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Ion channels are critical regulators of neuronal excitability and synaptic function in the
brain. Recent evidence suggests that ion channels expressed by neurons within the brain
are responsible for regulating energy and glucose homeostasis. In addition, the central
effects of neurotransmitters and hormones are at least in part achieved by modifications
of ion channel activity. This review focuses on ion channels and their neuronal functions
followed by a discussion of the identified roles for specific ion channels in the central
pathways regulating food intake, energy expenditure, and glucose balance.
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INTRODUCTION
Energy and glucose homeostasis is tightly regulated by mecha-
nisms within the central nervous system (CNS) (Williams and
Elmquist, 2012). Central neurons integrate peripheral and cen-
tral signals for a coordinated modulation of food intake, energy
expenditure, and glucose homeostasis (Williams and Elmquist,
2012). In recent years, researchers have utilized the Cre-loxP
technology to selectively delete or reactivate receptors and sig-
naling molecules of interest. Although this genetic strategy has
some limitations including germ line expression of Cre transgenes
and developmental compensation of missing molecules (Padilla
et al., 2010, 2012; Morrison and Munzberg, 2012), the Cre-loxP
technology has greatly contributed to determine the in vivo phys-
iological roles for receptors, signaling molecules, neuropeptides
and neurotransmitters in a neuron-specific manner. However, rel-
atively little is known about the in vivo physiological function
of ion channels expressed by central neurons. Importantly, neu-
rotransmitters and hormones frequently alter the activity of ion
channels to modify neuronal function involved in the central reg-
ulation of metabolism. Combined with mouse genetics and neu-
roanatomical approaches, electrophysiological techniques have
been successfully applied to uncover novel roles for ion channels
in the regulation of neurons by neurotransmitters and hormones
(Cowley et al., 2001; Qiu et al., 2010; Klockener et al., 2011;
Sohn et al., 2011, 2013; Vong et al., 2011; Cui et al., 2012; Liu
et al., 2012). This review will focus on several ion channels that
have been found to regulate neuronal function in vitro and/or to
have metabolic effects in vivo. Thus, recent advances and current
challenges in understanding the role of ion channels in central
neurons regulating metabolism will be discussed.

ROLE OF ION CHANNELS IN NEURONAL ACTIVITY
Ion channels are critical in regulating the membrane potential
of neurons (Hille, 2001). Typically, the activation of a specific
ion channel will either activate or inhibit a neuron depending on
the resting membrane potential (RMP) and the ion’s equilibrium
potential (Figure 1). If RMP is more negative than the equilib-
rium potential of an ion, the cation will rush in through open
channels (inward current) in the cell membrane which results
in a depolarization of the membrane potential (e.g., Na+ chan-
nels, Ca2+ channels, and non-selective cation or NSC channels,
Figure 1, pink-colored channels). By contrast, cations rush out
or anions rush in through open channels (outward current) to
hyperpolarize membrane potential when RMP is more positive
than the equilibrium potential of an ion (e.g., K+ channels and
Cl− channels, Figure 1, blue-colored channels). Typically, neu-
rons within the arcuate nucleus of hypothalamus have a RMP of
∼55 mV (Cowley et al., 2001; Hill et al., 2008; Al-Qassab et al.,
2009; Williams et al., 2010; Sohn et al., 2011) (Figure 1). Thus, the
activation of NSC channels will depolarize a cell because the esti-
mated ENSC is approximately −20 mV (Cowley et al., 2001; Hill
et al., 2008; Williams et al., 2010; Sohn et al., 2011) (Figure 1). By
contrast, activation of K+ channels will hyperpolarize the mem-
brane potential because EK is approximately −105 mV (Williams
et al., 2010; Sohn et al., 2013) (Figure 1).

The direct activation of most ion channels is triggered by
either changes in voltage (voltage-gated channels) or neuro-
transmitters and hormones (ligand-gated channels). For instance,
direct depolarization of neurons by electrical stimuli will open
voltage-gated Na+, Ca2+, and K+ channels, which contribute
to action potentials. Examples of ligand-gated channels include
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FIGURE 1 | Ion channels and regulation of membrane excitability.

