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Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a
proportion of individuals following a traumatic event. Despite recent advances, ethical
limitations associated with human research impede progress in understanding PTSD.
Fortunately, much effort has focused on developing animal models to help study the
pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a
variety of stressors (physical, psychosocial, or psychogenic) are used to examine the long-
term effects of severe trauma. We emphasize models involving predator threat because
they reproduce human individual differences in susceptibility to, and in the long-term
consequences of, psychological trauma.
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POST-TRAUMATIC STRESS DISORDER
CLINICAL DIAGNOSIS, PRECIPITATING EVENT, AND
HERITABILITY STUDIES
Since the usefulness of animal models of post-
traumatic stress disorder (PTSD) depends on
their ability to reproduce the human syndrome,
we first summarize the diagnostic features of
this anxiety disorder based on the criteria pro-
vided in the Diagnostic and Statistical Manual for
Mental Disorders IV-TR (American Psychiatric
Association, 2000). PTSD is an anxiety disor-
der triggered by exposure to a traumatic event.
Depending on the type of trauma and its inten-
sity, the proportion of individuals who develop
PTSD varies greatly. For instance, traumatic
events of human design (i.e., violent crime, rape,
war) lead to a higher incidence of PTSD than
natural disasters (North et al., 2012).

To receive a diagnosis of PTSD, the indi-
vidual must experience a traumatic event that
produces feelings of intense fear, horror, or help-
lessness. Once this criterion is met, individuals
must pass a symptom threshold for each of

three symptom clusters: re-experiencing, avoid-
ance, and hyperarousal. (1) Re-experiencing
occurs when individuals involuntary re-live the
traumatic event in a variety of ways, includ-
ing flashbacks and recurrent nightmares. These
sleep disturbances may explain some of the
cognitive impairments reported in PTSD (van
Liempt et al., 2011, 2013). (2) The avoidance
symptom cluster includes individuals’ efforts
to avoid and emotionally detach themselves
from people, places, and situations that remind
them of the traumatic event. (3) Hyperarousal
is characterized by heightened physiological
reactivity as evidenced by exaggerated startle
response, difficulty concentrating, and hyper-
vigilance. Symptoms must occur for at least 1
month and cause significant impairment in the
individual’s functioning.

Not every individual who experiences a
traumatic event suffers from PTSD. Individual
variations are partly explained by a genetic con-
tribution to this anxiety disorder. For instance,
the correlation of PTSD status is higher among
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monozygotic than dizygotic twins (Nugent
et al., 2008; Afifi et al., 2010). Consistent with
this, genetic studies identified DNA variations
that show a strong association with PTSD sta-
tus and likely confer susceptibility/resilience
to some individuals (reviewed in Mahan and
Ressler, 2012). Interestingly, PTSD heritability
coincides with that of other psychiatric condi-
tions such as generalized anxiety and depression
(Chantarujikapong et al., 2001; Fu et al., 2007),
suggesting that these disorders gain expres-
sion through common biological mechanisms.
Indeed, in the National Comorbidity Study,
roughly one-half of men and women who suf-
fered PTSD also met diagnostic criteria for
major depressive disorder (Brady et al., 2000).

ABNORMAL FEAR REGULATION IN PTSD
In PTSD, the fear responses triggered by the ini-
tial trauma are repetitively re-experienced, often
through flashbacks and recurring nightmares.
Moreover, fear tends to generalize to other stim-
uli and situations, contributing to avoidance
of fear-provoking places, activities, and peo-
ple. Consistent with this, numerous laboratory
studies support the view that fear is regulated
abnormally in PTSD (for instance see: Orr et al.,
2000; Peri et al., 2000; Guthrie and Bryant, 2006;
Milad et al., 2008; Glover et al., 2011). Below, we
briefly review this evidence.

Post-traumatic stress disorder
a debilitating anxiety disorder that
develops in a proportion of individuals
following a traumatic event that
produced feelings of intense fear,
horror, or helplessness and is
characterized by re-experiencing of the
trauma, avoidance, and hyperarousal.

The leading experimental model to study
how organisms learn to predict danger based
on experience is classical fear conditioning

Classical fear conditioning
The leading laboratory model for
studying how organisms learn to
predict danger by experience. In this
model, a neutral conditioned stimulus
(CS), such as a context or tone, is
paired with a noxious unconditioned
stimulus (US), typically a mild
electrical shock to the hand or wrist.
After a few CS-US pairings,
presentation of the CS alone comes to
elicit conditioned fear responses.

(Ledoux, 2000). In this model, a neutral condi-
tioned stimulus (CS), such as a context or tone,
is paired with a noxious unconditioned stim-
ulus (US), typically a mild electrical shock to
the hand or wrist. After a few CS-US pairings,
presentation of the CS alone comes to elicit con-
ditioned fear responses (e.g., galvanic skin con-
ductance, pupil dilation). As discussed below, a
similar network of brain structures regulate fear
learning in humans and animals (Phelps and
Ledoux, 2005).

