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A primary goal since the early days of neuromorphic hardware
research has been to build large-scale systems, although only
recently have enough technological breakthroughs been made to
allow such visions to be possible. What many people outside
looking into the neuromorphic community want to see, as well
as some even within the community, is the long-term technical
potential and capability of these approaches. Neuromorphic engi-
neering builds artificial systems utilizing basic nervous system
operations implemented through bridging fundamental physics
of the two mediums, enabling both superior synthetic applica-
tion performance as well as physics and computation biological
nervous systems knowledge. The particular technology choice is
flexible, although most research progress is built upon analog and
digital IC technologies.

Given the community is making its first serious approaches
toward large-scale neuromorphic hardware [e.g., FACETs
(Schemmel et al., 2008a), DARPA SyNAPSE, Caviar (Serrano-
Gotarredona et al., 2009)], a neuromorphic hardware roadmap
could be seen as a way through the foreseen upcoming bottle-
necks (Marr et al., 2011) in computing performance, further
enabling research and applications in these areas. To ignore a
long-term neuromorphic approach, such as depending solely on
digital supercomputing techniques, is to ignore major contem-
porary issues such as system power, area, and cost and misses
both application opportunities as well as misses utilizing the
similarities between silicon and neurobiology to drive further
modeling advances.

Figure 1 shows the estimated peak computational energy effi-
ciency for digital systems, analog signal processing, and potential
neuromorphic hardware-based algorithms; we discuss the details
throughout this paper. This comparison requires keeping com-
munication local and low event rate, two properties seen in

Neuromorphic systems are gaining increasing importance in an era where CMOS digital
computing techniques are reaching physical limits. These silicon systems mimic extremely
energy efficient neural computing structures, potentially both for solving engineering
applications as well as understanding neural computation. Toward this end, the authors
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cortical structures. Computational power efficiency for biologi-
cal systems is 8-9 orders of magnitude higher (better) than the
power efficiency wall for digital computation; one topic this paper
will explore is that analog techniques at a 10 nm node can poten-
tially reach this same level of biological computational efficiency.
Figure 1 show huge potential for neuromorphic systems, show-
ing the community has a lot of room left for improvement, as
well as potential directions on how to achieve these approaches
with technology already being developed; new technologies only
improve the probability of this potential being reached.

One focus is looking at what neural systems to date have a
chance to scale to larger sizes, which is one metric of the particular
implementation’s merit going forward. In addition, considerable
time is spent discussing systems that can scale and how they will
be able to scale to larger systems, both in IC process improve-
ments, circuit approaches, as well as system level constraints. One
conclusions drawn is that with current research capabilities, with
additional research to transition these approaches to more typi-
cal IC and system building, that reaching a system at the scale of
the human brain is quite possible. Within our current grasp are
circuits and technologies that can reach these large levels; when
researchers are building small prototypes, these issues must be
considered to enable scaling to these larger levels.

In the following sections, we will, in turn, discuss these aspects
by focusing on key issues that effect this performance. section 1
will discuss a framework for discussing large-scale neuromorphic
systems. section 2 discusses computational complexity and the
necessary programmability and configurability, utilizing the right
set of dense features to make an efficient implementation. section
3 considers the power constraints in computation and communi-
cation required to operate such systems, as well as discuss power
constrained cortical structure design. section 4 continues with
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FIGURE 1 | A spectrum showing the computational efficiency of
various technologies, including digital technologies, analog Signal
Processing (SP), as well as best estimate of biological neuron
computation. Three orders of magnitude has produced amazing
improvements in digital technology from speak-and-spell devices (Frantz
and Wiggins, 1982) to current day smart phones. Three orders of
magnitude in analog SP approaches has the promise of similar
advancements as it becomes a stable capability. Biological neurons show a
potential of five more orders of magnitude of improvement, opening further
opportunity for efficient computational devices. Further, this observation
defines one definition for efficient neuromorphic systems as those
physically implemented algorithms that improve power efficiency beyond
the analog SP metrics.

other key aspects to the neuromorphic roadmap, including SNR
and Tools for design. We finally discuss in section 5 some initial
thoughts on learning of parameters (i.e., synapses), although a
complete discussion would be fairly long and complicated by the
early state of research in these fields. Eventually, any useful neu-
romorphic system will have to rely on learning to realistically set
the entire state of the network.

