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Diffusion Tensor Imaging (DTI) studies are increasingly popular among clinicians and
researchers as they provide unique insights into brain network connectivity. However,
in order to optimize the use of DTI, several technical and methodological aspects must
be factored in. These include decisions on: acquisition protocol, artifact handling, data
quality control, reconstruction algorithm, and visualization approaches, and quantitative
analysis methodology. Furthermore, the researcher and/or clinician also needs to take
into account and decide on the most suited software tool(s) for each stage of the DTI
analysis pipeline. Herein, we provide a straightforward hitchhiker’s guide, covering all of
the workflow’s major stages. Ultimately, this guide will help newcomers navigate the most
critical roadblocks in the analysis and further encourage the use of DTI.
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INTRODUCTION
Diffusion-Weighted Imaging (DWI) (Le Bihan and Breton, 1985;
Merboldt et al., 1985; Taylor and Bushell, 1985; Le Bihan et al.,
1986) is a variant of conventional Magnetic Resonance Imaging
based on the tissue water diffusion rate. It is a non-invasive
method, with unparalleled sensitivity to water movements within
the architecture of the tissues that uses existing MRI technol-
ogy and requires no new equipment, contrast agents, or chem-
ical tracers. The introduction of the diffusion tensor model
enabled the indirect measurement of the degree of anisotropy
and structural orientation that characterizes diffusion tensor
imaging (DTI) (Basser et al., 1994a,b; Pierpaoli et al., 1996).
While DWI refers to the contrast of the acquired images, DTI
is a specific type of modeling of the DWI datasets. DTI prin-
ciples and basic concepts have been extensively described and
reviewed in the literature (Mori and Barker, 1999; Le Bihan
et al., 2001; Hagmann et al., 2006; Mori and Zhang, 2006; Mori,
2007; Nucifora et al., 2007; Assaf and Pasternak, 2008; Jones,
2008, 2010b; Mukherjee et al., 2008a; Johansen-Berg and Behrens,
2009; Figueiredo et al., 2011; Thomason and Thompson, 2011;
Tournier et al., 2011; Yang et al., 2011). Summarily, the basic
concept behind DTI is that water molecules diffuse differently
along the tissues depending on its type, integrity, architecture,
and presence of barriers, giving information about its orienta-
tion and quantitative anisotropy (Chenevert et al., 1990; Moseley
et al., 1990; Douek et al., 1991; Beaulieu, 2002). With DTI anal-
ysis it is possible to infer, in each voxel, properties such as the
molecular diffusion rate [Mean Diffusivity (MD) or Apparent
Diffusion Coefficient (ADC)], the directional preference of diffu-
sion [Fractional Anisotropy (FA)], the axial (diffusion rate along
the main axis of diffusion), and radial (rate of diffusion in the
transverse direction) diffusivity. Diffusion in White Matter (WM)

is less restricted along the axon and tends to be anisotropic
(directionally-dependent) whereas in Gray Matter (GM) is usu-
ally less anisotropic and in the Cerebrospinal fluid (CSF) is unre-
stricted in all directions (isotropic) (Pierpaoli et al., 1996; Song
et al., 2002; Hagmann et al., 2006). Based on this assumption,
Basser and colleagues (1994a,b) modeled the diffusion process
by an ellipsoid, which can mathematically be represented by
a 3 × 3 symmetric matrix, also known as tensor (hence DTI’s
name origin).

Gaining increased popularity among clinicians and
researchers, DTI is presently a promising tool for studying
WM architecture in living humans, both in healthy conditions
and in disease. However, it has a complex workflow (summarized
in Figure 1) that implicates knowledge of imaging artifacts, com-
plex MRI protocol definition, neuroanatomical complexity, and
intrinsic technique limitations. These factors are compounded
by a multitude of preprocessing and analysis methods in several
software packages. Several papers and books describing the
main technical issues and pitfalls related to DTI studies have
been published (Basser and Jones, 2002; Moritani et al., 2005;
Le Bihan et al., 2006; Mukherjee et al., 2008b; Bammer et al.,
2009; Jones, 2010a,b,c; Jones and Cercignani, 2010; Chung et al.,
2011; Hasan et al., 2011) which are complemented by available
neuroanatomical WM atlas (Jellison et al., 2004; Wakana et al.,
2004; Catani and Thiebaut De Schotten, 2008; Lawes et al., 2008;
Oishi et al., 2008, 2010; Zhang et al., 2010; Bazin et al., 2011;
Nowinski et al., 2012). However, given the constant method-
ological advances and the increase in DTI applicability across
clinical and research domains, we have here compiled a practical
hitchhiker’s guide of critical information and main references to
consider in setting up DTI studies, optimizing data quality, and
interpreting results.
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FIGURE 1 | Typical DTI workflow. In order to perform a DTI study,
researchers need to understand its main application fields, recognize the
main artifacts (A) and what acquisition protocols can be used (B). The
data should undergo quality control, preprocessing, including format
conversion (C), distortions and motion correction (D), and skull stripping
(E). Before further analysis, tensors need to be estimated (F) and the