While it is clear that fear is abnormally reg-
ulated in PTSD, the evidence is mixed as to
whether individuals with PTSD acquire and/or
express stronger conditioned fear responses
than controls (Morgan et al., 1995; Grillon et al.,
1998; Orr et al., 2000; Kumari et al., 2001;
Blechert et al., 2007; Norrholm et al., 2011;
Jovanovic et al., 2012). In contrast, there is con-
sensus that those with PTSD display increased
baseline startle responses (Morgan et al., 1995;
Grillon et al., 1998; Kumari et al., 2001). It has
been proposed that this form of fear dysregu-
lation results from an inability of individuals

with PTSD to differentiate safe from threat-
ening contexts (Grillon et al., 1998). Indeed,
(Grillon, 2002) found that when individuals
with PTSD are confronted with situations per-
ceived as stressful, and presented with unpre-
dictable adverse events, they exhibit potenti-
ated startle responses compared to controls.
These findings support the role of unrealis-
tic danger expectations, which can contribute
to a chronic state of anxiety that allows fear
to generalize to previously safe situations and
progressively invade more aspects of an individ-
ual’s life.

Also, subjects who suffer from PTSD are defi-
cient at learning that stimuli previously associ-
ated with adverse outcomes no longer present
a threat (Orr et al., 2000; Peri et al., 2000;
Rothbaum et al., 2001; Guthrie and Bryant,
2006; Milad et al., 2008; Norrholm et al., 2011;
Jovanovic et al., 2012). As a result, PTSD is
often characterized as a failure to learn safety
in the absence of threat (Milad et al., 2006). In
the laboratory, this form of learning is modeled
by repeatedly presenting the CS in the absence
of the US. This process, termed extinction, is
closely related to an approach commonly used
by clinicians to treat PTSD: prolonged expo-
sure therapy (PE; Bisson et al., 2007; Powers
et al., 2010; Rauch et al., 2012). In PE, indi-
viduals with PTSD are presented with actual
or imagined trauma reminders depicting the
most feared aspects of the traumatic event.
These cues, analogous to the CS, are not fol-
lowed by danger (or US). With sufficient repe-
tition and when paced appropriately, extinction
occurs and PTSD symptoms remit. Note that
extinction training does not reverse or erase the
original fear memory, but leads to the forma-
tion of a new inhibitory memory (CS-no US)
that competes with the original CS-US associ-
ation for control of behavior (Myers and Davis,
2002).

While extinction deficits can be remedied
with PE, do the extinction deficits character-
istic of PTSD predate or result from trauma?
A study of monozygotic twins discordant for
trauma exposure addressed this question. Milad
et al. (2008) found that PTSD is associated
with impaired extinction retrieval after but not
before trauma. This suggests that the extinc-
tion deficit is not a pre-existing condition; rather
it develops as a result of trauma (Milad et al.,
2008).

Consistent with the abnormal fear regula-
tion seen in PTSD, two brain structures critically
involved in the acquisition and extinction of
conditioned fear responses, the amygdala and
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ventromedial pre-frontal cortex (vmPFC), show
atypical activity patterns in PTSD. Indeed,
results from several functional imaging studies
show that reminders of traumatic events acti-
vate the amygdala more strongly in individuals
with PTSD than in controls (Shin et al., 2006).
Additional evidence of the amygdala’s involve-
ment in PTSD comes from a retrospective study
of Vietnam war veterans who suffered localized
brain injuries: participants with amygdala dam-
age had a dramatically lower incidence of PTSD
than subjects with lesions to other parts of their
brain (Koenigs et al., 2008). Further strengthen-
ing the link between aberrant amygdala activa-
tion and PTSD, in a prospective study, higher
activation of the amygdala in response to emo-
tional images before trauma predicted reports of
higher post-traumatic stress symptom severity
(Admon et al., 2009). In contrast, in individu-
als with PTSD, vmPFC was hypo-responsive and
smaller in volume than in controls (Bremner
et al., 2008). Given the critical role played by
vmPFC in extinction, these observations sug-
gest that hypo-activity in this region may be
responsible for the extinction deficits exhibited
by humans with PTSD (Milad et al., 2008).

ABNORMAL HIPPOCAMPAL STRUCTURE AND
FUNCTION
The hippocampus plays a critical role in the for-
mation of declarative memories and is rich in
receptors for glucocorticoids, a class of steroid

Allocentric
A frame of reference where individuals
must use the spatial relationships
between external cues in order to
successfully navigate within their
environment.

hormones released by the adrenal glands during
stressful conditions. High levels of circulating

Egocentric
A frame of reference where the location
of objects is defined with respect to the
observer’s body axes (left-right;
up-down; front-back).

stress hormones lead to cellular atrophy in the

Fear extinction
Repeatedly presenting the CS in the
absence of US reduces conditioned fear.
Extinction does not erase the fear
memory, but leads to the formation of
a new inhibitory memory. After
extinction, fear responses return with
time or when the CS is presented in a
context different than where extinction
training occurred. These properties of
extinction account for the limited
efficacy of exposure therapy.

hippocampus (Sapolsky, 2000; McEwen, 2007),
inhibition of hippocampal neurogenesis (Gould
et al., 1997) and of activity-dependent synap-
tic plasticity (Pavlides et al., 2002; Popoli et al.,
2011). Moreover, stress impairs hippocampal-
dependent memory retrieval in humans (De
Quervain et al., 2000; Wolf et al., 2001), an effect
mediated in part by direct glucocorticoid effects
in the hippocampus (Roozendaal et al., 2003).