LARGE-SCALE NEUROMORPHIC SYSTEMS

Although the eventual goal would be the complexity of human
brain, it remains beneficial to consider intermediate steps as well,
such as a limited region of cortex, or potentially smaller nervous
systems like a mouse. Estimates of the number of neurons in the
human brain are between 10'! and 10'2 (Williams and Herrup,
1988; Mead, 1990; Azevedo et al., 2009), although most recent
data leans toward 10'! (Azevedo et al., 2009). Estimates on the
number of neurons in a mouse is roughly 102 neurons (Williams,
2000). Size of the cortex structure would be somewhat propor-
tional to the sensor size of the incoming signals (Allman, 2000);

size of the cortex tends to be correlated to the body size in mam-
mals (Allman, 2000). Further, building a cortex or cortex in a
handheld device imposes additional significant constraints in area
and power consumed.

A lot of previous work has focused on front-end sensory and
motor systems, including retina models (e.g., Mead, 1989; Boahen
and Andreou, 1992; Delbruck and Mead, 1994; Delbruck, 1994;
Marwick and Andreou, 2006; Lichtsteiner et al., 2008) cochlea
models (e.g., Mead, 1989; van Schaik et al., 1996; Sarpeshkar
et al., 1998, 2005a,b; Ravindran et al., 2005; Hamilton et al.,
2008; Odame and Hasler, 2008; Rumberg et al., 2008; van Schaik
et al., 2010; Rumberg and Graham, 2012) as well as others (e.g.,
LeMoncheck, 1992). Although these input representations are
important for neural computation, and some have done some
interesting engineering work based on these front-end systems
(Riesenhuber and Poggio, 2000; Fu et al., 2008; Schaik et al., 2009;
Chakrabartty and Liu, 2010; Liu and Delbruck, 2010; Farabet
et al., 2011; Sejnowski and Delbruck, 2012), our focus will be on
the computation using these front-end structures in the highly
modular cortical structure (Eliasmith and Anderson, 2003).

Si TECHNOLOGIES FOR IMPLEMENTATION: PROGRAMMARBILITY, AND
CONFIGURABILITY

The VLSI revolution for digital computation allowed abstraction
and thus specialization in building different aspects of systems
such that each group could communicate with each other and
effectively contribute to the solution (Mead and Conway, 1980).
This approach enabled application engineers to use digital tech-
niques without having to be circuit or device physics experts, and
as a result, rapidly increased the pace of innovation. For com-
mercial digital IC and system development, almost all solutions
are microprocessors (L P) that have become diverse in their spe-
cializations such as in digital signal processing (DSP), graphics
processing (GPU), or field programmable gate arrays (FPGA).
Rarely are custom IC solutions built because of the resulting
cost of the mask sets and engineering time versus the projected
commercial value (i.e., revenue) of the resulting solution. This
direction puts more pressure on abstraction and tools for building
these systems, particularly tools that enable engineering of sys-
tems as well as scientific explorations. Neuromorphic solutions
utilize digital solutions where ever appropriate and effective for
the resulting metrics.

Economics dictate that custom digital design at modern pro-
cess nodes is typically not feasible unless there is an extremely
high utilization or expected product volume, and a similar
result is expected for computational approaches that are phys-
ically (biologically) inspired. The early analog VLSI research
steps required heavy custom IC design to initially develop the
field. On the other hand to compete either in the current sig-
nal processing, neural modeling or application development
arena, analog VLSI, particularly for neuromorphic areas, must
move to similar high use approaches and allow efficient pro-
grammability, configurability, and adaptability. Rarely are custom
ICs built currently without high IC reuse to offset the result-
ing high opportunity cost. Most current approaches, heavily
use digital interfacing, computation, and memories to achieve
these approaches even for analog computation approaches; other
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efforts include researchers using long-term analog memory
devices.

Physically based computation schemes, similar to analog com-
puting, required time to develop the infrastructure for analog
signal processing, neuromorphic hardware, as well as comparison
with modeling approaches. These physically based solutions are
inspired by the potential improvement in power efficiency and
density efficiency compared to digital solutions, as well as the
belief there is similar physics in Si and biological systems; more
will be discussed in the following section.