Neurons within the arcuate nucleus typically have a RMP of ∼55 mV
(See text). Cations rush in through open channels when RMP is more
negative to the equilibrium potentials (pink-colored channels). By contrast,
cations rush out or anions rush in through open channels when RMP is
more positive to the equilibrium potentials (blue-colored channels).
Equilibrium potentials were calculated using Nernst equation assuming
experimental conditions in Sohn et al. (2011).

ionotropic receptors of glutamate and gamma-aminobutyric acid
(GABA). While the slow actions of these neurotransmitters
are mediated by the G-protein coupled metabotropic receptors
(mGluRs and GABAB receptors), their fast actions are medi-
ated by the ionotropic receptors (iGluRs and GABAA receptors)
(Hammond, 2001). Glutamate released from presynaptic termi-
nals activates the iGluRs (AMPA, kainate, or NMDA receptors;
these are NSC channels) to generate excitatory postsynaptic
potentials (EPSPs) (Hammond, 2001). Likewise, GABA activates
the ionotropic GABAA receptors (these are chloride channels) to
generate inhibitory postsynaptic potentials (IPSPs) (Hammond,
2001). In addition to these direct modes of ion channel activation,
neurotransmitters and hormones bind to their cognate receptors
and activate cellular signaling cascades, which ultimately results
in the regulation of ion channel activity.

ION CHANNELS IN THE CENTRAL REGULATION OF
METABOLISM
POTASSIUM CHANNELS
Given the large contribution of the K+ conductance to RMP, neu-
rotransmitters and hormones frequently target K+ channels to
modify cellular activity. Once activated, K+ channels hyperpo-
larize the membrane potential and inhibit neuronal activity. If
K+ channels are active at rest and contribute to stabilizing the
membrane potential, the inhibition of K+ channels depolarizes
membrane potential and enhances neuronal activity. As dis-
cussed below, two inward rectifier K+ channels (ATP-sensitive K+

channels and G protein-gated inwardly rectifying K+ channels)
have been found to mediate central regulation of food intake,
energy expenditure and glucose homeostasis.

ATP-sensitive K+ (KATP ) channels
KATP (Kir6) channels belong to a subfamily of inward recti-
fier K+ channels gated by changes in intracellular ATP levels
(Hibino et al., 2010). Functional KATP channels consist of four
pore forming subunits Kir6.x (Kir6.1 or Kir6.2) and four regula-
tory subunits SURx (SUR1, SUR2A, or SUR2B) (Flagg et al., 2010;
Hibino et al., 2010). Typically, KATP channel compositions are
Kir6.2 + SUR1 in pancreatic beta cells, Kir6.2 + SUR2A in car-
diac muscle cells, Kir6.1 + SUR2B in smooth muscle cells (Hibino
et al., 2010). Low ATP levels open KATP channels while high ATP
levels close these channels. For instance, in hyperglycemic con-
ditions with elevated intracellular ATP levels, the inhibition of
KATP channels leads to depolarization of pancreatic beta cells and
insulin secretion (Hibino et al., 2010). By contrast, low intracellu-
lar ATP levels such as in coronary ischemia results in the opening
of cardiac KATP channels and a hyperpolarization, which stabi-
lizes cardiac myocytes (Flagg et al., 2010; Hibino et al., 2010). This
is thought to protect the heart from further injury. Thus, KATP

channels transform cellular energy status to electrical activity in
pathophysiological settings.

KATP and other channels sense glucose levels in brain. KATP

channels are widely expressed throughout the brain (Ashcroft,
1988). It is believed that neurons expressing KATP channels sense
brain glucose levels and regulate glucose homeostasis by changing
their excitability (Ashcroft, 1988). Elevated brain glucose lev-
els activate glucose-excited (or glucose-reponsive) neurons via
the inhibition of KATP channels in multiple brain areas includ-
ing the ventromedial hypothalamic nucleus (VMH), the arcu-
ate nucleus, and the lateral hypothalamic area (LHA) (Ashford
et al., 1990; Song et al., 2001; Routh, 2002; Ibrahim et al., 2003;
Wang et al., 2004; Burdakov et al., 2005; Claret et al., 2007)
(Table 1). In brain, Kir6.2 has been suggested to be the pore-
forming subunits (Karschin et al., 1998; Zawar et al., 1999; Miki
et al., 2001), and defective Kir6.2 subunits resulted in non-
functional KATP channels. For instance, it was demonstrated
that genetic deletion of Kir6.2 subunits deprived VMH neu-
rons of KATP currents as well as glucose responsiveness, and
that glucagon secretion was defective in these mice (Miki et al.,
2001). Notably, pancreatic alpha cell activity was normal in Kir6.2
knockout mice (Miki et al., 2001). It was also demonstrated
that defective Kir6.2 subunits in specific neurons affect glucose
homeostasis. For instance, mutant Kir6.2 subunits in arcuate
pro-opiomelanocortin (POMC) neurons led to impaired POMC
neuron glucose responsiveness and impaired whole body glucose
tolerance (Parton et al., 2007). Moreover, melanin-concentrating
hormone (MCH) neurons within LHA were not activated by ele-
vated glucose levels when Kir6.2 subunits in these neurons lacked
glucose-sensing amino acid residues: these mice also showed
impaired glucose tolerance (Kong et al., 2010). Therefore, Kir6.2
subunits expressed by VMH neurons, arcuate POMC neurons,
and LHA MCH neurons mediate glucose-excitation of these neu-
rons. In addition, these results suggest that glucose sensing by
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Table 1 | Acute cellular effects of metabolic signals in the CNS.