Consistent with this, individuals with PTSD
have smaller hippocampal volumes (Gilbertson
et al., 2002; Bremner et al., 2003; Kitayama et al.,
2005; Wang et al., 2010) and exhibit impaired
performance on hippocampal-dependent tasks
(for instance, see Shin et al., 2004; Lindauer
et al., 2006; Gilbertson et al., 2007; Thomaes
et al., 2009; Hayes et al., 2011; reviewed
in Samuelson, 2011). Interestingly, studies of
monozygotic twins discordant for combat expo-
sure indicate that the abnormalities in hip-
pocampal structure and function seen in
individuals with PTSD are present in their

non-traumatized co-twins, suggesting that they
predate onset of the disorder (Gilbertson et al.,
2002, 2007). In particular, Gilbertson et al.
(2007) examined the impact of PTSD on
performance in allocentric spatial tasks that
rely on the identification of spatial relation-
ships between neighboring stimuli. These tasks
cannot be solved using an egocentric frame of
reference and are believed to depend on hip-
pocampal functioning (Langston and Wood,
2010). In monozygotic twins discordant for
combat exposure, individuals with PTSD and
their non-traumatized co-twin were impaired
on allocentric tasks relative to non-PTSD con-
trol twins (Gilbertson et al., 2007). This con-
trasts with the fear extinction deficit reviewed
above, which develops after trauma.

The significance of these hippocampal
deficits for the etiology of PTSD comes from
earlier studies of learning tasks that engage
hippocampal-dependent, “cognitive” vs.
striatal-dependent, “habit” memory systems
(reviewed in Poldrack and Packard, 2003).
These systems interact in a competitive man-
ner such that lesions or inactivation of one
system leads the subject to favor the other, an
interpretation supported by functional imaging
studies in humans (Poldrack et al., 1999).
Particularly relevant to PTSD is the observation
that in such dual-solution memory tasks, stress
biases rats (Kim et al., 2001; Packard and
Wingard, 2004) and humans (Schwabe et al.,
2007, 2008) toward striatal-dependent learning
strategies. Moreover, the basolateral amygdala
mediates these effects of stress (Wingard and
Packard, 2008). Therefore, it is possible that the
antecedent hippocampal deficits and amygdala
hyper-responsiveness seen in PTSD lead to
a greater engagement of the striatum and
automatic responding to trauma-related cues
(Goodman et al., 2012). In addition, since the
hippocampus is required for differentiating
contexts (Rudy et al., 2004), its impaired
functioning might interfere with the contextual
regulation of fear responses, promoting fear
generalization.

ANIMAL MODELS OF PTSD
Animal models provide an important avenue for
studying the pathophysiology of PTSD because
they circumvent ethical limitations associated
with human research in three important ways.
First, in contrast with human studies where
participants cannot be randomly assigned to
trauma exposure, in animal models researchers
can manipulate all aspects of the stressor includ-
ing type, timing, and intensity. Second, these
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manipulations allow investigators to separate
pre-existing factors from those that are acquired
after exposure to the stressor. Finally, animal
models permit the use of more invasive tech-
niques than ethically acceptable in humans.

Generally, the validity of animal models is
assessed using a combination of criteria includ-
ing: (1) Face validity—does the model repro-
duce symptoms associated with the human
syndrome? (2) Construct validity—does the
model measure what it intends to measure (e.g.,
EPM as a measure of anxiety)? (3) Predictive
validity—can the model predict treatment (e.g.,
drugs) outcomes seen in the human syndrome?
(4) Discriminant validity—does the model dif-
ferentiate between those with and without
PTSD? (Siegmund and Wotjak, 2006; Belzung
and Lemoine, 2011). This review will focus on
assessing the face validity of animal models
of PTSD.

Fortunately, much work has focused on
defining animal models of PTSD that repro-
duce salient features of the human syndrome
(see Adamec et al., 2006; Cohen et al., 2006a;
Siegmund and Wotjak, 2006). In these mod-
els, animals are exposed to various types of
stressors, leading to long-lasting changes in cir-
culating levels of stress hormones and/or in
anxiety-like behaviors, assessed with standard-
ized tests such as the elevated plus maze (EPM),
open field, social interaction test, and acoustic
startle. Stressors can vary along many dimen-
sions including duration (acute vs. chronic),
controllability (controllable vs. uncontrollable),
and frequency (single vs. repeated). Below, we
describe the most common rodent PTSD mod-
els, which we organized based on the type
of stressor. In section “Ecological Validity of
Rodent PTSD Models,” we consider whether
the various models reproduce salient features
of human PTSD. Attention is focused on
individual differences in trauma susceptibility,
deficits in fear extinction, and impaired hip-
pocampal functioning. A thorough review of
this literature exceeds the format of this arti-
cle; therefore, we provide an overview of key
findings.

MODELS USING PHYSICAL STRESSORS
The traumatic events that precipitate PTSD
in humans often involve potentially life-
threatening bodily harm. Similarly, many
animal models of PTSD use physical stressors

Physical stressors
A stressor involving physical harm or
discomfort.

such as inescapable footshocks, underwater/
forced swim paradigms, immobilization/
restraint stress, or a combination of multiple
stressors.