Similar to how FPGAs revolutionized digital prototyping
efforts , developing reconfigurable hardware that reduces the
development and test cycle will fuel key innovation in neuromor-
phic systems. This approach requires developing configurability,
which allows different computational flows, and programmabil-
ity, which allows different parameter values, for physical compu-
tation systems. Figure 2 summarizes these concepts. If all values
are known ahead of time, programmability is extremely useful to
eliminate mismatch effects. In cases where learning is used, there
is a need for parameters and precise elements. At a high level,
some level of modular computing is expected given what appears
to be a repeatable structure throughout cortex, thus lending itself
to a configurable approach.

The most critical issue for achieving programmability and
configurability in any physical computation based technology is
a storage medium that enables efficient computation. The Single
Transistor Learning Synapse (STLS) concept (Hasler et al., 1995)
provided such an approach. The STLS are modified EEPROM
devices, fabricated in a standard CMOS process, that simultane-
ously provide long-term storage (non-volatile), computation, and
adaptation in a single device. The development of Large-Scale
Field Programmable Analog Arrays (FPAA) enabled configura-
tion to be used for physically based neuromorphic techniques
(Twigg et al., 2007; Basu et al., 2010a,b; Schlottmann et al.,
2010, 2012a,b,c; Wunderlich et al., 2012). These approaches
allow the added advantage of those building applications not

to have expertise in IC design, a separation that should prove
useful for the neuromorphic community as well. General FPAA
chips will be advantageous for moderate size system investiga-
tion; when structures are understood well, one would specialize
some of the infrastructure, but always enable some configura-
bility in the system. All of these aspects should enable neuro-
morphic/analog solutions to compete effectively with classical
engineering solutions.

NEURAL STRUCTURE BASICS

One neuromorphic area focuses on building arrays of neuron
elements with realistic soma dynamics at a density that enables
looking at neural dynamics of 100 neurons or more (Indiveri
et al., 2001; Lin et al., 2006; Renaud et al., 2007; Silver et al.,
2007; Schemmel et al., 2008a; Saighi et al., 2010). Typically a
tradeoff is seen between dense circuit structures and accurate
modeling of biological behavior, similar to computational neuro-
science but with different rules. The hope is not simply modeling
neural systems, but enabling engineering applications based upon
neuromorphic techniques.

A biological neuron is defined by its soma, dendrite, synapses,
and axons, as seen in Figure 3. The electrical IC models will fol-
low a similar block diagram for the basic components. Incoming
axon lines form a connection through synapses to the neuron
dendrite line that feeds into the soma block of the neuron. The
soma block creates the dynamics/computation to send a resulting
action potential, often described as an event, to its output axon
connection. The dendrite is the computation region between the
signal inputs from the post-synaptic computation and the soma
node for the neuron. Synapses represent the connection between
axon signals and the resulting dendrite of a particular neuron.

CHANNEL MODELS

The base components are based on transistor channel models
of biological channel populations (Farquhar and Hasler, 2005);
summarized briefly here are the key concepts as well as in
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FIGURE 2 | Programmable and configurable concepts exist, recently with
analog approaches as well as digital. The line can in some cases be blurry
between programmability and configurability, although for classical
engineering systems the difference is fairly clear. Both concepts are critical for
neurobiological systems which use programmability and configurability,
sometimes in the same device. In all cases, having a long-term memory
element is critical for these implementations. For analog approaches, the best
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solution to date has been using floating-gate based devices. Floating-gate
elements are fabricated in standard CMOS, with 10 year qualified data
retention for analog quantities with more than billions of read-write
operations. A drop of 1-100 1V in floating-gate voltage over 10 year lifetime is
typical, depending on particular process. Configurability in analog computation
has seen success using Field Programmable Analog Arrays (FPAA), because
analog computation is typically performed as a data-flow architecture.
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Figure 4. The physical principles governing ion flow in biologi-
cal neurons share interesting similarities to electron flow through
MOSEFET channels, and exploiting these similarities results in
dense circuits that effectively model biological soma behavior.
The energy band diagram (source to drain) looking through the
channel of the MOSFET is similar to the energy band diagram
(inside to outside) looking through a biological channel. Because
the similarities between biological and silicon channels are uti-
lized, the voltage difference between the channel resting potentials
on the silicon implementation is similar to the biological power
supplies. The resulting spiking action-potential circuit requires
six transistors, which is the same number of transistors and just