resulting data can be visualized as glyphs (G), scalar indices such as
colored FA (H), FA (I), and MD (J) or as tractography (K). ROI (L),
histogram (M), VBA (N), or TBSS (O) analyses may be performed and
the results can be incorporated with fMRI (P) or structural MRI (Q) in
multimodal analysis. Finally, results interpretation should be made with
extreme caution.
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APPLICATION FIELDS
DTI is sensitive to microstructural tissue properties and, thus, it
can be used in WM research and clinical work to explore WM
anatomy and structure in vivo. In fact, this sensitivity, provid-
ing diffusion summary measures and tissue fiber orientation, has
made DTI widely used as a clinical tool, especially in condi-
tions where abnormalities in WM are expected (Sundgren et al.,
2004; Mori and Zhang, 2006). For example, it has been suc-
cessfully implemented to study patients with acute stroke or
brain tumors; neurodegenerative disorders including multiple
sclerosis, epilepsy, and Alzheimer’s; neuropsychiatric disorders
such as schizophrenia; mild cognitive impairment; development
disorders like dyslexia, autism, and attention deficit hyperac-
tivity disorder; movement disorders (mainly Parkinson’s and
Huntington’s); neurogenetic developmental disorders such as
Williams syndrome and fragile X syndrome; and changes in
WM microstructure during neurodevelopment and in aging
(Le Bihan et al., 2001; Moseley et al., 2002; Sundgren et al.,
2004; Vilanova et al., 2006; Nucifora et al., 2007; Ciccarelli
et al., 2008; Imfeld et al., 2009; Johansen-Berg and Behrens,
2009; Madden et al., 2009; Yamada et al., 2009; Chanraud
et al., 2010; Carvalho Rangel et al., 2011; Fung et al., 2011;
Hygino da Cruz Jr et al., 2011; Thomason and Thompson, 2011;
Voineskos et al., 2012). DTI variables (e.g., FA, axial diffusiv-
ity) are usually related with alterations in structure (possibly
due to particular conditions/disease) pointing to specific myeli-
nation levels and axonal injury (Song et al., 2002; White et al.,
2008; Budde et al., 2009; Gupta et al., 2012). With the pro-
gressive increase in the range of applications, consistency of
results and robustness of the technique, DTI is expected to be
valuable in the future in disease treatment planning, detection
of preclinical markers, and microstructural abnormalities; it is
also anticipated that the structural-functional correlates pro-
vided by DTI studies will become part of the clinic’s imaging
routine.

ARTIFACTS AND DATA ACQUISITION TECHNIQUES
Implementing DTI studies involves the understanding of specific
MRI acquisition techniques and artifacts, and how to deal with
them (Figures 1A,B). The artifacts in DWI datasets are mainly
related with the gradient system hardware, pulse sequence, acqui-
sition strategy used and motion. DWI data are generally collected
to cover the entire brain by repeating the acquisition while vary-
ing the orientation or magnitude of the diffusion gradients. DWI
has low Signal-to-Noise Ratio (SNR) and resolution and is very
susceptible to motion (Farrell et al., 2007; Choi et al., 2011;
Polders et al., 2011). To reduce the influence of motion artifacts,
the scan time can be reduced. This makes the use of Single-
shot Echo Planar Imaging (EPI) (Mansfield, 1977; Stehling et al.,
1991; Turner et al., 1991; Nana et al., 2008) the typical strategy
employed to reduce this sensitivity (Stehling et al., 1991; Turner
et al., 1991; Nana et al., 2008); however, alternative sequences,
such as Fast Spin Echo (FSE) (Seifert et al., 2000; Pipe et al., 2002),
Line Scan Diffusion Imaging (LSDI), (Gudbjartsson et al., 1996)
and Stimulated Echo Acquisition Mode (STEAM) (Nolte et al.,
2000) may also be of interest to reduce artifacts (Xu et al., 2004;
Mukherjee et al., 2008b; Bammer et al., 2009).

Besides being the most common approach, EPI images are
very sensitive to other artifacts related with EPI characteris-
tics such as field inhomogeneities at B0 (especially at higher
fields), image blurring [also called Point-Spread Function (PSF)
artifact], limited resolution from T2 and T2∗ signal decay dur-
ing the signal readout; with diffusion MRI properties such as
eddy current-induced distortions and general MRI issues like
sensitivity to motion and B0-susceptibility artifacts (Farzaneh
et al., 1990; Basser and Jones, 2002; Le Bihan et al., 2006; Kaur
et al., 2007; Bammer et al., 2009; Jones and Cercignani, 2010).
Shorter readout times can reduce the echo train and increase
SNR, resulting in a lower sensitivity to motion and reduced sus-
ceptibility to geometric artifacts and blurring (Mukherjee et al.,
2008b). This decrease in the readout times can be achieved with
the use of phased-array head coils, enabling parallel imaging
such as Sensitivity Encoding (SENSE), Array Spatial Sensitivity
Encoding Technique (ASSET), and Generalized Autocalibrating
Partially Parallel Acquisition (GRAPPA) (Pruessmann et al., 1999;
Bammer et al., 2002; Griswold et al., 2002; Jaermann et al.,
2006; Brau et al., 2008; Nana et al., 2008; Holdsworth et al.,
2009). Parallel imaging is important at 3T, and essential at 7T
(Mukherjee et al., 2008c).

Importantly, the two main artifacts intrinsic to DTI acquisi-
tions that may destroy the voxel-wise correspondence across all
the DWIs are eddy current distortions and head motion (Rohde
et al., 2004; Le Bihan et al., 2006; Mohammadi et al., 2010).
In DTI, contrary to most imaging acquisitions, the gradients
are much longer (rising and falling edges of the gradient are
separated in time); there might be perturbations of the local
magnetic field that result in current inductions in the diverse
conducting surfaces of the MRI scanner causing image distor-
tions (contraction and/or overall shift and shear) that are usually
easy to detect visually. Eddy currents vary with the diffusion
gradient applied and, consequently, there will be misregistration
between successive images, which are worse with stronger and
longer gradient pulses. Some strategies have been used to prevent
and correct eddy current distortions, based on a twice-refocused
spin echo pulse, bipolar gradients, field maps, and preprocessing
approaches (described later); it is important to note, however, that
there are pitfalls associated with these strategies (Reese et al., 2003;
Chen et al., 2006; Zhuang et al., 2006; Huang et al., 2008; Truong
et al., 2008, 2011; Jones and Cercignani, 2010).

