detected,
the controller will carry out the following actions simultaneously:

1. Store the address of this pre-synaptic spike in the register
indicated by the current value of the neuron index generator.

2. Start the timer linked to that register.
3. Send this spike to the linked neuron.

After finishing the above actions, the neuron index generator is
incremented by one. It will count around to zero after it reaches the
maximum value. When a post-synaptic spike is generated by the
physical neuron, the controller will send it to the axon array with
an address which is stored in the register linked to that physical
neuron.

Pattern generator and checker
The pattern generator and checker module generates spatial-
temporal patterns for training and for testing whether the patterns
are recalled successfully during recall. To create random spatial-
temporal patterns, we need to assign each spike in the temporal
sequence to a random selected neuron in the network. This is
implemented using two Linear Feedback Shift Registers (LFSRs),
which generate two pseudo-random numbers. The first generated
number is used as the index of the next neuron in the sequence to
generate the spike after an inter-spike interval from the previous
spike in the sequence determined by the second pseudo-random
number.

Identical patterns are generated for both training and recall
based on the seed of the LFSRs. During training, the entire pat-
tern is sent to the neural network. During recall, only the initial
segment, comprising the first four spikes of each pattern, is sent
to the polychronous network. The rest of the pattern generated
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Wang et al. FPGA polychronous spiking neural network

by the LFSRs is compared with the pattern retrieved from the
neural network. This comparison is carried out in a similar way
as in the coincidence detector in the physical neuron. The pattern
checker generates a 4 ms pulse for each spike generated by the pat-
tern generator. To increase the dynamics of the system, each pulse
is generated earlier than the generation of a spike with a random
offset which ranges from 500 µs to 1 ms. A coincidence is recorded
when a spike arrives from the neural network during that pulse
and the addresses match. At the end of the pattern, the compara-
tor checks how many coincident spikes have been recorded. If this
number is larger than 70% of the pattern length, we define this
pattern as having been recalled successfully. This threshold is con-
figurable and we use the value 70% here for illustrative purposes
only. In the Section“Results”we investigate the number of patterns
recalled successfully for various thresholds.

The pattern generator can also create a noise input (random
spikes) for the network using a third LFSR. After power up, it
continues to generate random spikes, which follow a Poisson dis-
tribution according to a configurable firing rate (Linares-Barranco
et al., 2007). The random number generated by this third LFSR is
not only used as the inter-spike interval, but is also used as the
index of the next random neuron to fire. These random spikes
may be sent to the axon array via the AER post-synaptic bus. The
effect of the noise at different firing rate will also be presented in
the Section “Results.”

System integration
Figure 10 shows the structure of the full system. We can incorpo-
rate more than one axon array into the system in order to increase
capacity. Each axon array is connected in parallel in the neural
network (see Figure 10). Each axon array works with the neuron
array as presented in the Section “Neural Network.”

At the start of training, the first axon array (axon array[0]), is
enabled for configuration and all the others are disabled. When all
the axon modules in axon array[0] have been configured, the axon
array[1], is enabled for configuration. The procedure repeats until
all the axon arrays are configured. In this way, all the axons in all the
axon arrays can be used in the proposed system. We integrated 70
axon arrays in the system, yielding 4096× 4× 70≈ 1.15M axons
(with variable delays) in total. Table 1 shows the utilization of the
hardware resources on the FPGA for this configuration.

The debug module (Figure 10) contains a virtual input/output
(VIO), an integrated logic analyzer (ILA), and a JTAG interface.
These are IP cores provided by Xilinx and can be integrated into
the design. The VIO and ILA are controlled through the JTAG
interface and allow access the internal signals on the FPGA. In our

Table 1 | Device utilization Xilinx Virtex XC6VLX240T.

Resource Used Total available

Occupied slices 36,994 37,680

Slice FF’s 58,341 301,440

Slice LUTs 134,665 152,720

LUTs as logic 91,101 152,720

LUTs as RAM 42,420 58,400

36K RAMs 402 416

system, the VIO is used to send parameters to the pattern generator
and the ILA is used to collect the test results. These two IP cores
greatly simplify the testing process, as the tests for different sce-
narios can be created easily by altering parameters and retrieving
the results via the JTAG interface.