Delivery of inescapable and unsignaled foot-
shocks leads to the formation of robust fear
associations to the context where the shocks
were administered (Rudy et al., 2004). In
addition, some studies report that delivery of
numerous (2–10), high intensity (∼1.5 mA)
footshocks augments anxiety-like behavior on
the EPM (Armario et al., 2008) and increases
circulating levels of ACTH and corticosterone
(CORT; Daviu et al., 2012). It is important
to note that footshock stress is also used to
model depression (Seligman and Maier, 1967).
Consistent with this, administration of antide-
pressants attenuates the long-term behavioral
effects of inescapable footshocks (e.g., enhanced
acoustic startle) (Manion et al., 2007). This find-
ing highlights a major confound associated with
many animal models of PTSD relying on phys-
ical stressors: it is unclear whether they model
PTSD and/or depression. However, PTSD and
depression often coexist in humans. Therefore,
this is not necessarily a weakness.

Underwater trauma has also been used in
rats to model the trauma that precipitates PTSD
in humans. Here, rats subjected to underwater
trauma (40 s swim and 20 s submersion) show
an immediate and persistent increase in anxiety
in the EPM compared to rats that swim without
submersion (Moore et al., 2012).

Restraint stress, which involves placing rats in
restraining tubes for 2–6 h, leads to increased
manifestations of anxiety in the EPM (Vyas
et al., 2002), and changes in neuronal mor-
phology within brain regions mediating fear
and anxiety (Miller and McEwen, 2006). A
related procedure is immobilization stress,
where rodents are restrained onto a wooden
platform either acutely (single session) or
chronically (several sessions). Immobilization
stress produces a long-term desensitization of
the hypothalamic-pituitary-adrenal (HPA) axis
activity to subsequent exposure to the same
immobilization stressor (homotypic stressor),
but sensitized HPA responsiveness (increased
plasma ACTH and CORT levels) to novel (het-
erotypic) stressors (Armario et al., 2004, 2008;
Belda et al., 2008, 2012). However, this is not
always the case using other stressors (see below).

Single prolonged stress (SPS), contrary to what
this name implies, actually involves the admin-
istration of various stressors (restraint stress,
forced swim, and ether exposure). Although SPS
does not address the unique contributions of
each stressor independently or potential con-
founds associated with repetitive stress, it is
used widely and features some similarities with
human PTSD (discussed below; Liberzon et al.,
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1997; Yamamoto et al., 2009; Takei et al., 2011;
Knox et al., 2012; Pitman et al., 2012).

An even more intense approach is the “vari-
able stress” models. For example, chronic vari-
able stress (CVS) involves exposing animals to a
different stressor daily for 6 days, and this pro-
cedure is repeated for several weeks in a row
(Molina et al., 1990; McGuire et al., 2010). CVS
leads to decreased time on the open arms of
the EPM (Zurita et al., 2000). Admittedly, this
class of models is extreme, yet it probably comes
closest to simulate the chronic stress conditions
experienced by military personnel in front-line
positions.

MODELS USING PSYCHOSOCIAL STRESSORS
In another approach, animals are submitted to a
variety of psychosocial stressors such as hous-

Psychosocial stressors
In some PTSD models, animals are
subjected to a variety of psychosocial
stressors such as housing instability,
social defeat, social isolation, and
separation from the social group. These
models attempt to reproduce an
important risk factor for human PTSD.

ing instability, social defeat, and social isolation.
Recent work with victims of partner abuse sup-
ports the ecological validity of housing instabil-
ity as an important risk factor for humans and
animals alike. Indeed, Rollins et al. (2012) found
that difficulties maintaining a stable living envi-
ronment predicted PTSD, even after level of
danger was statistically controlled. Researchers
reproduce social instability by changing home
cages and cage mates daily (Park et al., 2001;
Zoladz et al., 2008, 2012). When social instabil-
ity is chronic, or combined with other stressors,
animals exhibit long-lasting anxiety-like behav-
iors reminiscent of human PTSD symptoms
(Zoladz et al., 2008, 2012; Saavedra-Rodriguez
and Feig, 2013).

Although social defeat is typically consid-
ered a model of depression (Krishnan et al.,

Early life stressors
In humans, stress exposure early in life
pre-disposes individuals to be more
susceptible to subsequent stressors.
Some animal models attempt to
reproduce this using maternal
separation or other stressors early
during development. As in humans,
juvenile animals subjected to early life
stressors are more likely to develop
extreme anxiety-like phenotypes when
exposed to stress again in adulthood.

2008), it also induces long-term signs of anx-
iety (Huhman et al., 1992; Huhman, 2006).
Many studies relying on this stressor use Syrian
hamsters, because unlike rats, hamsters are soli-
tary animals and readily exhibit signs of ter-
ritorial aggression (Huhman, 2006). Here, an
“intruder” animal is placed in the territory of a
larger “resident” animal, prompting the resident
to attack the intruder. In a typical experiment,
resident-intruder pairings occur for 15 min a
day over 4 days. On day 5, physical interac-
tions do not occur (a mesh barrier separates
the two animals), and stress hormone levels
are tested. Plasma levels of ACTH and CORT
are elevated among submissive animals, but not
the dominant animals (Huhman et al., 1992),
suggesting that the hormonal changes do not
reflect physical contact, but a more psycholog-
ical process akin to human victimization by
interpersonal violence. Even a single exposure
to social defeat can lead to conditioned defeat,

whereby previously defeated animals engage in
submissive behaviors, even after becoming resi-
dents themselves (Jasnow and Huhman, 2001).
Conditioned defeat persists a month after the
initial social defeat event (Huhman, 2006).
Finally, when social defeat was investigated in
rodents, it was shown to cause a persistent
enhancement of the acoustic startle response
(Pulliam et al., 2010), and anxiety-like behavior
on the EPM (Narayanan et al., 2011).