Diffusion MRI is very sensitive to motion, due to phase shifts
induced microscopically by diffusion-driven water molecular dis-
placements, and macroscopically by head motion, cardiac pulsa-
tion and breathing. This sensitivity increases with the intensity
and duration of gradient pulses, which are characterized by the
b-value, the scalar that defines the amount of diffusion weighting
in the experiment (Le Bihan et al., 2001). It can be reduced by syn-
chronizing the acquisition with the source of motion, monitoring
using “navigator echoes,” using specific protocols, applying real-
time prospective motion and outlier detection methods; however,
all of these may raise other problems such as increased acquisi-
tion times (Ordidge et al., 1994; Pipe, 1999; Kennedy and Zhong,
2004; Zwiers, 2010; Zhou et al., 2011b; Kober et al., 2012; Ling
et al., 2012). Even though it is also possible, and even advis-
able, to correct subject motion using preprocessing techniques
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(see in preprocessing steps below), the best approach is still to
use comfortable padding to adjust the participant’s head, and to
inform the subject in advance about the noise and the vibra-
tion of the bed. This vibration was recently reported as the
cause of another artifact, known as vibration artifact. During the
acquisition, strong gradients are applied causing low-frequency
mechanical resonances of the MR system that lead to small brain
tissue movements. When these movements occur in the direction
of the diffusion-encoding gradient, phase offsets will occur induc-
ing signal dropouts in DWI images. This kind of artifacts can
be reduced increasing TR (with the drawback of reducing SNR)
or using full k-space coverage combined with parallel imaging
(e.g., GRAPPA) (Gallichan et al., 2010). It can also be compen-
sated using methods such as phase-encoding reversal (COVIPER)
(Mohammadi et al., 2012), implemented in Artifact Correction in
Diffusion MRI (ACID) toolbox.

Whenever artifacts can’t be corrected, such as severe move-
ment, signal dropouts, or slice-wise intensity disruption,
researchers adopt different strategies depending on the type and
extent of the artifact. The exclusion of the affected subject, volume
(gradient) or single slice is a common approach. An alternative is
to limit the analysis to regions without artifacts if the artifact is
localized (Liu et al., 2010b).

Artifacts in DWI acquisitions lead to errors in tensor esti-
mation and, consequently, in diffusion maps (FA and MD) that
give rise to fiber reconstructions with erroneous orientation or
length. Optimizing diffusion-imaging sequences is, thus, cru-
cial to obtain more precise data. Protocols should be oriented
to the question under study, and specific parameters should
be used to optimize a particular analysis. There is no consen-
sus on the optimal acquisition parameters because they vary
according to MRI hardware configuration, field strength, ven-
dor, scanning time available, specific anatomic structure and
brain anatomic coverage needed. Thus, herein we only pro-
vide a suggestion for parameters in a typical DTI acquisition
mostly based on a previous technical review (Mukherjee et al.,
2008b). Usually, DWI data are acquired covering the entire brain
through axial slices with no gap between slices (crucial for trac-
tography). On modern scanners, 5 min scanning time is enough
to perform an acceptable acquisition; however, the acquisition
time may be much longer (15 min) depending on the scanner
and the acquisition parameters defined. Diffusion tensor esti-
mation requires high b-values (e.g., 1000 s/mm2) along at least
six non-collinear diffusion encoding directions in addition to
one minimally T2 weighted low b-image (b = 0 s/mm2). Several
sampling schemes have been suggested and it is argued that the
sampling vectors should be uniformly distributed in space so that
the SNR is also uniform in respect to the tensor orientation. The
usage of 30 diffusion-encoded images (orientations) was found
to be a good compromise between image quality and scanning
time, since increasing the number of orientations didn’t result
in improved tensor orientation and MD estimates (Jones, 2004).
Ideally, 1 low-b image for each 5–10 high-b images should be
acquired. Another approach is to repeat acquisition of the same
DWIs [increasing the Number of Excitations (NEX)] instead of
raising the number of DWIs (Wang et al., 2011). Most DTI stud-
ies use high b-values in the range of 700–1000 s/mm2, and the

actual standard for clinical DWI is 1000 s/mm2 (Mukherjee et al.,
2008b). The magnitude of b-values is also dependent upon SNR,
echo time, eddy currents, and motion artifacts and should, in
specific cases, be adjusted to the population and specific struc-
ture. The rule is that the optimal b-value multiplied by the ADC
value should be close to 1 (Xing et al., 1997; Jones et al., 1999a).
The spatial resolution is also important for DTI quality and
when using isotropic voxels (in-plane resolution and thickness
with equal dimensions, e.g., 2 × 2 × 2); typically, 2–2.5 mm are
recommended for fiber tracking, using interleaved acquisitions
to minimize crosstalk between contiguous sections. Anisotropic
voxels also introduce bias in the quantitative assessment of fiber
orientation and anisotropy and larger voxels are more likely to
have more than one fiber tract orientation (Mukherjee et al.,
2008b). Other characteristic parameters of DTI acquisitions are
Field Of View (FOV) usually ranging from 240 to 256 mm,
acquisition matrix 96 × 96–128 × 128, Echo Time (TE) 50–70 ms
and Repetition Time (TR) 8.5–12 s. Optimization of DTI pro-
tocols has been the focus of diverse studies that specify metrics
for detailed protocol definition, including its relation with the
DTI metrics and multi-center approaches (Xing et al., 1997;
Jones et al., 1999a; Pfefferbaum et al., 2003; Hagmann et al.,
2006; Farrell et al., 2007; Wakana et al., 2007; Mukherjee et al.,
2008b; Abe et al., 2010; Jones, 2010c; Lagana et al., 2010; Choi
et al., 2011; Hasan et al., 2011; Zhu et al., 2011; Lebel et al.,
2012).

QUALITY CONTROL AND PREPROCESSING
Quality control and preprocessing procedures are key steps to
detect and correct artifacts in DWI and to exclude those that could
not be corrected, providing consistency to reliable tensor estima-
tion. Although it is already possible to find automated prepro-
cessing pipelines (Liu et al., 2010b) (ColbyImaging, http://www.

colbyimaging.com/wiki/neuroimaging/dti-preprocessing), there
is no consensus over which workflow is ideal for DTI quality con-
trol or preprocessing. Herein we provide a guided approach, com-
prising standard methodology easy to perform and not extremely
time consuming.

The first step consists in, when importing the data, check-
ing if all images have been imported and sorted correctly and
if the different subjects, under the same study, have the same
parameters. This can be performed with general-purpose image
viewers such as Osirix, syngo FastView, MRIcro, or ImageJ (Rosset
et al., 2004; Liao et al., 2008). After this initial examination, a
visual inspection of the DWI data is recommended to detect
potential artifacts. Looping through the raw images in differ-
ent “orthogonal” views allows the identification of geometric
distortions, signal dropouts, subtle system drifts, and miss-
ing slices (Tournier et al., 2011). On the other hand, outlier
detection methods provide automated approaches to identify
corrupted images. Methods based on testing for ADC consis-
tency (Jiang et al., 2009) and detection of spike noise (Chavez
et al., 2009) have also been suggested. RESTORE is a com-
monly used tool to estimate tensors robustly, excluding poten-
tial outliers prior to tensor estimation (Chang et al., 2005).
Monte Carlo simulated data have been used to study the
effects of different sources/magnitudes of noise on DTI derived
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measures (Pierpaoli et al., 1996; Basu et al., 2006) and also to val-
idate methods such as RESTORE.