The entire system was designed using the Xilinx design tools
with exception of the simulation, which was performed using the
Cadence NC-Verilog tool. A bottom-up design flow was adopted
in which we designed and verified each module separately. Once
the module level verification was complete, all the modules were
integrated together for chip-level verification. The Xilinx tool was
then used for synthesis and implementation and the Chip Scope
tool for testing.

RESULTS
The results obtained from the neural network presented above
will be discussed in this section. The results are organized in five
sections: delay programming, delay adaptation, characterization
of pattern recall, effect of noise, and FPGA capacity testing. This
is followed by a Section “Discussion.”

DELAY PROGRAMMING
In the setup for the delay-programming tests, a single axon array
was used in the neural network, yielding 4k axon modules with
16k (16384) axonal delay paths (variables). Note that unlike in
Izhikevich (2006), no connections are shared between two pat-
terns, so that the number of available connections directly deter-
mines the maximum number of inter-spike intervals that can be
programmed into our network. As each inter-spike interval in a
pattern consumes four axonal delay paths, the number of the inter-
spike intervals that our neural network can store is simply equal
to the number of axon modules. If, for instance, the patterns to be
stored each contain 50 inter-spike intervals, the maximum num-
ber of such patterns that can be stored in the neural network is 82
(4k/51).

The patterns are trained only once when using delay program-
ming. There is also only one recall test as there is no adaptation and
the result of a recall will be the same each time. For each configura-
tion of the neural network, 10 test runs were conducted. Different
patterns are generated for different configurations as the LFSR that
is used to generate the neuron index will use different polynomi-
als for neuron arrays with different sizes (e.g., a 7-bit polynomials
for the neuron array with 128 neurons, an 8 bit one for the neu-
ron array with 256 neurons and so on). However, the LFSR used
to generate inter-spike intervals will use the same polynomial for
all the configurations and we use the same 10 random seeds for
each configuration. This means that the patterns generated by the
same seed will have the same random inter-spike intervals, which
ensures the results obtained will fairly show the effect of different
neuron array sizes.

We tested neuron array sizes from 128 to 4k neurons. No noise
was added in this set of tests. In the range of 256 to 4k neurons,
each run had 82 patterns with a pattern length of 50 intervals.
Figure 11A shows the results or these tests. The error bar is the
standard deviation over 10 runs. It is clear that for a size larger
than 256 neurons, the success rate is greater than 90%, and for a
size of 256 neurons the success rate is above 80%.
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FIGURE 10 | Schematic of the full system. To achieve the maximum utilization of the hardware resources, seventy axon arrays are placed parallel in the
system. During the training procedure, they are trained serially, while in recalling mode, they work in parallel.

FIGURE 11 | Results for different neuron array sizes and pattern lengths
using (A) delay programming and (B) delay adaptation.

For a configuration consisting of 128 neurons, the neural net-
work will enter a state in which all the neurons fire simultaneously
during recall if trained with 82 patterns. This is an extreme case
of cross-talk. Cross-talk occurs when a neuron belonging to one
pattern fires accidentally as a result of pre-synaptic spikes from
other patterns or another part of the same pattern. The effect of

the cross-talk depends on the overlap (correlation) of the patterns
and can be regarded as noise. The more overlap there is, the higher
possibility that a pattern plus some noise spikes will also set-off a
different pattern. Also, the more input connections a neuron has,
i.e., the more patterns this neuron is a member of, the more likely
this neuron is to get three simultaneous inputs as a result of noise.
To mitigate this problem, we need to increase the sparsity of the
neural network, i.e., decrease the number of patterns a neuron is
part of. This can be achieved by increasing the size of the neuron
array as the patterns generated by the pattern generator are evenly
distributed over the whole network. For a neuron array with 256
neurons, which is able to recall most stored patterns successfully
(Figure 11A), in order to store 16K variables, each neuron will
need to have an average of 64 (16K/256) connections – essen-
tially 1/4 the size of the neuron array. Our measurements show
that when the average number of connection for each neuron is
smaller than 1/4 the size of the neuron array, cross-talk is not much
of an issue.