MODELS USING EARLY LIFE STRESSORS
In humans, prior exposure to trauma, par-
ticularly during development can cause long-
term hormonal abnormalities and increased
risk of developing PTSD (Delahanty and
Nugent, 2006). Pioneering studies beginning
with Harlow’s monkeys (Young et al., 1973)
produced a large body of research examin-
ing the impact of maternal separation and
early life stressors. Collectively, these studies
show that neonatal isolation enhances stress
and anxiety responses upon exposure to severe
stress later in life (Diehl et al., 2012). When
combined with other stressors, social isolation
leads to a marked enhancement of anxiety-
like behaviors (Imanaka et al., 2006). Moreover,
social isolation pre- or post-weaning increases
plasma levels of CORT and hypothalamic lev-
els of corticotropin-releasing hormone mRNA
(Zhang et al., 2011). Also, juvenile rats exposed
to a severe psychological stressor are more
likely to develop extreme anxiety-like pheno-
types when exposed to the same stressor again
in adulthood (Cohen et al., 2006a,b, 2007). This
contrasts with studies of immobilization, where
repeated exposure to the same stressor causes a
desensitization of the stress response (Armario
et al., 2004, 2008; Belda et al., 2008, 2012).
Nevertheless, in humans (Yehuda et al., 1998a,b)
and animals (De Kloet et al., 2005; Cohen et al.,
2007; Bazak et al., 2009), exposure to high levels
of stress or glucocorticoids early in life pre-
disposes individuals to be more susceptible to
subsequent stressors. In animals, this suscepti-
bility can be transmitted through generations
(Seckl and Meaney, 2006; Vialou et al., 2013).

GENETIC MODELS OF PTSD-LIKE SYMPTOMS
Interesting genetic models have been devel-
oped in rodents including rat or mouse strains
that exhibit high trait anxiety and/or marked
fear extinction deficits (Landgraf and Wigger,
2002; Camp et al., 2009; Neumann et al., 2011;
Holmes and Singewald, 2013). Another note-
worthy line of investigation focuses on vari-
ations in anxious temperaments in monkeys
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(Kalin, 2003; Fox et al., 2008). However,
the PTSD-like abnormalities associated with
these models do not require exposure to
trauma and remain outside the scope of this
review.

MODELS USING PSYCHOGENIC STRESSORS

Psychogenic stressors
An event perceived as a severe threat in
the absence of physical harm or
discomfort.

Although many of the physical stressor mod-
els reviewed above have a “psychogenic” com-
ponent, they primarily involve physical pain
or discomfort. In contrast, the ones dis-
cussed below involve threat, but usually no
pain. In these models, rodents are exposed
to species-relevant predators (predator stress)
or their odor (predator threat; Blanchard and
Blanchard, 1988; Dielenberg and McGregor,
2001), leading to the development of long-

Predator threat or stress
In some PTSD models, rodents are
exposed to species-relevant predators
(predator stress) or their odor
(predator threat). A major strength of
these models is their ecological validity.

lasting (3 weeks or more) manifestations of anx-
iety as assessed with the EPM, social interaction
test, and acoustic startle (Adamec and Shallow,
1993; Adamec et al., 1998, 2006; Mesches et al.,
1999; Blanchard et al., 2003; Hebb et al., 2003;
Roseboom et al., 2007; Nanda et al., 2008;
Zoladz et al., 2008, 2012).

A major strength of these models is their
ecological relevance. Indeed, field studies of ani-
mals in their natural habitat have shown that
exposure to predators or associated cues lead
to increased glucocorticoid levels, and decreased
number of offspring (Clinchy et al., 2010). In
addition, the rise in maternal glucocorticoid
levels appeared to be transmitted through gener-
ations (Sheriff et al., 2010). Therefore, predator
stress and threat models arguably constitute a
better replica of the kind of life-and-death cir-
cumstances that precipitate PTSD in humans
than physical stressors.

In the predator stress model, rats are exposed
to a cat for one or two sessions of up to 45 min
each. Typically, the rats are placed in a small
protective enclosure that prevents direct phys-
ical interactions (e.g., Diamond et al., 1999).
However, in some laboratories, no such mea-
sures are taken (e.g., Adamec et al., 1998). While
live predators constitute a more intense stressor
than their odor, the latter is a convenient alter-
native that allows for greater repeatability and
control over trauma intensity. In the predator
threat model, rats are presented with preda-
tor odors from natural or synthetic sources.
Natural odors are usually obtained from felines
(cat fur, bedding, litter). The most common
synthetic odor is trimethylthiazoline (TMT), a
component of fox feces that rats find aversive.
While feline odors can be used as US to sup-
port contextual fear conditioning (Blanchard
et al., 2001), TMT cannot (Wallace and Rosen,

2000). Consistent with this, cat odors and TMT
elicit different patterns of responses with cat
odors triggering anxiety-like behaviors whereas
TMT evokes avoidance responses (Dielenberg
and McGregor, 2001).