Metabolic signal Inhibited neurons Activated neurons

Elevated glucose Orexin/Hypocretin neuron (↑K2P channel)
Arcuate nucleus neuron (↑CFTR)
VMH neuron (↑CFTR)

VMH neuron (↓KATP channel)
POMC neuron (↓KATP channel)
MCH neuron (↓KATP channel)

Leptin NPY/AgRP neuron (↑KATP channel)
SF1 neuron (*N.D.)
PMV neuron (↑KATP channel)
LHA MC4R neuron (↑KATP channel)

POMC neuron (↑TRPC channel)
Kiss1 neuron (↑TRPC channel)
SF1 neuron (N.D.)
PMV neuron (↑TRPC channel)

Insulin POMC neuron (↑KATP channel)
NPY/AgRP neuron (↑KATP channel)
SF1 neuron (↑KATP channel)

NPY/AgRP neuron (N.D.)

Serotonin NPY/AgRP neuron (via 5-HT1BRs; N.D.) POMC neuron (via 5-HT2CRs; ↑TRPC channel, ↓M channel)

Ghrelin **N.A. NPY/AgRP neuron (N.D.)

Melanocortin DMV neuron (via MC4Rs; ↑KATP channel) PVH/DMH neuron (via MC3R/4Rs; N.D.)
POMC neuron (via MC3R/4Rs; ↓multiple K+ channels)
IML neuron (via MC4Rs; N.D.)

NPY POMC neuron (↑GIRK channel)
Arcuate nucleus GABAergic neuron (↑GIRK channel)
VMH glutamatergic neuron (↑GIRK channel)
Orexin/Hypocretin neuron (↑GIRK channel)

N.A.

*N.D., involved ion channels not determined; **N.A., data not available.

these neurons are required for regulating whole body glucose
homeostasis.

By contrast to the glucose-excitation of LHA MCH neurons
(Burdakov et al., 2005; Kong et al., 2010), orexin/hypocretin
neurons in LHA are inhibited by elevated glucose concentra-
tions (glucose-inhibited or glucose-sensitive neurons) (Burdakov
et al., 2005, 2006). The identity of ion channels underlying
glucose-inhibition is still in debate. Earlier studies suggested
the involvement of Na+-K+ ATPase and cystic fibrosis trans-
membrane regulator (CFTR)-like chloride conductance in the
glucose inhibition (Oomura et al., 1974; Song et al., 2001; Routh,
2002; Fioramonti et al., 2007) (Table 1). Later, two-pore or
tandem-pore domain K+ (K2P) channels were demonstrated
to inhibit neuronal activity by elevated glucose concentrations
in the orexin/hypocretin neurons of LHA (Burdakov et al.,
2006) (Table 1). They claimed that TASK3 subunits, a subfam-
ily of K2P channels, are responsible for the observed glucose-
inhibition (Burdakov et al., 2006). However, genetic deletions of
TASK1/TASK3 or TREK1/TREK2/TRAAK did not prevent glu-
cose inhibition of orexin/hypocretin neurons (Guyon et al., 2009).
These conflicting results highlight the requirement of better phar-
macological and/or genetic tools to identify the molecular entity
of ion channels underlying glucose inhibition of hypothalamic
neurons.

KATP channels mediate the acute inhibitory effects of leptin and
insulin. KATP channels also mediate metabolic effects of leptin
and insulin, the anorexigenic hormones released from adipocytes
and pancreatic beta cells, respectively (Williams et al., 2011a).