Neuron |

Biological

1 Dentrite Axon 1
I

Routing Matrix

Channel
Model

Electrical

Wire to routing matrix )

FIGURE 3 | Basic definition of neurons that uses biologically realistic
transistor based models of neurobiological computation. A biological
neuron is made up of its soma, dendrite, synapse, and axon components.
For our electrical IC models, we will follow a similar block diagram for the
basic components, including efficient models of synapses, channel regions
in the soma, and communication of spikes to other synapses.

current input

a few more capacitors (transistor size capacitors) than the basic
integrate and fire neuron approach (Mead, 1989).

Other approaches are still being considered for implementing
channel models (Indiveri et al., 2011), typically in systems where
only the soma compartment is considered relevant (dendrite is
approximated as a wire). This includes approaches implement-
ing a range of integrate and fire neurons, including modifica-
tions to enable second order dynamics (Izhikevich, 2003), as
well as models that attempt to implement some part or all of
the classic Hodgkin—Huxley type channel equations (Mahowald
and Douglas, 1991; Yu and Cauwenberghs, 2010). Also, other
approaches have been recently considered in transistor channel
modeling (Hynna and Boahen, 2006), although these approaches
require more complicated circuitry without improving the chan-
nel’s dynamical properties.

Solutions of ordinary differential equations (ODEs) remains
an area that analog techniques are significantly more efficient
than digital techniques, but given the ability to rapidly try out
algorithms, digital solutions continue to be popular with a wide
community. Further, there is a significant community of compu-
tational neuroscientists porting neural models to FPGAs (Cassidy
and Andreou, 2009) and GPU systems, potentially resulting in
leverage points. Most large-scale digital models remain to be inte-
grate and fire networks (Izhikevich, 2003; Cassidy et al., 2007;
Indiveri et al., 2011), attributing to the significant ease of such
implementations over ODE solutions of channel populations
(Izhikevich, 2003). The question of whether integrate and fire
neurons is the correct zerog, order computation is still an open
question.

SYNAPSE MODELS
Synapses represent the connection between axon signals and the
resulting dendrite of a particular neuron. The connection starts

C

FIGURE 4 | An overview of MOSFET channel modeling of biological
channels. This approach is possible given the similar (although not
identical) physics between MOSFET and Biological channels both
modulated by a gating potential. The physical structure of a biological
channel consists of an insulating phospholipid bilayer and a protein which
stretches across the barrier. The protein is the channel in this case. The
physical structure of a MOSFET consists of polysilicon, silicon dioxide,
and doped n-type silicon. A channel is formed between the source and
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the drain. The band diagram of silicon has a similar shape to the
classical model of membrane permeability proposed by Hille (2001). This
approach vyields an updated model for modeling biological channels that
also empowers dense MOSFET implementation of these approaches. The
primary design constraint is modeling the gating function with other
transistor devices; such an approach is shown to model the classic
Hodgkin-Huxley squid axon data, resulting in a close model to the action
potential, as well as voltage clamp experiments.
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FIGURE 5 | A single transistor synapse device is presented and
architecture that uses non-volatile storage, generates biological
post-synaptic potential (PSP) outputs, can easily be arrayed in a mesh
architecture, and demonstrates biological synapse learning rules, such
as long term potentiation (LTP), long term depression (LTD), and spike
time dependent plasticity (STDP).

as an electrical event arriving into the presynaptic cell, releasing
chemicals that reach and modulate the channels at the postsynap-
tic cell, resulting in a response in the dendritic structure. A Post-
Synaptic Potential (PSP) is modeled typically as (Koch, 1998)

Iyn = te~ t/Tall (1)

where Tg is typically on the order of 0.5-2 ms.

Biological synapses adapt to their environment of event inputs
and outputs, where typical programming rules include long-term
potentiation (LTP), long-term depression (LTD), and spike-time-
dependent plasticity (STDP). In biology, synapses strengthen
through chemical and morphological changes that improve sig-
nal transduction from the presynaptic to the postsynaptic cell
(Markram et al., 1997; Bi and Poo, 1998).