The above results are for patterns with 50 inter-spike inter-
vals. We have conducted the same tests with pattern length ranges
from 20 to 128 inter-spike intervals and the results showed slight
differences. The successful recall percentage for 20 inter-spike
intervals is slightly better and for 128 intervals is slightly worse.
This makes sense as the shorter the pattern is the more likely it will
be recalled successfully and vice versa. To give a fair representation
of the performance of the network, we are showing the results for
patterns with 50 inter-spike intervals, which present an average
performance.

DELAY ADAPTATION
In the tests for the delay-adaptation mode (see Figure 11B), each
pattern was trained five times and recalled one time. The strategy
used adapted the delay by half the time difference between the pre-
and post-synaptic spikes each time a neuron fired. The same set-
tings used in the delay programming scenario were used for these
tests.

www.frontiersin.org February 2013 | Volume 7 | Article 14 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang et al. FPGA polychronous spiking neural network

The results for the smaller networks, of 128, 256, and 512 neu-
rons, are much worse in this mode, than their counterparts in
the delay-programming mode. The result for 1k neurons is close
to the result of 256 neurons in delay-programming mode. The
result for 2k and 4k neurons are similar to their counterparts in
Figure 11A. These results suggest that cross-talk is a more seri-
ous problem when using delay adaptation. In delay-programming
mode, a new pattern trained will not affect the patterns trained
previously, but when using delay adaptation, new patterns will
affect previously trained ones by adapting their delays, leading
to increased cross-talk. To mitigate this problem, as explained in
Section “Delay Programming,” we need to decrease the number of
patterns a neuron is part of by increasing the size of the neuron
array. To mitigate this problem at least 1k neurons are needed, so
that the average number of connections per neuron is 16 or less.

CHARACTERIZATION OF PATTERN RECALL
In previous section we have presented the result in the setting that
if more than 70% of spikes in a pattern have been recalled, we
define this pattern as having been recalled successfully. In order
to quantify the effect of selecting this arbitrary threshold, we have
performed a test in which we count exactly how many spikes were
correctly recalled in each pattern. All other settings were kept the
same as used previously in the delay-programming mode and the
delay-adaptation mode.

Figure 12 shows for each pattern stored in the array how many
spikes were recalled correctly. Figure 12A clearly indicates that
more than 95% of the spikes are correctly recalled for most patterns
in all configurations of the delay-programming mode. Figure 12B
shows, as noted in the previous section, that smaller networks, i.e.,
networks with more patterns per neuron, perform much more
poorly in the delay-adaptation mode. The networks with 2k and
4k neurons, however, recall more than 95% of the spikes correctly
in more than 92% of all stored patterns.

EFFECT OF NOISE
In this set of tests, random noise was injected into the network.
The Poisson rate of the noise, generated by the LFSR (see Pattern
Generator and Checker), was varied from 2 to 128 spikes per sec-
ond. This firing rate represents the number of additional spikes,
i.e., not belonging to any of the trained patterns, presented to the
network in a 1 s window. As each spike is generated by a randomly
chosen neuron, the spike rate measures the total noise input, not
the firing rate of individual neurons. For comparison, the firing
rate of a stored pattern is about 100 spikes per second (50 events
in about 500 ms).

All the other settings were kept the same as used in the delay-
programming mode and the delay-adaptation mode with a neuron
array consisting of 4k neurons. In both modes, no noise was added
during the first training time. Figure 13 shows that the system
is fairly robust to the noise when the Poisson rate of the noise is
smaller than 32 and 16 Hz, respectively, in the delay-programming
mode and delay-adaptation mode.

FPGA CAPACITY TESTING
To test the capacity of the Xilinx Virtex 6 XC6VLX240T evalu-
ation board we used up all the hardware blocks, yielding one

FIGURE 12 | Percentage of spikes in pattern correctly recalled for
different neuron array sizes using (A) delay programming and (B) delay
adaptation.