In the arcuate nucleus, enhanced PIP3 signaling and increased
KATP channel activity in POMC neurons led to hyperphagia and
diet-induced obesity at least in part by blunting the acute effects
of leptin and insulin (Plum et al., 2006). In the VMH, insulin
receptors expressed by the SF-1 neurons were shown to acti-
vate KATP channels and suppress SF-1 neuron activity, which
resulted in diet-induced obesity (Klockener et al., 2011). More
recently, increased mTOR signaling was associated with elevated
KATP channel activity in arcuate POMC neurons resulting in the
cellular inhibition of arcuate POMC neurons concomitant with
age-dependent obesity (Yang et al., 2012).

Leptin is well known for its anti-obesity and anti-diabetic
effects (Zhang et al., 1994; Campfield et al., 1995; Farooqi et al.,
1999). Evidence suggests that leptin effects are largely mediated
via mechanisms in the CNS (Campfield et al., 1995; Halaas et al.,
1995, 1997; Cohen et al., 2001; Spiegelman and Flier, 2001).
Similarly, insulin levels in the brain are increased in propor-
tion to blood levels, and some of insulin effects are mediated
via mechanisms in the CNS (Woods et al., 1979; Obici et al.,
2002). While leptin and insulin effects on energy and glucose
homeostasis are largely mediated by Jak2/STAT3 and Akt/FOXO1
signaling cascades, respectively (Belgardt and Bruning, 2010),
they also require phosphatidylinositol-3-kinase (PI3K) activity
(Niswender et al., 2001; Zhao et al., 2002; Rahmouni et al.,
2003; Mirshamsi et al., 2004; Morrison et al., 2005; Morton
et al., 2005; Fukuda et al., 2008). Interestingly, the acute cellular
effects of leptin and insulin are also mediated via PI3K activation
(Choudhury et al., 2005; Plum et al., 2006; Hill et al., 2008; Al-
Qassab et al., 2009; Klockener et al., 2011; Williams et al., 2011b)
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(Figure 2). The acute inhibition of cellular activity by leptin is
mediated by the activation of KATP channels, as demonstrated
by findings in several types of neurons located in hypothala-
mus and brainstem (Spanswick et al., 1997; Williams and Smith,
2006; Cui et al., 2012) (Figure 2 and Table 1). Typically, arcuate
POMC neurons and leptin receptor (LepR)-expressing neurons
of ventral premammilary nucleus (PMV) are activated by lep-
tin (Cowley et al., 2001; Al-Qassab et al., 2009; Williams et al.,
2010, 2011b) (Table 1). However, a minor population of arcuate
POMC neurons and PMV LepR neurons is inhibited by leptin via
KATP channel activation (Williams et al., 2010, 2011b) (Table 1).
By contrast to leptin effects, acute effects of insulin are mostly
inhibitory and mediated via the activation of KATP channels in
neurons of VMH and arcuate nucleus (Spanswick et al., 2000; Hill
et al., 2008; Williams et al., 2010; Klockener et al., 2011) (Figure 2
and Table 1). It was also reported, however, that insulin acti-
vated some arcuate neuropeptide Y (NPY)/agouti-related peptide
(AgRP) neurons (Al-Qassab et al., 2009) (Table 1). In addition,
although PI3K closely interact with Jak2/STAT3 and Akt/FOXO1
signaling cascades (Belgardt and Bruning, 2010; Williams et al.,
2011a), there is currently no available data liking these signal-
ing cascades to PI3K/KATP channel activation. Thus, while PI3K
mediates the acute effects of leptin and insulin, more efforts are
required to better understand the ion channel mechanisms and
relevant signal pathways.

Arcuate POMC and NPY/AgRP neurons and VMH SF1 neu-
rons are common targets of leptin and insulin (Al-Qassab et al.,
2009; Williams et al., 2010; Klockener et al., 2011). As discussed,
the acute effects of both leptin and insulin are mediated by
the PI3K-dependent signaling pathways (Al-Qassab et al., 2009;
Klockener et al., 2011; Williams et al., 2011b). However, their cel-
lular effects are heterogeneous depending on their target neurons.
POMC neurons and SF1 neurons are either activated or inhib-
ited by leptin, and inhibited by insulin (Al-Qassab et al., 2009;
Williams et al., 2010; Klockener et al., 2011). NPY/AgRP neurons
are inhibited by leptin, but either inhibited or activated by insulin
(Al-Qassab et al., 2009; Williams et al., 2010). Interestingly,
leptin-activated, leptin-inhibited, and insulin-inhibited neurons