The acquired data may at this point need several preprocess-
ing steps depending on the MRI scanner, acquisition parameters,
image quality, software package used and study focus. In prepro-
cessing, it is common to start by converting raw data into specific
and adequate image formats (Figure 1C). With poor interoper-
ability between DTI analysis tools and the lack of a standard
DTI format (Patel et al., 2010), many software packages define
their own data formats; for example, Neuroimaging Informatics
Technology Initiative (NIfTI) and Analyze and Nearly Raw Raster
Data (NRRD) are common data formats. File format convert-
ers such as MRIcro, dcm2nii, MRIConvert, NiBabel, and software
package converters (e.g., AFNI, Freesurfer, SPM, Slicer) are com-
monly used to convert from the original DICOM format (Smith
et al., 2004; Pieper et al., 2006; Friston et al., 2007; Fischl, 2012).

In DWI images, distortions caused by eddy currents and head
motion are the most common artifacts (Figure 1D); therefore,
a common and recommended preprocessing step is to correct
for such artifacts. Eddy currents can be corrected with an affine
registration to the b0 image and motion correction with a rigid
body registration to b0. Since both corrections consist in reg-
istration procedures, they can be implemented as one single
step. To do this, FMRIB’s Diffusion Toolbox (FDT), Automated
Image Registration (AIR), and DT_Recon, are popular software
tools, although tools like DTIC (b0 and eddy current correc-
tion for DTI) DTIPrep (Liu et al., 2010b), DIFF_PREP, and
ExploreDTI (Leemans et al., 2009) can also be used for this pur-
pose. It is important to note that since this procedure deals with
changes in the orientation of the images, the encoding vectors
should be reoriented (Leemans and Jones, 2009); fortunately,
the DTIPrep, DIFF_PREP, and ExploreDTI tools take this into
account.

After this, one optional step is to perform skull strip-
ping (Figure 1E), removing non-brain areas from analysis,
improving co-registration/normalization results and reducing
data size. This step can be accomplished with several tools,
such as BET from FSL, Freesurfer, Atropos, and Bioimage Suite.
Accurate tensor estimation and tractography analysis are also
dependent on precise gradient tables. Gradient information
can usually be retrieved directly from the MRI console or
it can be calculated with specific tools such as DTI gradi-
ent table creator. In some cases, the orientation of the gradi-
ent directions may be inaccurate and minor corrections may
be required (ColbyImaging, http://www.colbyimaging.com/wiki/
neuroimaging/bvecs). After tensor estimation (described in the
following sections), visual examination of tensor orientations
in some specific regions (e.g., corpus callosum, cingulate and
uncinate fasciculus) is also an assessment that can be per-
formed with any tensor visualization tool (e.g., Slicer, TrackVis,
DTIStudio, MedINRIA, BrainVoyager QX, FSL View, Camino,
BioImage Suite, ExploreDTI). If tensor orientation errors are
noticed it is necessary to modify the gradient table and repeat
the tensor reconstruction (using tools such as DTI-TK). The
presence of bias in DTI datasets is also common (Farrell et al.,
2007) and it can originate from multiple sources (e.g., noise,
field inhomogeneities, quality control procedures that might

modify/exclude problematic gradients, and experimental and
biological parameters); at this stage, it can be estimated with
the SIMulation and EXtrapolation (SIMEX) statistical approach
(Lauzon et al., 2011).

On a final practical note, researchers or clinicians can search
and compare existing software in listings such as the source
for neuroimaging tools and resources (NITRC, http://www.nitrc.
org/) or I Do Imaging (http://www.idoimaging.com/), particu-
larly when searching for a tool for a specific task.

PROCESSING AND VISUALIZATION
After data preprocessing, the next stage in DTI analysis comprises
tensor estimation at each voxel (Figure 1F); for this purpose,
images with diffusion-encoding gradients applied at least along
six non-collinear directions are required. Three main methods
are used to estimate the tensors: Ordinary Least Squares (OLS),
the most popular, and Weighted Linear Least Squares (WLLS)
and Non-linear Least Squares (NLLS). Different estimation meth-
ods may yield different results, therefore it is important to assure
that the same package is used to estimate the tensors in an entire
dataset (Koay et al., 2006; Jones and Cercignani, 2010). Since the
diffusion tensor is a symmetric 3 × 3 matrix, it can be described
by its eigenvalues (λ1, λ2, λ3) and eigenvectors (e1, e2, e3).
The eigenvalues and eigenvectors are then used to process scalar
indices and, in some studies, tractography analysis. At each voxel,
the eigenvalues represent the magnitude of diffusion and the cor-
responding eigenvectors reflect the directions of maximal and
minimal diffusion.

Nowadays, a wide range of free or commercial DTI software
tools with different purposes and specifications are available.
Choosing one among the others can be a difficult and time-
consuming task for newcomers. In Table 1 we present a list of the
most commonly used software tools and their main applicability.

Mainly used for clinical purposes, commercial applications
although intuitive, friendly and automated, are also more rigid
and limited. Examples of these are syngo DTI, Elite Neuro clinical
solutions, or Functool and FiberTrak and others such as nordi-
cICE Diffusion/DTI Module, iPlan® Fibertracking, Prism Clinical
Imaging®, DynaSuite Neuro. On the other hand, Python based
tools, especially the Nipy project (including tools such as Dipy,
NiBabel, and Nipype) are more flexible and customizable, but less
intuitive and user friendly (Millman and Brett, 2007).