FIGURE 13 | Recall percentage for various Poisson rates of the noise
generator. Blue columns: delay programming; Red columns: delay
adaptation.

block of 4k neurons and 70 blocks of 4k axon modules for a
total of 1.15M axons. Delay programming and delay adaptation
were both used with pattern lengths of 21 and 51 spikes. The pat-
terns were trained and recalled once. For a pattern length of 51
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FIGURE 14 | Result for FPGA capacity testing. Blue columns: delay
programming; Red columns: delay adaptation.

spikes, the maximum number of patterns that this configuration
can store is 5621. Similarly, for a pattern length of 21 spikes, this
number increases to 13653. For each pattern length, 10 test runs
were conducted. Ten random seeds were used for each length.
Figure 14 shows that the successful recall rate is higher than 96%
on average for the four different scenarios. It proves that the pro-
posed neural network is capable of operating successfully when
all the axonal delay paths (variables) in the neural network are
used. Each neuron receives on average 280 connections in this
configuration.

DISCUSSION
Our implementation differs from the polychronous network intro-
duced in Izhikevich (2006) in several important aspects. In Izhike-
vich (2006) a fully connected network is created with random
delays, and STDP is used to prune the connections. Patterns are
not stored or programmed into the network, but rather, ran-
dom patterns emerge. A single connection between neurons could
be active in a number of patterns, while other connections will
become totally inactive. Izhikevich observes that “the number of
co-existing polychronous groups could be far greater than the
number of neurons in the network, sometimes even greater than
the number of synapses.”

In our implementation, patterns can be directly programmed
into the network, effectively creating a memory for spatio-
temporal patterns that can be recalled by presenting the first
four spikes in the pattern to the network. An additional advan-
tage is that no connections remain unused when the maximum
number of patterns has been programmed into the network. We
aimed to avoid inactive connections, since hardware on the FPGA
would still be dedicated to these inactive connections, but never
used.

Each spike in the spatio-temporal pattern is generated by
a neuron with delayed inputs from the previous four neurons
in the pattern. In other words, four connections are needed
for each spike in the pattern (except for the first four spikes
that start the pattern). Since each neuron module contains four
axons, the maximum number of spike intervals that can be

stored in our network is simply equivalent to the number of
axon modules on the FPGA. An additional constraint is that
the number of patterns per neuron is small so that the patterns
do not overlap excessively, which would cause too much cross-
talk and poor pattern recall. Our experiments indicate that if
the average number of connections per neuron is kept below
1/4 of the number of neurons, cross-talk is not much of an
issue.

It is possible that more patterns could be stored in our hard-
ware implementation if we allowed a connection to be active in
more than one pattern, i.e., if we actively looked for correlation
between patterns to be stored and reused parts of patterns that
have already been stored. This would result in a significantly more
complex pattern programming routine. It seems likely too, that in
such an implementation, cross-talk would be a larger issue, so that
the potential benefits of reusing connections would need careful
investigation.

The test results also show that four times more neurons are
needed for the same number of connections to obtain identi-
cal performance using the delay adaptation as opposed to delay
programming. This raises the question as to why one would
use delay adaptation at all. If an application requires storage of
spatio-temporal patterns on an FPGA, then indeed, delay pro-
gramming should be favored. Delay adaptation allows a net-
work that is configured with random delays, or possibly pro-
grammed with a set of delays, to adapt to repeated patterns
presented to it. So if, for instance, a spatio-temporal pattern
slowly changes over time, the delay adaptation version of the
network would track these changes, while the delay program-
ming one would not. Furthermore, in less precise systems, such
as analog VLSI implementations, it will be less likely that delay
programming would get each delay exactly correct and delay adap-
tation will be needed to fine-tune the delays. Our experiments
show that a network using delay adaptation will work as long
as the number of patterns per neuron is kept sufficiently small;
around eight times fewer connections per neuron should be used
in the delay-adaptation mode than in the delay programming
mode.

CONCLUSION
We have presented an FPGA implementation of a polychronous
spiking neural network with programmable delays. Time multi-
plexing was used to implement up to 1.15M axons, which could
be fully utilized to store spatial-temporal patterns. To handle the
high firing rate of the pre-synaptic spikes generated by these
axons, a multiplexed neuron array with 4k virtual neurons was
implemented by using 128 physical neurons. The test results show
that, on average, the proposed neural network is capable of suc-
cessfully recalling more than 95% of the spikes for 96% of the
patterns stored in the network when the network is fully uti-
lized, i.e., the maximum number of patterns are stored in the
network. The tests also showed that the neural network is robust
to noise.

