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In an ever-changing visual world, the
appearance of visual objects changes con-
stantly. Yet, our perception of a given
object stays robust despite the variations
in the image. The mechanisms that imple-
ment this perceptual invariance are par-
tially known (e.g., Logothetis et al., 1995).
It is also known that these mechanisms are
at least in part learned from experience,
but the learning processes involved are not
yet fully understood.

Theoretical studies have suggested that
the visual system may achieve this learning
by using temporal association. The under-
lying idea is that the object currently in
view is likely to be the same object that
was in view a moment ago, even if its
appearance has changed in the meantime
due to factors such as relative motion.
The visual system may therefore learn an
association between potentially different-
looking images if they appear in tempo-
ral succession. Learning invariance in this
manner is known as temporal trace learn-
ing (Földiák, 1991; see Rolls, 2012, for a
review), and it is the focus of the study by
Isik and colleagues.

Previous psychophysical studies by
other groups have shown that the visual
system can indeed exploit temporal con-
tinuity to learn invariance (Wallis and
Bulthoff, 1999, 2001; Cox et al., 2005).
Studies have also shown that, as predicted

by the trace learning rule, the visual system
can be made to learn false invariance
by simulating false temporal continuity
between distinct objects. Under the right
experimental conditions, adult subjects
can be made to confuse two completely
different objects with each other after as
little as 1 h of training (Li and Dicarlo,
2010). This suggests that the visual system
can and does rely on temporal continuity
of objects to infer invariance, and that the
ability to learn using this method persists
in adulthood.

It also raises, however, a troubling ques-
tion. If the visual system can be made to
learn false invariance in this way, what is
to prevent false invariances from disrupt-
ing object recognition all the time? This
is a real possibility, because spurious tem-
poral continuities are not at all uncom-
mon under natural viewing conditions.
Rapid movement (of the object or the
observer) or sudden occlusions may cause
distinct objects to be observed in close
temporal proximity. Note that although
some other learning rules (e.g., continuous
spatial transformation learning; Ullman,
1996) may be more robust to this type
of disruptions, it is known that at least
in some cases basic temporal association
learning is used by the visual system (Li
and Dicarlo, 2010). So what minimizes
this invariance disruption and keeps object
recognition robust and stable?

The study by Isik and colleagues
provides a compelling potential answer.
The authors describe a plausible network
model of the primate visual cortex in
which simulated visual cortical neurons
learn invariance by using a version of the
temporal trace rule. The model is based
on the previously described HMAX model

(Serre et al., 2007). HMAX is a hierar-
chical feed-forward model which consists
of multiple layers of visual neurons. Each
layer extracts increasingly complex shape
features of the image based on the input
from the lower layer, and passes it on to the
next higher layer [for details, see Figure 1
of Serre et al. (2007)]. Thus, each neu-
ron in a given layer “listens to,” and inte-
grates information from, multiple neurons
in the previous layer, so that neurons in
the topmost layer, arguably correspond-
ing to those in the primate inferotemporal
cortex, collectively contain a complex rep-
resentation of the objects in the various
input images.

The authors augmented HMAX to
incorporate a simplified, but effective,
implementation of learning by tempo-
ral association, called the “modified trace
rule.” This augmented model was able to
reproduce a diagnostic feature of invari-
ance learning: when trained with smooth
temporal variations of a given object, such
as a face [see Figure 1, top left, of Isik et al.
(2012)], the neurons in the topmost layer
of the network, individually and collec-
tively, did learn an invariant representation
of that object.

The authors then studied the behav-
ior of the model when trained with image
sequences that contained false temporal
continuity. In each such sequence, images
at all positions showed the same object
(e.g., a face), except for one position
(called the “swap position”) that showed
a different object [e.g., a car; see Figure 1,
top right, of Isik et al. (2012)]. As expected,
invariance tuning of each cell trained with
such a sequence was disrupted, with the
cell responding to the main object at most
locations, but responding more strongly

Frontiers in Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 26 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/10.3389/fnins.2013.00026/full
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=EvgeniyBart&UID=34751
http://community.frontiersin.org/people/JayHegd%C3%A9_1/24781
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00037/abstract
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00037/abstract
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00037/abstract


Bart and Hegdé Learning invariance from temporal continuity

to the swap object at the swap location.
Thus, individual cells did faithfully learn
false invariance.

However, the neuronal population as a
whole still robustly represented all stim-
uli. The reason is that in the simulated
experiment (as under natural viewing con-
ditions), the disruptions were relatively
infrequent, and their locations were ran-
dom. As a result, for any given location, the
majority of cells responded consistently,
thus producing consistent population-
level encoding. The authors found that
disruptions of continuity in the train-
ing sequences did not appreciably affect
the overall population response until the
amount of altered exposure was as high
as 25%. As expected, robustness of invari-
ance improved as the size of the neu-
ral population increases. This confirms
the intuition that invariances that rely
on larger neural populations are harder
to disrupt. Altogether, the central con-
tribution of this model is demonstrat-
ing that a highly plausible implementation
of trace learning can capture known key
characteristics of object invariance, includ-
ing the conditions in which it remains

robust and the conditions in which it
does not.

The computational framework the
authors have developed can also be used
to address additional important questions
about invariance. For example, it can be
used to test whether invariance can be
disrupted more easily when recognizing
more similar objects (e.g., when distin-
guishing between several faces, as opposed
to between cups and sailboats). It can
also be used to compare invariances to
various kinds of transformations, such
as out-of-plane rotations or illumination
changes.
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