FIGURE 2 | Receptor-mediated regulation of KATP channels. MC4Rs,
which are Gs protein-coupled receptors, activate KATP channels via the
cAMP/PKA signaling pathways. On the other hand, leptin receptors (type 1
cytokine receptors) and insulin receptors (class 2 tyrosine kinase receptors)
activate KATP channels via the PI3K signaling pathway.

have been found to be distinct within the POMC neuron pop-
ulation (Williams et al., 2010) and SF1 neuron population
(Klockener et al., 2011). Thus, while leptin and insulin share the
PI3K signaling pathways for their acute effects, it looks like they
act on distinct populations of neurons. Given the divergent axonal
projections of these neurons (Canteras et al., 1994; Baker and
Herkenham, 1995; Elias et al., 1998, 2001; Bagnol et al., 1999),
it will be an interesting focus of future investigation to delineate
the relationship between leptin/insulin responsiveness of these
neurons and their axonal projections.

KATP channels mediate the acute inhibitory effects of
melanocotins. Melanocortin 4 receptors (MC4Rs) are important
regulators of energy and glucose homeostasis (Huszar et al., 1997;
Vaisse et al., 1998; Yeo et al., 1998; Farooqi et al., 2003). MC4Rs
are expressed by distinct nuclei in the CNS (Kishi et al., 2003;
Liu et al., 2003). Interestingly, MC4Rs in the paraventricular
hypothalamic nucleus (PVH) decrease food intake whereas
MC4Rs expressed by cholinergic neurons (including parasympa-
thetic and sympathetic preganglionic neurons) increase energy
expenditure and regulate glucose homeostasis, suggesting a
divergence of the central melanocortin pathways (Balthasar et al.,
2005; Rossi et al., 2011). MC4Rs are demonstrated to depolarize
neurons within the PVH and dorsomedial hypothalamic nucleus
(DMH) (Liu et al., 2003), but little is known about the specific
ion channel mediating the acute effects of MC4Rs in these neu-
rons (Table 1). It was suggested that the inhibition of multiple
potassium channels underlies MC4R-induced depolarization of
arcuate POMC neurons (Smith et al., 2007) (Table 1). In POMC
neurons, however, a distinct physiological role of MC4Rs has not
yet been characterized. A recent study demonstrated that MC4Rs
hyperpolarize the parasympathetic preganglionic neurons in
brainstem via PKA-dependent activation of KATP channels (Sohn
et al., 2013) (Figure 2 and Table 1). Interestingly, it was shown
in the same study that MC4Rs depolarize the sympathetic pre-
ganglionic neurons in spinal cord (Sohn et al., 2013) (Table 1).
These results represent a reciprocal regulation of autonomic
preganglionic neurons. The identity of ion channels underlying
the depolarization of PVH/DMH neurons and the sympathetic
preganglionic neurons has not yet been determined. Further
experiments will be necessary to delineate the intracellular signal
pathways and the target ion channels underlying the cellular
effects of MC4Rs in CNS.

G Protein-gated inwardly rectifying K+ (GIRK) channels
GIRK (Kir3) channels are a subfamily of inwardly rectifying K+
channels gated by G protein-coupled receptors (Hibino et al.,
2010). GIRK channels are important regulators of RMP and cel-
lular excitability in the heart and brain (Luscher et al., 1997;
Wickman et al., 1998; Cruz et al., 2004; Luscher and Slesinger,
2010). There are four mammalian GIRK channel subunits,
GIRK1∼GIRK4. GIRK1/GIRK2 heterotetramers serve as the neu-
ronal GIRK channel prototype, while cardiac GIRK channels are
GIRK1/GIRK4 heterotetramers (Koyrakh et al., 2005; Luscher
and Slesinger, 2010). Since GIRK1 homomers fail to form a func-
tional GIRK channel, the knockout of GIRK2 subunits eliminates
most GIRK currents in brain (Krapivinsky et al., 1995; Hedin
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et al., 1996; Kennedy et al., 1996, 1999; Ma et al., 2002). However,
deficiency in GIRK2 subunits did not affect RMP of arcuate
POMC neurons (Sohn et al., 2011). Notably, GIRK1 subunits
were found to be largely responsible for stabilizing the membrane
potential of arcuate POMC neurons (Sohn et al., 2011). In addi-
tion, global deficiency of GIRK4 subunits resulted in mice that
developed late onset obesity through hypothalamic mechanisms
(Perry et al., 2008). Thus, subunit composition of hypothalamic
GIRK channels may be distinct from those identified in other
brain areas including hippocampus and midbrain.