ACKNOWLEDGMENTS
This work has been supported by the Australian Research Council
Grant DP0881219.

www.frontiersin.org February 2013 | Volume 7 | Article 14 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang et al. FPGA polychronous spiking neural network

REFERENCES
Angelini, L., Marinazzo, D., Pellicoro,

M., and Stramaglia, S. (2007).
“Causality and communities in
neural networks,” in Proceedings of
the European Symposium on Artificial
Neural Networks, Bruges, 459–464.

Belhadj, B., Tomas, J., Malot, O.,
N’Kaoua, G., Bornat,Y., and Renaud,
S. (2008). “FPGA-based architec-
ture for real-time synaptic plasticity
computation,” in 15th IEEE Interna-
tional Conference on Electronics, Cir-
cuits and Systems (St. Julian’s: IEEE),
93–96.

Boahen, K. (2000). Point-to-point con-
nectivity between neuromorphic
chips using address events. IEEE
Trans. Circuits Syst. 47, 416–434.

Boahen, K. (2006). Neurogrid: emulat-
ing a million neurons in the cortex.
Conf. Proc. IEEE Eng. Med. Biol. Soc.
(Suppl. 6702).

Cassidy, A., Andreou, A. G., and Geor-
giou, J. (2011). “Design of a one
million neuron single FPGA neuro-
morphic system for real-time mul-
timodal scene analysis,” in 45th
Annual Conference on Information
Sciences and Systems (Baltimore:
IEEE), 1–6.

Eurich, C. W., Pawelzika, K., Ernstb, U.,
Thiela, A., Cowanc, J. D., and Mil-
tond, J. G. (2000). Delay adaptation
in the nervous system. Neurocom-
puting 32–33, 741–748.

Gerstner, W., Kempter, R., Leo van
Hemmen, J., and Wagner, H.
(1996). A neuronal learning rule
for sub-millisecond temporal cod-
ing. Nature 383, 76–81.

Giulioni, M., Camilleri, P., Mattia,
M., Dante, V., Braun, J., and
Del Giudice, P. (2011). Robust
working memory in an asynchro-
nously spiking neural network
realized with neuromorphic

VLSI. Front. Neurosci. 5:149.
doi:10.3389/fnins.2011.00149

Indiveri, G., Chicca, E., and Douglas,
R. (2006). A VLSI array of low-
power spiking neurons and bistable
synapses with spike-timing depen-
dent plasticity. IEEE Trans. Neural
Netw. 17, 211–221.

Indiveri, G., and Horiuchi, T. K.
(2011). Frontiers in neuromorphic
engineering. Front. Neurosci. 5:118.
doi:10.3389/fnins.2011.00118

Izhikevich, E. M. (2006). Poly-
chronization: computation with
spikes. Neural. Comput. 18,
245–282.

Linares-Barranco, A., Osterb, M., Cas-
cadoa, D., Jiméneza, G., Civita, A.,
and Linares-Barranco, B. (2007).
Inter-spike-intervals analysis of AER
Poisson-like generator hardware.
Neurocomputing 70, 2692–2700.

Merolla, P., Arthur, J., Akopyan, F.,
Imam, N., Manohar, R., and Modha,
D. S. (2011).“A digital neurosynaptic
core using embedded crossbar mem-
ory with 45pJ per spike in 45nm,”
in IEEE Custom Integrated Circuits
Conference (CICC) (San Jose: IEEE),
1–4.

Paugam-Moisy, H., Martinez, R., and
Bengio, S. (2008). Delay learn-
ing and polychronization for reser-
voir computing. Neurocomputing
71, 1143–1158.

Pfeil, T., Potjans, T. C., Schrader, S., Pot-
jans, W., Schemmel, J., Diesmann,
M., et al. (2012). Is a 4-bit synap-
tic weight resolution enough? – con-
straints on enabling spike-timing
dependent plasticity in neuromor-
phic hardware. Front. Neurosci. 6:90.
doi:10.3389/fnins.2012.00090

Ranhel, J., Lima, C. V., Monteiro, J. L. R.,
Kogler, J. E., and Netto, M. L. (2011).
“Bistable memory and binary coun-
ters in spiking neural network,” in

IEEE Symposium on Foundations of
Computational Intelligence (FOCI)
(Paris: IEEE), 66–73.