ECOLOGICAL VALIDITY OF RODENT PTSD
MODELS
IMPORTANCE OF INDIVIDUAL DIFFERENCES IN
SUSCEPTIBILITY TO TRAUMA
A limitation of some animal models of PTSD is
that the stressful event affects all animals simi-
larly or individual differences are not reported;
all comparisons are between naive vs. trauma-
exposed subjects (for notable exceptions see
Siegmund et al., 2009 and Krishnan et al., 2007).
This is in contrast with human PTSD where
only a proportion of trauma-exposed individu-
als develop the disorder. Animal models that can
capture individual differences in trauma vulner-
ability have greater ecological and face validity
because they allow researchers to investigate fac-
tors conferring resilience and susceptibility to
trauma.

The predator threat model of PTSD repro-
duces the individual variations in trauma
vulnerability seen in humans. Indeed, preda-
tor threat exposure leads to the develop-
ment of extreme manifestations of anxiety
(EBMAs) in a proportion of subjects (Cohen
et al., 2006a,b). Interestingly, the incidence
of EBMAs following predator threat is much
higher in the inbred Lewis rat strain (50%)
than in Sprague–Dawley rats (20%), and
Fisher rats (10%; Cohen et al., 2006a,b). This
finding, which was replicated in a different
laboratory (Goswami et al., 2010), strongly
implicates a genetic contribution toward the
development of extreme anxiety-like states,
facilitating investigations of gene-environment
interactions.

Consistent with the high incidence of sus-
ceptible Lewis rats and data implicating abnor-
mal regulation of the HPA axis in human
PTSD, Lewis rats exhibit dampened diurnal
variations in CORT levels and blunted ACTH
and CORT responses to stressors (Sternberg
et al., 1992; Dhabhar et al., 1993). Further
paralleling human PTSD where the incidence
of inflammatory and autoimmune diseases is
high (Boscarino, 2004), Lewis rats show an
increased propensity to such disorders and
are commonly used in experimental analy-
ses of autoimmune diseases. In both human
PTSD and Lewis rats, it was proposed that the
impaired responsiveness of the HPA axis cou-
pled to excessive activation of the sympathetic

Frontiers in Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 89 | 6

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Goswami et al. Rodent models of PTSD

nervous system may play a key role in
these pathophysiological processes (Boscarino,
2004; Zoladz and Diamond, 2013). In keep-
ing with this, it was reported that adminis-
tration of glucocorticoids prior to predatory
threat reduces the incidence extreme anxiety-
like behavior on the EPM (Cohen et al.,
2006b), paralleling human studies (Schelling
et al., 2006). Similarly, administration of
Neuropeptide Y after predator threat causes a
long-lasting reduction in the incidence of the
extreme anxiety-like phenotype (Cohen et al.,
2012).

The high incidence of the PTSD-like pheno-
type (∼50%) in Lewis rats is advantageous in
many ways. Because random groups of Lewis
rats include a nearly equal fraction of suscep-
tible and resilient subjects, fewer rats have to
be studied to compare the two groups on any
dimension. This is particularly advantageous for
labor-intensive studies. Along the same lines,
because predator threat induces a bimodal dis-
tribution of anxiety-like behaviors, there is no
need to eliminate animals from the analyses
in order to examine only extreme responders
as is sometimes done in other stress models.
Furthermore, tests can be conducted before or
after exposure of the rats to predators or their
odor to determine if differences between sus-
ceptible and resilient animals predate or are a
consequence of the stressor. In one approach
for instance, 1 week following a single 10-min
exposure to soiled cat litter, Lewis rats are tested
on the EPM (Cohen et al., 2006a,b; Goswami
et al., 2010, 2012). Rats with extremely com-
promised exploratory behavior (0 time spent
on open arms of the EPM) are categorized
as PTSD-like, whereas rats that explore the
open and closed arms of the EPM are catego-
rized as Resilient. Thus, the Lewis rat model of
PTSD provides an efficient and practical model
that lends itself to a variety of experimental
procedures.

IMPACT OF STRESSORS ON CONDITIONED FEAR
As reviewed above, two key features of human
PTSD are deficient extinction and impairment
in hippocampal-dependent tasks. Importantly,
while the latter predates trauma (Gilbertson
et al., 2002, 2007), the former develops as a
result of trauma (Milad et al., 2008), but only in
susceptible individuals. The following two sec-
tions examine whether animal models of PTSD
replicate these salient features of the human
syndrome.

In numerous animal models of PTSD,
exposure to a severe physical stressor leads

to abnormal regulation of conditioned fear,
whether the CS is a specific cue or a con-
text. Using unsignaled footshocks, Fanselow
and colleagues developed a model called stress-
enhanced fear learning. In this paradigm, rats are
pre-exposed to intense footshocks (15 shocks,
1 mA, 1 s, 4–8 min variable inter-shock inter-
val) in context A, which results in enhanced
fear responses when a single shock is later pre-
sented in context B (Rau et al., 2005; Rau
and Fanselow, 2009). When contextual freez-
ing is tested the next day in the absence of
shock, or even after context A extinction train-
ing, fear levels in context B remain elevated,
and this effect lasts for 3 months (Rau et al.,
2005; Rau and Fanselow, 2009). These stud-
ies suggest that pre-exposure to a stressor can
enhance fear sensitivity making it easier to gen-
erate new fear associations that are difficult to
extinguish.