GIRK channels may be constitutively active (Chen and
Johnston, 2005; Sohn et al., 2011), but they are more commonly
activated by the direct binding of Gβγ subunits originating from
Gi/o protein-coupled receptors including Y receptors, GABAB

receptors, and opioid receptors (Figure 3). For instance, the
hyperpolarizing effects of Y1R/Y2R are mediated by the activa-
tion of GIRK channels in the orexin/hypocretin neurons within
LHA (Fu et al., 2004), the glutamatergic neurons within VMH
(Chee et al., 2010) and the GABAergic neurons and POMC
neurons within arcuate nucleus (Roseberry et al., 2004; Acuna-
Goycolea et al., 2005) (Table 1). Recent evidence demonstrated
that dynorphin, an endogenous opioid neuropeptide, inhibits
arcuate POMC neurons via activation of κ2 opioid receptors
and GIRK channels (Zhang and Van Den Pol, 2013). Likewise,
GIRK channels are likely to underlie the slow inhibitory effects of
serotonin 1B receptors (5-HT1BRs) on arcuate NPY/AgRP neu-
rons (Heisler et al., 2006). GIRK channels also mediate slow
inhibitory effects of the metabotropic GABAB receptors in arcu-
ate POMC neurons (Sohn et al., 2011). Recently it was shown
that arcuate POMC neuronal activity was regulated by changes in
the GABAergic inhibitory postsynaptic currents (IPSCs), which
are chloride currents through the ionotropic GABAA receptors.
(Tong et al., 2008; Vong et al., 2011). It is also possible that
changes in GABAergic neurotransmission may also regulate arcu-
ate POMC neurons via the GABAB receptors and GIRK channels.
However, this possibility has not yet been tested. Identifying the
role of specific GIRK channel subunits in hypothalamus will be
an interesting focus of future investigation.

NON-SELECTIVE CATION (NSC) CHANNELS

NSC channels refer to a collection of ion channels that
permeate cations (e.g., Na+, K+, and Ca2+) without ion

FIGURE 3 | Receptor-mediated regulation of GIRK channels. GIRK
channels are activated by the direct binding of Gβγ subunits in a
membrane-delimited manner. Typically, Gβγ subunits which open GIRK
channels originate from the Gi/o protein-coupled receptors such as Y
receptors, GABAB receptors, and κ2 opioid receptors.

selectivity. The relative conductance to each cation is different
for each channel, but they typically have a reversal potential
around −20 mV (Cowley et al., 2001; Hill et al., 2008; Sohn
et al., 2011). The transient receptor potential (TRP) channel
is the largest and probably the best-studied NSC channel fam-
ily (Wu et al., 2010). Mammalian homologues of Drosophila
TRP channels have been classified into subfamilies includ-
ing canonical (TRPC), vanilloid (TRPV), melastatin (TRPM),
and others (Wu et al., 2010). TRP channels are expressed
widely in the CNS (Wu et al., 2010), and specific func-
tions for each channel are being discovered. Mice with defec-
tive TRPC3 channels showed cerebellar locomotive dysfunction
(Hartmann et al., 2008). In addition, TRPC5 channel knockout
mice showed decreased fear (Riccio et al., 2009), and TRPV1
channel was found to be responsible for addiction and pain
(Grueter et al., 2010; Kim et al., 2012).

As discussed, leptin-induced hyperpolarization is attributed to
the activation of KATP channels. By contrast, leptin depolarizes
arcuate POMC neurons via the activation of NSC conductance
(Cowley et al., 2001; Hill et al., 2008). It was later demon-
strated that leptin-induced inward currents in POMC neurons
were mediated by PI3K/PLC-dependent activation of TRPC chan-
nels (Qiu et al., 2010) (Figure 4 and Table 1). Depolarization of
PMV LepR neurons and arcuate kiss1 neurons was also attributed
to the activation of TRPC channels (Qiu et al., 2011; Williams
et al., 2011b) (Table 1). Analyses of biophysical characteristics and
single cell RT-PCR results suggested that TRPC4 and TRPC5 sub-
units, and TPRC6 to a lesser extent, may underlie leptin-induced
neuronal activation (Qiu et al., 2010, 2011). Thus, leptin acti-
vation of central neurons is expected to be largely mediated via
TRPC channels. However, the specific TRPC subunit mediat-
ing the acute effects of leptin (in vitro and in vivo) still remains
undefined.