One of the biggest challenges in DTI is to visualize and present
the tensor information in an intuitive and easily understandable
way. In fact, the high dimensionality of the data and the com-
plex associations in diffusion tensors domain make this step quite
problematic. Typical approaches consist of using tensor glyphs
or reducing the dimensionality to one scalar (scalar indices) and
to three dimensions (tractography). Tools such as Explore DTI,
MedINRIA, and Slicer, among many others, enable all the before
mentioned visualization schemes, as summarized in Table 2.

2D visualization of scalar maps, the most common DTI visu-
alization approach used by clinicians, is used due to its simplicity
and instant visualization; however, this approach has limitations
in the quantity of information presented. The two main diffusion
indices, MD and FA, are based on the eigenvalues, which represent
the magnitude of the diffusion process.

www.frontiersin.org March 2013 | Volume 7 | Article 31 | 5

http://www.colbyimaging.com/wiki/neuroimaging/bvecs
http://www.colbyimaging.com/wiki/neuroimaging/bvecs
http://www.nitrc.org/
http://www.nitrc.org/
http://www.idoimaging.com/
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Soares et al. Hitchhiker’s guide to DTI

Table 1 | Software tools for DTI processing used in published studies.

DTI software/tools URL Main purpose

3D Slicer (Pieper et al., 2006) http://www.slicer.org/ Tensor estimation, ROI analysis, and tractography

AFNI (Cox, 2012) http://afni.nimh.nih.gov/afni Preprocessing and tensor estimation

BioImage Suite (Papademetris
et al., 2005)

http://www.bioimagesuite.org/ Tensor estimation, ROI analysis, and tractography

BrainVoyager QX (Goebel, 2012) http://www.brainvoyager.com/ Tensor estimation and tractography

Camino (Cook et al., 2006) http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/
pmwiki.php?

Tensor estimation and tractography

Dipy (Garyfallidis et al., 2011) http://dipy.org Tensor estimation and tractography

DoDTI (Park et al., 2004) http://neuroimage.yonsei.ac.kr/dodti/ Preprocessing, tensor estimation, and tractography

DTI-Query (Akers et al., 2004) http://graphics.stanford.edu/projects/dti/software/ Tractography

DTI-TK (Zhang et al., 2009) http://dti-tk.sourceforge.net/pmwiki/pmwiki.php Registration

DTIStudio (Jiang et al., 2006) https://www.mristudio.org/wiki/DtiStudioV2 Tensor estimation, ROI analysis, and tractography

ExploreDTI (Leemans et al., 2009) http://www.exploredti.com/ Preprocessing, tensor estimation, and tractography

Freesurfer (Fischl, 2012) http://surfer.nmr.mgh.harvard.edu/ Preprocessing and tensor estimation

FSL-FDT (Smith et al., 2004) http://www.fmrib.ox.ac.uk/fsl/fdt/index.html Preprocessing, tensor estimation, and tractography

FSL-TBSS (Smith et al., 2006) http://www.fmrib.ox.ac.uk/fsl/tbss/index.html TBSS analysis

JIST (Lucas et al., 2010) http://www.nitrc.org/projects/jist/ Preprocessing and tensor estimation

MedINRIA (Toussaint et al., 2007) http://wwwsop.inria.fr/asclepios/software/MedINRIA/ Tensor estimation, tractography, and ROI analysis

MrDiffusion http://white.stanford.edu/mrdiff Tensor estimation and tractography

MRtrix (Tournier et al., 2012) http://www.brain.org.au/software/mrtrix/ Tensor estimation and tractography

SATURN (Cardenes et al., 2010) http://www.lpi.tel.uva.es/saturn/ Tensor estimation and tractography

SPM and toolboxes
(e.g., Diffusion II, DTI Toolboxes)

http://www.fil.ion.ucl.ac.uk/spm/ext/ Preprocessing and tensor estimation

TrackVis (Wang et al., 2007) http://trackvis.org/ Tensor estimation, tractography, and ROI analysis

TORTOISE (Pierpaoli et al., 2010) https://science.nichd.nih.gov/confluence/display/nihpd/
TORTOISE

Preprocessing, tensor estimation, and ROI analysis

MD, ADC, or trace, can be calculated by the mean of the three
eigenvalues and correspond to the molecular diffusion rate (lower
values mean low diffusivity) (Figure 1J):

MD = λ1 + λ2 + λ3

3
= Dxx + Dyy + Dzz

3
= Trace

3

where Dxx, Dyy , Dzz are the diagonal terms of the diffusion tensor.
Fractional Anisotropy is a normalized measure of the frac-

tion of the tensor’s magnitude due to anisotropic diffusion,
corresponding to the degree of anisotropic diffusion or direc-
tionality and ranges from 0 (isotropic diffusion) to 1 (anisotropic
diffusion):

FA =
√

3

2

√
(λ1 − D)2 + (λ2 − D)2 + (λ3 − D)2

λ2
1 + λ2

2 + λ2
3

where D = (λ1 + λ2 + λ3)/3. FA has no information about the
orientation (Figure 1I), its rotationally invariant. This can be
deciphered by color-coded FA maps in which the color of each
voxel demonstrates its main diffusion direction (Figure 1H). In
these maps, red color represents left-to-right orientation, green
posterior-to-anterior and blue inferior-to-superior diffusion.

Other relevant DTI indices reported are trace (magnitude of
diffusion in a voxel), Lattice Anisotropy Index (LAI—an inter-
voxel anisotropy measure with reduced sensitivity to noise),
axial (derived from the largest eigenvalues and measures the
rate of diffusion in the direction of fastest diffusion detect-
ing longitudinal diffusion along axons), and radial diffusivity
(derived from the second and third eigenvalues and measures
the transverse direction of diffusion) (Basser and Pierpaoli,
1996; Vilanova et al., 2006; Jones, 2008; Abe et al., 2010;
Chanraud et al., 2010). Typically, MD is higher in dam-
aged tissues as a result of increased free diffusion; in con-
trast, FA decreases due to the loss of coherence in the main
preferred diffusion direction. Importantly, software tools pre-
sented in Table 1 that can be used for tensor estimation also
enable the calculation of some of the most commonly used
scalar maps.