The impact of physical stressors on condi-
tioned fear is also evaluated with the inhibitory
avoidance task. In these experiments, animals
are placed in a chamber that is divided in
two by a wall with a door. One side is illu-
minated, and the other side is dark, with rats
preferring the latter compartment. However,
when animals are exposed to footshocks in
the dark compartment, they exhibit avoid-
ance of the dark compartment in favor of
the brightly lit area. Exposure of rats to SPS
impairs extinction of this inhibitory avoid-
ance memory (Ganon-Elazar and Akirav, 2012).
Paralleling these results, rats previously exposed
to SPS show deficient extinction of contextual
fear (Takahashi et al., 2006; Yamamoto et al.,
2008), and this effect is exacerbated by neona-
tal isolation (Imanaka et al., 2006). However,
while many studies demonstrate that footshock
stress leads to enhanced contextual fear condi-
tioning, immobilization stress does not (Daviu
et al., 2010). Yet, prior immobilization/restraint
stress (Chauveau et al., 2012) and SPS (Knox
et al., 2012) impair extinction of conditioned
responses to a cue.

Psychosocial stressors, alone or in combi-
nation with maternal deprivation, also lead
to abnormal regulation of conditioned fear
responses. For instance, maternal separation
stress in young animals causes enhanced per-
sistence and impaired extinction of condi-
tioned fear (Callaghan and Richardson, 2013).
Similarly, social defeat leads to enhanced fear
to the conflict-paired context (Walker et al.,
2008). Interestingly, enhanced acquisition and
impaired extinction of contextual, but not cued,
fear was also induced by social isolation in
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mice (Pibiri et al., 2008). In contrast, social
defeat also impairs extinction of conditioned
fear responses to a cue (Narayanan et al.,
2011).

Of particular interest are studies address-
ing individual differences in response to cat
odor exposure. These studies find that rats
classified as “susceptible” are also impaired at
the extinction of contextual fear conditioning,
compared to “Resilient” rats (Nalloor et al.,
2011). Surprisingly, only one study tested
whether abnormalities in the regulation of con-
ditioned fear responses predate the onset of
a PTSD-like state in animals. In this study
(Goswami et al., 2010), two groups of Lewis rats
were subjected to auditory fear conditioning,
extinction training, and testing, either before
or after predator threat. Exploratory behav-
ior on the EPM 1 week after predator threat
was used to classify subjects as resilient or
PTSD-like, as described above. When preda-
tor threat occurred prior to fear condition-
ing and extinction training, PTSD-like and
Resilient rats exhibited similar levels of freez-
ing to the auditory CS by the end of train-
ing and at the onset of the recall test the
next day. However, with additional presenta-
tions of the CS, PTSD-like rats showed impair-
ments in within-session and between-session
extinction. In contrast, when predator threat
followed fear conditioning, resilient, and PTSD-
like rats displayed indistinguishable levels of fear
expression during all phases of the fear con-
ditioning protocol. This indicates that the fear
extinction deficit of Lewis rats is acquired after
exposure to predator threat, reproducing the
extinction impairments observed in the human
syndrome.

ABNORMALITIES OF HIPPOCAMPAL STRUCTURE
AND FUNCTION
Many animal models of PTSD are associated
with signs of abnormal hippocampal structure
and function, as seen in the human syndrome.
While this supports the face validity of these
models, these similarities may be coinciden-
tal and depend on different mechanisms. We
return to this question below. A large body of
research shows that various models of chronic
stress lead to neuronal atrophy within the
hippocampus, and decreased cell proliferation
in the dentate gyrus (Watanabe et al., 1992;
Magarinos and McEwen, 1995; Conrad et al.,
1996; Magarinos et al., 1996; Vyas et al., 2002;
Kikuchi et al., 2008; Tamaki et al., 2008; Li
et al., 2010). In contrast, chronic stress leads to
increased dendritic branching and in dendritic

spine numbers within the amygdala (Vyas et al.,
2003; Mitra et al., 2005). However, the precise
mechanisms by which hippocampal abnormal-
ities contribute to impaired performance on
memory and cognitive tasks remains unclear.
As Samuelson (2011) suggests, these memory
deficits may be explained by deficient pro-
cesses in the pre-frontal cortex. In contrast,
Zoladz and Diamond (2013) emphasize the
complex, and at times, contradictory pattern
of relationships between hippocampal dysfunc-
tion and cognitive tasks, and suggest the role
of the hippocampus eludes simple characteri-
zation. These concerns notwithstanding, if ani-
mal models of PTSD reproduce findings in
humans regarding the hippocampal-dependent
tasks, this lends support to the face validity of
these models.

Consistent with the evidence of hippocam-
pal atrophy, many animal models of PTSD are
also associated with signs of hippocampal dys-
function. For instance, immobilization stress
(Andero et al., 2012) and underwater trauma
(Richter-Levin, 1998; Wang et al., 2000) impair
spatial memory on the Morris water maze.
Similarly, 1 week after exposure to SPS, rats are
impaired on a novel object recognition (NOR)
task (Wang et al., 2012).