Serotonin 2C receptors (5-HT2CRs) expressed by arcuate
POMC neurons are important in mediating the anti-obesity
and anti-diabetic effects of serotonin (Heisler et al., 2002; Xu
et al., 2008, 2010). It was also suggested that 5-HT1BRs expressed
by arcuate NPY/AgRP neurons may underlie these effects of
serotonin (Heisler et al., 2006). It was initially demonstrated
that 5-HT2CRs directly activate the anorexigenic POMC neu-
rons (Heisler et al., 2002). Notably, 5-HT1BRs directly inhibit the

FIGURE 4 | Receptor-mediated regulation of TRPC channels. 5-HT2C

receptors (Gq protein-coupled receptors) and leptin receptors (type 1
cytokine receptors) open TRPC channels via the PLC signaling pathway.
Note that leptin receptors activate PI3K prior to PLC activation.
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orexigenic NPY/AgRP neurons, which results in decreased IPSCs
onto POMC neurons (Heisler et al., 2006). Thus, there is a local
circuit involving arcuate POMC and NPY/AgRP neurons that
mediates the anorexigenic effects of serotonin. More recently, it
was shown that 5-HT2CRs activate arcuate POMC neurons via
PLC-dependent activation of TRPC channels (Sohn et al., 2011)
(Figure 4). Thus, TRPC channels may serve as a common cellular
target to mediate the acute effects of both leptin and serotonin
(Figure 4 and Table 1). As suggested for acute effects of leptin
and insulin (Williams et al., 2010), leptin and serotonin acti-
vated distinct subpopulations of arcuate POMC neurons (Sohn
et al., 2011). The heterogeneity of arcuate POMC neurons may
be related to the divergence of central melanocortin pathways
(Balthasar et al., 2005; Sohn and Williams, 2012). It should be
noted that 5-HT2CRs also inhibit GIRK channels and M-type K+
channels in arcuate POMC neurons (Qiu et al., 2007; Roepke
et al., 2012). Since these K+ channels stabilize neuronal RMP,
the inhibition of these channels may also contribute to neuronal
activation by 5-HT2CRs (Delmas and Brown, 2005; Luscher and
Slesinger, 2010).

In addition to leptin and serotonin, depolarization of arcu-
ate NPY/AgRP neurons by neuromedin B and gastrin-releasing
peptide is mediated by the activation of NSC conductance
(Van Den Pol et al., 2009). Also, there are examples of mem-
brane depolarization with unidentified ion channel mecha-
nisms. For instance, ghrelin, an orexigenic hormone released
from gastric mucosa, depolarizes arcuate NPY/AgRP neurons
(Cowley et al., 2003) (Table 1). Moreover, MC4Rs are known
to depolarize arcuate POMC neurons (Smith et al., 2007),
neurons within the PVH and DMH (Liu et al., 2003), and
the sympathetic preganglionic neurons (Sohn et al., 2013).
Currently, it’s unclear if these acute effects involve NSC
channels such as TRP channels and cyclic nucleotide gated
(CNG) channels.

IONOTROPIC GLUTAMATE RECEPTORS (iGluRs) AND GABAA

RECEPTORS
Neuronal excitability is frequently modulated by the excitatory
neurotransmitter glutamate and the inhibitory neurotransmitter
GABA released from presynaptic terminals (Pinto et al., 2004).
Patch clamp electrophysiological recordings demonstrated abun-
dant excitatory and inhibitory synaptic inputs onto both arcuate
POMC neurons and NPY/AgRP neurons (Pinto et al., 2004;
Sternson et al., 2005; Tong et al., 2008; Vong et al., 2011; Liu
et al., 2012). The physiological importance of presynaptic gluta-
mate release and postsynaptic iGluRs has been demonstrated in
several studies. For instance, glutamate release machinery (vesic-
ular glutamate transporter: vGluT2) in VMH SF-1 neurons was
required to prevent hypoglycemia (Tong et al., 2007). In another
study, food deprivation and ghrelin potentiated presynaptic glu-
tamate release and increased spontaneous excitatory postsynaptic
currents (sEPSCs) onto arcuate NPY/AgRP neurons (Yang et al.,
2011). Recent studies highlighted the importance of NMDA
receptors in fasting activation of arcuate NPY/AgRP neurons (Liu
et al., 2012), and in relaying satiety signals from the nucleus trac-
tus solitaries (NTS) to the parabrachial nucleus (PBN) (Wu et al.,
2012).