Contrasting with the dimensionality reduction of the tensor
represented by scalar indices, glyphs are parameterized graphi-
cal objects that describe a diffusion tensor through its size, shape,
location, and color (Figure 1G). Glyphs are used for visualiza-
tion and quality control and not for analysis procedures. The
most typical representation is the 3D ellipsoidal shape elongated
along the fastest diffusion axis and squashed along restricted
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diffusion directions. These objects map the tensor eigenvectors
and eigenvalues, which express the water molecules diffusion pro-
file (Pierpaoli and Basser, 1996; Kindlmann and Westin, 2006).
Other shapes can also be used, such as box glyphs which are
better for linear anisotropy profiles but, as ellipsoids, they over-
look important information and it is difficult to clearly under-
stand 3D shapes when viewed in planes (Vilanova et al., 2006).
To overcome this problem, another class of glyphs, known as
superquadrics were introduced and combine spherical, cylindri-
cal and box shapes to distinguish between isotropic, planar and
linear anisotropy and intermediate states (Kindlmann, 2006). The
main disadvantage of glyph visualization is that it only allows
intrinsic individual profiles rather than global characterization
of the tensor data. Most DTI viewers enable glyphs representa-
tion as lines, tubes or ellipsoids and allow its combination with
scalar maps visualization. From the tools presented in Table 2,
MedINRIA and SATURN also support box and superquadrics
glyphs.

The last family of parameters that can be extrapolated from
DTI is based on the primary eigenvector of diffusion to obtain
three-dimensional representations of WM pathways or fiber bun-
dles, the so-called, WM tractography (Figure 1K). This method
projects 3D trajectories of fiber pathways and connection pat-
terns between different brain systems in vivo (Jones et al.,
1999b; Mori et al., 1999; Basser et al., 2000; Mori and van
Zijl, 2002; Wedeen et al., 2012). Tractography processing can
be divided in three main stages, namely seeding, propagation,
and termination. Seeding consists of defining the points from

which the fiber bundles will be drawn; one of the most com-
mon methodologies is based on defining Regions Of Interest
(ROIs) and placing one or more seeds in each voxel of the ROI
(Figure 1L). The ROIs can be manually drawn or extracted from
other MRI modalities. The main issues at this stage are related
with the location of the seeding points among different sub-
jects and the fiber tracking tool used, causing variability in the
results (Burgel et al., 2009; Hattingen et al., 2009). A second
popular approach consists of using automatic seeding for the
whole brain, enabling a fully exploratory visualization of the
tensor data.

During the propagation process the fibers are gradually gener-
ated. Fiber tracking can be performed with different algorithms
divided in two main categories: deterministic and probabilis-
tic (Jones, 2008, 2010a; Descoteaux et al., 2009; Chung et al.,
2011; Fillard et al., 2011; Tensaouti et al., 2011; Tournier et al.,
2011). Deterministic tractography aims to model the data and, in
practical terms, can be thought of as generating/reconstructing
one fiber from each seed. On the other hand, probabilistic
approaches take into account the uncertainty of the estimation,
which results in probability maps representing the likelihood of
a voxel being part of a fiber and provides the multiple pos-
sible fiber directions emanating from each seed. A common
deterministic algorithm used and implemented in the main
DTI processing packages is Fiber Assignment by Continuous
Tracking (FACT) defining specific anatomic tracts based on ROIs
assuming that fiber orientation is uniform within a voxel and
changes abruptly in the boundaries of it (Mori et al., 1999).

Table 2 | A list of the main workflow steps implemented by the common DTI tools∗ .

Software
Steps Quality control and preprocessing Processing and visualization Quantitative analysis

Outlier

detection

Motion and eddy

current correction/

B-matrix rotation

Skull

stripping

Tensor

estimation

Scalar

maps

Glyphs Tractography

(deterministic/

probabilistic)

ROI Histogram VBA TBSS

3D Slicer ✗ ✓/✓ ✓ ✓ ✓ ✓ ✓/✓ ✓ ✗ ✗ ✗

AFNI ✗ ✓/✗ ✓ ✓ ✓ ✓ ✓/✓ ✓ ✓ ✓ ✗

BioImage Suite ✗ ✗/✗ ✓ ✓ ✓ ✓ ✓/✗ ✓ ✗ ✗ ✗

BrainVoyager QX ✗ ✗/✗ ✗ ✓ ✓ ✓ ✓/✗ ✗ ✗ ✓ ✗

Camino ✓ ✗/✗ ✗ ✓ ✓ ✓ ✓/✓ ✗ ✗ ✗ ✗

Dipy ✗ ✗ ✗ ✓ ✓ ✗ ✓/✗ ✗ ✗ ✗ ✗

DoDTI ✗ ✓/✗ ✗ ✓ ✓ ✓ ✓/✗ ✗ ✗ ✗ ✗

DTIStudio ✓ ✗/✗ ✗ ✓ ✓ ✓ ✓/✗ ✓ ✗ ✗ ✗

ExploreDTI ✓ ✓/✓ ✗ ✓ ✓ ✓ ✓/✓ ✓ ✗ ✗ ✗

Freesurfer ✗ ✓/✓ ✓ ✓ ✓ ✗ ✗/✓ ✓ ✗ ✓ ✗

FSL ✗ ✓/✗ ✓ ✓ ✓ ✓ ✗/✓ ✓ ✓ ✓ ✓

JIST ✓ ✓/✓ ✗ ✓ ✓ ✗ ✓/✗ ✗ ✗ ✗ ✗

MedINRIA ✗ ✗/✗ ✗ ✓ ✓ ✓ ✓/✗ ✓ ✓ ✗ ✗

MRtrix ✗ ✗ ✓ ✓ ✓ ✗ ✓/✗ ✗ ✗ ✗ ✗

SATURN ✗ ✗/✗ ✗ ✓ ✓ ✓ ✓/✗ ✓ ✗ ✗ ✗

SPM and toolboxes ✗ ✓/✓ ✓ ✓ ✓ ✗ ✗/✗ ✗ ✗ ✓ ✓

TrackVis ✗ ✗/✗ ✗ ✓ ✓ ✗ ✓/✗ ✓ ✓ ✗ ✗

TORTOISE ✓ ✓/✓ ✗ ✓ ✓ ✗ ✗/✗ ✓ ✗ ✗ ✗

*To the best of our knowledge at the date of submission, based on information gathered from the software manuals, main webpages, and published papers.
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Other deterministic algorithms are streamlining with different
interpolation methods (tri-linear, second, or fourth order Runge-
Kutta), tensor deflection, or tensorline (Weinstein et al., 1999;
Basser et al., 2000; Lazar et al., 2003). Tools like Diffusion Toolkit
implement all these algorithms, whereas Slicer implements sec-
ond order Runge-Kutta. Regularly used probabilistic algorithms
are PICo (Parker et al., 2003), used by Camino, multi-fiber
field model (Behrens et al., 2007), implemented in FSL, and
the Bayesian approach (Friman et al., 2006) used in Slicer and
Camino.