The available data regarding the impact of
psychosocial stress on hippocampal-dependent
behavior is consistent with that of physical
stressors. For instance, chronic social insta-
bility combined with predator stress expo-
sure impairs spatial memory (Diamond et al.,
1999; Park et al., 2008), and NOR (Zoladz
et al., 2008). Also, acute exposure to predator
stress alone selectively impairs hippocampal-
dependent working memory, while sparing
hippocampal-independent reference memory in
the radial arm water maze (Woodson et al.,
2003).

Much evidence suggests that the hippocam-
pal abnormalities seen in chronic stress models
of PTSD are due to the neurotoxic effects of
corticosteroids. However, it is unclear whether
the same mechanisms are operative in PTSD.
First, results regarding baseline and stress lev-
els of circulating corticosteroids in PTSD are
contradictory (Meewisse et al., 2007; Klaassens
et al., 2012). The only consistent finding is
that compared to controls, PTSD subjects
display an enhanced suppression of cortisol
release in response to dexamethasone (Yehuda
et al., 1993; Griffin et al., 2005; Golier et al.,
2006). As a result, it may be incorrect to
assume that high circulating levels of corti-
costeroids are responsible for the hippocampal
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abnormalities in PTSD. Second, it now appears
that the hippocampal atrophy seen in PTSD
predates trauma since it is observed in non-
traumatized monozygotic twins (Gilbertson
et al., 2002). Thus, while the hippocampal alter-
ations observed in animal models appear sim-
ilar to PTSD, they may depend on different
mechanisms.

Confidence that the hippocampal alterations
seen in animal models of PTSD and in the
human disorder depend on similar mechanisms
would be increased if they were apparent prior
to the traumatic event, as in human PTSD.
Although it remains unclear whether this is the
case for hippocampal volumes (Golub et al.,
2011), there is evidence that hippocampal func-
tion is altered in susceptible rodents prior to
the stressor. For instance, mice with high pre-
stressor levels of N-acetylaspartate (NAA) in
the left hippocampus showed decreased contex-
tual fear and arousal compared to animals with
lower levels of NAA (Siegmund et al., 2009).
Moreover, evidence of impaired hippocampal
function before trauma was obtained in suscep-
tible Lewis rats (Goswami et al., 2012).

In rodents, hippocampal function is often
assessed using variations of recognition mem-
ory paradigms. In previous studies, rats with
ibotenic acid lesions of the entire hippocampus
could identify novel objects normally. However,
they are impaired in their ability to recog-
nize novel spatial configurations of these objects
in an allocentric frame of reference (Langston
and Wood, 2010). Building on these find-
ings, a recent study compared the performance
of resilient vs. PTSD-like Lewis rats on three
types of recognition memory tasks that vary in
their hippocampal-dependence (Goswami et al.,
2012). In these tasks, preferential exploration
of novel relative to familiar items is used to
assess recognition memory. In one task, the
NOR task, the rats could simply use object
identity to detect item novelty. In the other
two tasks, object identity and locations had
to be combined to determine item novelty in
either an egocentric (egocentric object recogni-
tion task—EOR) or an allocentric (allocentric
object recognition task—AOR) frame of refer-
ence. As mentioned above, only the latter task
(AOR) is thought to be dependent on the hip-
pocampus (Langston and Wood, 2010). Three
separate groups of Lewis rats were subjected to
one of the three tasks, prior to predator threat.
Exploratory behavior on the EPM was then used
to classify rats in resilient vs. PTSD-like groups.
The performance of Resilient and PTSD-like

rats was indistinguishable on the NOR and EOR
tasks. In contrast, PTSD-like rats were impaired
on the AOR task.

These results suggest that even prior to
trauma, PTSD-like rats show a deficit in
hippocampal-dependent functions, paral-
leling human findings. However, whether
hippocampal structure is also altered in
susceptible rats remains to be determined.
Nevertheless, combined with the fear extinction
deficit described above (Goswami et al., 2010),
and the individual variations in trauma suscep-
tibility, the evidence of impaired hippocampal
function suggests that the Lewis rat model of
PTSD has face and ecological validity.

CONCLUSIONS
PTSD is a complex disorder that affects a pro-
portion of individuals who experience a trau-
matic event. Given the variety of events that
can trigger PTSD, and the wide range of symp-
toms that arise, it is unlikely that a single ani-
mal model will reproduce the complexity of
the human disorder. Nevertheless, the evidence
reviewed above suggests that some animal mod-
els do mimic core aspects of human PTSD
including individual differences in susceptibil-
ity to various stressors, avoidance, hyperarousal,
fear dysregulation (generalization and deficient
extinction) as well as hippocampal dysfunction.
While many models reproduce some aspects
of human PTSD, in our opinion, the preda-
tory threat model comes closest to the human
syndrome. Indeed, in addition to reproducing
avoidance, anxiety, and individual differences
in trauma susceptibility, this model mimics
the fear extinction and hippocampal processing
deficits seen in the human syndrome, including
their different temporal relationship to trauma.
A challenge for future studies will be to com-
bine this model with analytical techniques such
as single-unit recordings in behaving animals
or ex vivo patch-clamp investigations of neu-
ronal properties in PTSD-like and resilient sub-
jects, before vs. after trauma. This will further
our understanding of the neuronal mechanisms
responsible for the induction and maintenance
of PTSD. As a result, our understanding of the
etiology of PTSD may be enhanced, paving the
way for improved preventive and therapeutic
interventions.
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