Arcuate POMC neurons receive GABAergic input from mul-
tiple types of neurons including arcuate NPY/AgRP neurons
(Cowley et al., 2001). The spontaneous IPSCs (sIPSCs) recorded
in arcuate POMC neurons represented suppression of arcu-
ate POMC neurons and alpha-MSH release (Tong et al., 2008;
Vong et al., 2011). Defective synaptic GABA release from arcuate
NPY/AgRP neurons produced a lean phenotype, which was asso-
ciated with decreased IPSCs onto arcuate POMC neurons (Tong
et al., 2008). In addition, deletion of LepRs in GABAergic neurons
(probably non-NPY/AgRP) produced robust obesity (Vong et al.,
2011), and this was associated with increased IPSCs onto arcuate
POMC neurons. Notably, ghrelin increases IPSC frequency onto
arcuate POMC neurons (Cowley et al., 2003; Tong et al., 2008),
which may explain its orexigenic effects at least in part. Based on
these results, it was suggested that GABAA receptors expressed by
arcuate POMC neurons may be important regulators of energy
and glucose homeostasis. However, it should be noted that dele-
tion of LepRs in POMC neurons, which may decrease neuronal
firing frequency, resulted in only a mild obesity with no increase
in food intake (Balthasar et al., 2004). In addition, recent stud-
ies demonstrated that GABAergic neurotransmission in the PVH
and the PBN is important for the orexigenic effects of NPY/AgRP
neuron stimulation (Wu et al., 2009; Atasoy et al., 2012). Thus, the
observed alteration of IPSC frequency onto the arcuate POMC
neurons may not be so critical as previously suggested for the
metabolic effects observed in those mouse models (Cowley et al.,
2003; Tong et al., 2008; Vong et al., 2011). Future studies may need
to delineate the relative contribution of GABAergic neurotrans-
mission and the role of GABAA receptors expressed by arcuate
POMC neurons and the neurons within PVH and PBN.

CONCLUDING REMARKS
In summary, multiple ion channels expressed by a specific neuron
contribute to determine cellular response to humoral or synaptic
inputs. For instance, KATP channels expressed by arcuate POMC
neurons underlie the acute cellular inhibition by insulin receptors
(Hill et al., 2008; Williams et al., 2010). On the other hand, the
acute cellular activation by LepRs and 5-HT2CRs are mediated
by TRPC channels (Hill et al., 2008; Qiu et al., 2010; Williams
et al., 2010; Sohn et al., 2011). In addition, GABAA receptors are
responsible for the fast inhibitory inputs (IPSCs) from NPY/AgRP
and other GABAergic neurons (Cowley et al., 2001; Vong et al.,
2011). Notably, these GABAergic neurons are modulated by lep-
tin and ghrelin and therefore the changes in IPSCs recorded on
arcuate POMC neurons may represent indirect effects of these
hormones (Cowley et al., 2003; Pinto et al., 2004; Tong et al., 2008;
Vong et al., 2011). Although direct evidence is lacking, it is possi-
ble that EPSCs recorded on arcuate POMC neurons may represent
the glutamatergic input from VMH SF1 neurons (Sternson et al.,
2005). Considering that glutamate release from SF1 neurons reg-
ulate glucose homeostasis (Tong et al., 2007), it will be worthwhile
to study the role of iGluRs expressed by arcuate POMC neurons
in glucose homeostasis. More specific functions of ion channels
are expected to be discovered regarding the central regulation of
food intake, energy expenditure, and glucose homeostasis.

Most of currently available data regarding the in vivo effects of
hormones and neurotransmitters on metabolism was obtained by
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neuron-specific deletions of receptors or downstream signaling
molecules using the Cre-loxP technology (Balthasar et al., 2005;
Dhillon et al., 2006; Hill et al., 2008, 2010; Al-Qassab et al., 2009;
Xu et al., 2010; Klockener et al., 2011; Rossi et al., 2011; Scott et al.,
2011). While hormones and neurotransmitters frequently modu-
late ion channels in vitro, little is known about a specific function
of ion channels in central regulation of metabolism in vivo. Recent
evidence suggests that defective ion channel subunits in specific
neuronal populations could lead to a long-term dysregulation of
energy and glucose homeostasis (Parton et al., 2007; Liu et al.,
2012). For a direct evaluation of how ion channels contribute to

central regulation of metabolism, it will be reasonable to generate
mice that have loxP-flanked ion channel genes and breed them
with available Cre mouse models. Considering the importance
of ion channels in neuronal and synaptic function, these studies
will certainly advance our knowledge on the central mechanisms
regulating energy and glucose homeostasis.
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