The last tractography step is termination of the fiber track-
ing procedure based on some well-defined criteria, also known
as the termination criteria. These criteria aim to avoid propa-
gating the fibers in voxels where robustness of the vectorial field
is not assured. The common termination criteria are minimum
FA thresholds (typically 0.1–0.3 in adult brain and 0.1 in infant)
and turning angle threshold (typically 40–70◦, depending on the
pathway).

Interpreting tractography maps can be problematic due to
the intrinsic unrealistic assumption of a homogeneous unidi-
rectional population inside the voxels. Specific regions of the
brain containing two or even more differently oriented fiber
bundles within the same voxel (crossing, diverging, or kissing
fibers) lead to incorrect estimations of fiber directions and path-
ways and abrupt terminations of tracts (Wiegell et al., 2000;
Alexander et al., 2001; Barrick and Clark, 2004; Descoteaux
et al., 2009). This limitation can be minimized by adopting
more sophisticated approaches including multi tensor mod-
els, High Angular Resolution Diffusion Imaging (HARDI),
Hybrid Diffusion Imaging (HYDI), Diffusion Spectrum Imaging
(DSI), Q-Ball Imaging (QBI), Q-Space Imaging (QSI), Spherical
Deconvolution Model, and Persistent Angular Structure MRI
(PAS-MRI) (Tuch et al., 2002; Jansons and Alexander, 2003; Tuch,
2004; Alexander et al., 2006; Wedeen et al., 2008; Assemlal et al.,
2011; Tournier et al., 2011; Landman et al., 2012; Vos et al.,
2012). Recently, these methods have gained increasing popularity,
replacing the traditional tensor model for tractography (Wedeen
et al., 2012). For instance, DSI and QBI use probability density
functions instead of single tensors, which can describe the dif-
fusion process in many different directions at each voxel. This
comes with the limitation of requiring longer acquisition times as
it needs more encoding directions (Tournier et al., 2011). HARDI,
DSI and QBI approaches can be implemented with TrackVis and
Diffusion Toolkit, and Camino has been used in HYDI analysis and
PAS-MRI.

QUANTITATIVE ANALYSIS
After parametric maps (e.g., MD, FA) computation and in
order to perform individual or group statistical analysis, the
next common step is to extract summary measures from either
specific anatomical regions or whole brain. For this purpose,
ROIs, histogram, voxel-based analysis and Tract-Based Spatial
Statistics (TBSS) are typically applied. It is important to note
that usually researchers/clinicians are interested in group com-
parisons and the methods to extract summary measures dif-
fer mainly in the way the correspondence across subjects is
achieved.

ROI analysis is based on manual delineation of a priori specific
regions of the brain or on automated parcellations. ROI analy-
ses are time-consuming, require anatomical knowledge and are
applied to quantify diffusion parameters (mainly MD and FA)
within those areas. The main problems of ROI analyses include:
the influence of the image intensity on ROI boundaries by direct
segmentations on the map of interest (typically FA or MD); the
difficulty to co-register diffusion with typical anatomical images
(T1 or T2 weighted) when using anatomical ROIs; performing
analysis in smaller/thinner tracts; and difficult application in lon-
gitudinal studies (Snook et al., 2007; Mukherjee et al., 2008b;
Astrakas and Argyropoulou, 2010; Chanraud et al., 2010; Jones
and Cercignani, 2010). Of note, ROI analysis can be performed
with the main tensor estimation and visualization software, such
as Slicer, TrackVis, MedINRIA, and ExploreDTI.

Another possibility for quantitative analysis is the use of fre-
quencies of distributions to screen the voxels within a specific
range of parameters of interest (usually MD or FA). The his-
togram of each diffusion parameter presents the mean, the peak
height and location, values that can be used to compare groups
through statistical tests (Figure 1M). Histograms allow analysis
of whole brain in an automated way, without any a priori speci-
fied ROI; however, such an approach requires the removal of the
tissue of no interest (typically CSF), does not retain any informa-
tion about the location of abnormalities and is sensitive to partial
volume effect from atrophy (Della Nave et al., 2007; Jones and
Cercignani, 2010; Zhou et al., 2011a). For such approach, tools
such as TrackVis or MedINRIA can be used.

Analyses on a voxel-by-voxel basis are becoming popular in
DTI given that they are automated, require minimum inter-
vention and are not influenced by users. Voxel Based Analysis
(VBA) involves registration of diffusion maps into a standard
space (a process known as normalization) to achieve corre-
spondences between subjects across voxels and consequently
anatomical structures (Figure 1N). This enables the compari-
son of diffusion parameters between groups and correlations
with covariates of interest (e.g., age). This approach allows
spatially specific (as ROIs) and unbiased (as histogram) anal-
ysis and does not require previous ROI definition. The main
problem is the accuracy of registration algorithms using ten-
sor datasets (Mukherjee et al., 2008b; Abe et al., 2010; Astrakas
and Argyropoulou, 2010; Jones and Cercignani, 2010; Van Hecke
et al., 2010). VBA can be carried out with SPM or BrainVoyager
QX, with SPM as the most widely used software tool for this kind
of analysis.