Rast, A. D., Galluppi, F., Jin, X., and
Furber, S. B. (2010). “The leaky
integrate-and-fire neuron: a plat-
form for synaptic model explo-
ration on the spinnaker chip,”
in Neural Networks (IJCNN), The
2010 International Joint Conference
(Barcelona: IEEE), 1–8.

Seo, J., Brezzo, B., Liu, Y., Parker, B. D.,
Esser, S. K., Montoye, R. K., et al.
(2011). “A 45nm CMOS neuromor-
phic chip with a scalable architecture
for learning in networks of spik-
ing neurons,” in IEEE Custom Inte-
grated Circuits Conference (CICC)
(San Jose: IEEE), 1–4.

Serrano-Gotarredona, R., Oster, M.,
Lichtsteiner,P.,Linares-Barranco,A.,
Paz-Vicente, R., Gomez-Rodriguez,
F., et al. (2009). CAVIAR: a 45k neu-
ron, 5M synapse, 12G connects/s
AER hardware sensory-processing-
learning-actuating system for high-
speed visual object recognition and
tracking. IEEE Trans. Neural Netw.
20, 1417–1438.

Stanford, L. R. (1987). Conduction
velocity variations minimize con-
duction time differences among reti-
nal ganglion cell axons. Science 238,
358–360.

Stevens, B., Tanner, S., and Fields, R. D.
(1998). Control of myelination by
specific patterns of neural impulses.
J. Neurosci. 18, 9303–9311.

Swadlow, H. A. (1994). Efferent neu-
rons and suspected interneurons in
motor cortex of the awake rab-
bit: axonal properties, sensory recep-
tive fields, and subthreshold synaptic
inputs. J. Neurophysiol. 71, 437–453.

Swadlow, H. A. (1985). Physiologi-
cal properties of individual cere-
bral axons studied in vivo for as

long as one year. J. Neurophysiol. 54,
1346–1362.

Wang, R., Tapson, J., Hamilton, T. J., and
van Schaik, A. (2011). “An analogue
VLSI implementation of polychro-
nous spiking neural networks,” in
Seventh International Conference on
Intelligent Sensors, Sensor Networks
and Information Processing (Ade-
laide: IEEE), 97–102.

Wang, R., Tapson, J., Hamilton, T. J.,
and van Schaik,A. (2012).“An aVLSI
programmable axonal delay circuit
with spike timing dependent delay
adaptation,” in IEEE International
Symposium on Circuits and Systems
(Seoul: IEEE), 2413–2416.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 11 October 2012; accepted: 26
January 2013; published online: 13 Feb-
ruary 2013.
Citation: Wang R, Cohen G, Stiefel KM,
Hamilton TJ, Tapson J and van Schaik
A (2013) An FPGA implementation of
a polychronous spiking neural network
with delay adaptation. Front. Neurosci.
7:14. doi: 10.3389/fnins.2013.00014
This article was submitted to Frontiers in
Neuromorphic Engineering, a specialty of
Frontiers in Neuroscience.
Copyright © 2013 Wang , Cohen, Stiefel,
Hamilton, Tapson and van Schaik. This
is an open-access article distributed under
the terms of the Creative Commons Attri-
bution License, which permits use, distri-
bution and reproduction in other forums,
provided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Neuroscience | Neuromorphic Engineering February 2013 | Volume 7 | Article 14 | 14

http://dx.doi.org/10.3389/fnins.2011.00149
http://dx.doi.org/10.3389/fnins.2011.00118
http://dx.doi.org/10.3389/fnins.2012.00090
http://dx.doi.org/10.3389/fnins.2013.00014
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

	An FPGA implementation of a polychronous spiking neural network with delay adaptation
	Introduction
	Polychronous neural network
	Spatial-temporal patterns
	Delay shift

	Materials and methods
	Digital implementation of spiking neural networks
	Proposed polychronous network
	Neural network
	AER bus
	Neuron array
	Axon array

	FPGA implementation
	Time-multiplexed axon array
	Multiplexed neuron array
	Physical neuron array
	Controller

	Pattern generator and checker
	System integration


	Results
	Delay programming
	Delay adaptation
	Characterization of pattern recall
	Effect of noise
	FPGA capacity testing

	Discussion
	Conclusion
	Acknowledgments
	References