A recent method designed to overcome the problems with
registration algorithms and arbitrariness of spatial smoothing
is TBSS. TBSS is an automated method for detecting group
voxel-wise changes in whole brain, based on the skeletoniza-
tion of group registered FA maps (Figure 1O). TBSS removes
the need to perform spatial smoothing, increases the statistical
power (reducing number of total voxels tested). On the other
hand, the skeletonization of FA images may be inaccurate in
images with large anatomical shifts or WM lesions and registra-
tion errors are difficult to identify visually in the skeleton (Jones
and Cercignani, 2010). Back projection to native space is also an
issue since the skeletonization process aligns local maxima, which
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may not necessarily correspond to the same anatomical location
across all subjects (Zalesky, 2011). This method is part of the FSL
distribution (Smith et al., 2006).

One of the big issues in group studies is that to compare
a condition among a group, the individual images need to be
normalized to a standard space (Evans et al., 2012). After this,
each structure should be in the same position across all the
group subjects. The normalization procedure is crucial for VBA
analysis and the result of a misalignment can be unpredictable.
This is particularly challenging in DTI due to its highly direc-
tional and topographical nature. This challenge led to a variety
of procedures for the normalization of DTI images (Jones et al.,
2002; Park et al., 2003; Xu et al., 2003). The most straight-
forward method consists in using the b0 images to calculate
a rigid alignment with a high-resolution T1 image and then
an affine alignment from the T1 space to standard the space.
Note that the transformation matrixes generated should only be
applied to the scalar images. Alternatively, some researchers opt
to drive the registration directly from b0 image to an EPI tem-
plate in standard space. The differences among these approaches
were already addressed in previous studies (Liu et al., 2010a).
Another normalization approach consists in the normalization
of the tensors using complex multi-channel algorithms (Park
et al., 2003). The tools that are most commonly used in data
normalization are AIR, FLIRT, and SPM. Also here, to solve
the normalization problems with DTI images, TBSS provides a
new and revolutionary method for inter-subject registration of
FA maps.

To perform statistical parametric analysis, the data can be
smoothed using a three-dimensional filter. This increases the
SNR, reduces imperfections due to spatial normalization proce-
dures, improves the statistical power and enables the assump-
tion of random field theory (Westin et al., 2002). Care must
be taken since the chosen spatial width of the filter will deter-
mine the size of the differences than can be detected, and
smoothing also increases the amount of partial volume effect
(Jones and Cercignani, 2010). This step can be performed with
tools like fslmaths (a command line tool from FSL library)
or SPM.

For a global guidance about the possible software solutions for
the main steps of the DTI workflow consult Table 2.

MULTIMODAL STUDIES
Collecting multimodal brain data from the same individual using
different neuroimaging methods has become recently a standard
in the field and is certainly a trend for the future. Combining dif-
ferent modalities allows a global and complementary overview
of living brain structure and function. Brain connectivity stud-
ies have become popular nowadays with the combination of
microstructural organization (DTI) and functional activation
patterns using resting state or task related functional MRI (fMRI)
(Le Bihan, 2012) (Figure 1P). Changes in diffusion measures can
point to alterations in functional patterns and behavior. A gen-
eral problem using this approach is the common need to expand
GM clusters to WM areas, in order to reach the WM fiber tracts
(Li et al., 2012). In practice this is achieved by dilating the acti-
vation clusters using tools such as fslmaths (from FSL package)

or MarsBaR (SPM toolbox). Several studies have demonstrated
neuroanatomical connections between functionally linked brain
regions in resting state networks (Van Den Heuvel et al., 2008,
2009; Greicius et al., 2009) and task related patters (Propper et al.,
2010; Ethofer et al., 2011).

Another popular multimodal approach is to use conven-
tional MRI or T1 weighted derived masks, segmentations or
parcellations (ROIs) in DTI data to extract combined struc-
tural and diffusion data (Figure 1Q). Moreover, WM volumetric
ROIs have been used to assess microstructure integrity (Fjell
et al., 2008; Moriya et al., 2010; Kochunov et al., 2011). In
addition, combining DTI parameters with electroencephalog-
raphy (EEG) records (Bangera et al., 2010; Gullmar et al.,
2010), cortico-cortical evoked potentials (CCEPs) (Conner et al.,
2011), Magnetoencephalography (MEG) (Fernandez et al., 2011),
Positron Emission Tomography (PET) (Yakushev et al., 2011),
Magnetic Resonance Spectroscopy (MRS) (Tang et al., 2007;
Wang et al., 2009) and Transcranial Magnetic Stimulation
(TMS) (Hubers et al., 2012), have revealed new insights on the
complementary complexity of the human brain. Importantly,
in order to combine DTI with other neuroimaging modality
data, the ROIs should be in the same reference space as the
DTI data.

RESULTS INTERPRETATION
In DTI data interpretation the most common misconception is
related with the scalar results. Usually higher MD and lower
FA values indicate damaged or impaired fiber integrity due to
increased diffusion and loss of coherence on preferred movement
direction. However, this is not always true. In fact, depending
on the brain region, cellular basis, and sample studied (specific
disease processes, developmental conditions), unusually high or
low indices may indicate dysfunction or not (Hoeft et al., 2007;
Thomason et al., 2010).

Other pitfalls in DTI interpretation are also observed. The
interpretation of color-oriented maps is also far from trivial
because two different tracts may have the same color (if they
have the same in-plane fiber orientations) and the same tract
can change color-coding when orientation changes, making it
difficult to localize across 2D images. Crossing fibers are also
problematic in DTI results interpretation, affecting more FA, axial
and radial diffusivity than MD, and having a huge impact on
tractography methods (Tournier et al., 2011).

As a final take-home message, WM integrity assumptions must
always be made with extreme caution (Beaulieu, 2002; Jones et al.,
2012).

CONCLUSIONS AND FUTURE DIRECTIONS
DTI is currently a promising tool to study WM microstructure
in vivo. It has, nevertheless, difficulties associated with each spe-
cific analysis stage that must be taken into account from the initial
steps of the experimental design to the final interpretation of
results. This article has highlighted the common problems faced
when performing DTI studies and some possible ways to over-
come them, giving practical guidelines and references, including
for the most used tools for each step of the common DTI pipeline.
The description of the most commonly used solutions and tools
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in the DTI workflow is something that we believe to be underesti-
mated so far. It is, thus, our belief that this hitchhicker’s guide will
be of help for newcomers to the field, but also for those who want
to update their knowledge on the topic.
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