This single transistor learning synapse has a triangle waveform
modeling the presynaptic computation, a MOSFET transistor
modeling the postsynaptic channel behavior, and a floating-gate
to model the strength of the resulting connection. A floating-
gate device is employed that can be used to store a weight in
a non-volatile manner, compute a biological excitatory post-
synaptic potential (EPSP), and demonstrate biological learning
rules (Hasler et al., 1995; Gordon et al., 2004; Ramakrishnan et al.,
2011). A MOSFET transistor in subthreshold has an exponential
relationship between gate voltage and channel current; therefore
to get the resulting gate voltage to get the desired synapse current,
we take a log of Equation (1) to get the gate voltage, which has the
shape of a triangle waveform.

A single floating-gate device has enabled both the long-term
storage and PSP generation (Figure 5), but also has allowed a
family of LTP, LTD, and STDP type learning approaches through
the same device (Ramakrishnan et al., 2011). In this neuron chip,
we have implemented these learning algorithms as part of the

array, and we will summarize the key aspects of the STDP learn-
ing algorithm. The weight increases when the postsynaptic spikes
follow the presynaptic spikes and decreases when the order is
reversed. The learning circuitry is again placed at the edges of the
array at the end of the rows, included in the soma blocks, there-
fore not limiting the area of the synaptic matrix/interconnection
fabric. This approach has been extended to inhibitory and N-
methyl-D-aspartic acid (NMDA) synapses at similar array den-
sities. Using the transistor channel type modeling, these synapses
model the current source and conductance synapse, still using a
single transistor for the channel element.

Figure 6 shows the circuit structure for an array of learning
synapses; effectively we have a modified EEPROM array, with the
associated density from such a structure. Current synaptic density
already extrapolates to large number of synapses per mm? using
unoptimized devices, as seen in Figure 7; a range of optimization
techniques as well as optimizing the use of input and tunneling
capacitors gets the density near EEPROM levels. The data points
are based on experimentally measured and publicly released val-
ues; additional data points for 45 nm and 65 nm ICs correspond
well to current known research efforts. In a practical system com-
munication is a significant issue for power consumption, as we
will discuss in later sections, and related issues for Vector-Matrix
Multiplication (VMM) (Schlottmann and Hasler, 2011), which
shows that complexity scales linearly for mesh-type architectures.

Current EEPROM devices already store 4 bits (16 levels) in a
single transistor of 100 x 100 nm area in 32 nm process (Li et al.,
2008; Marotta et al., 2010). A good overview of EEPROM/Flash
history was presented at ISSCC2012 (Harari, 2012). Recent data
on EEPROM devices shows commercially announced devices at
15nm (Hynix, IEDM) and 19nm [Toshiba/ScanDisk (Li et al.,
2012b; Shibata et al., 2012a) and Samsung (Lee et al., 2012a)] as
well as production of 32 nm devices. From the current EEPROM
progress, such devices are expected to migrate to 7 and 11 nm
technology nodes; therefore the risk that the industry will not
commercially produce a 10 nm floating-gate device is very low.

Most nano-technology devices make comparisons to mesh
type architectures. One expects a linear scaling down to 10 nm
process to result in a 30 x 30nm or smaller array pitch area,
which is practically as small as any other competing technol-
ogy, making floating gate arrays extremely competitive with other
nanotechnology approaches. Even considering non-optimized
floating-gate transistor arrays, one can already see the resulting
scaling of these approaches. One expects that optimization of
floating-gate devices for synaptic structures should yield an array
density close to EEPROM densities.

These learning synapses have storage capabilities to enable
them to retain 100s of quantization levels (7-10 bits), limited
by electron resolution, even for scaled down floating-gate devices
(i.e., 10 nm process). Often there is a concern on the number
of bits of resolution in neuromorphic systems, and although the
question of bits of resolution remains a topic of discussion, float-
ing gates and other types of neuromorphic storage often allow
much denser storage than digital approaches. Since the densest
synapse hardware implementation can achieve as many quanti-
zation levels as needed by algorithms, this concern is effectively
irrelevant from a hardware perspective.
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FIGURE 6 | An array of floating-gate synapses capable of can be programmed, using only one transistor per cell, as in
adaptively modifying their weight values as well as EEPROM approaches, while adding somewhat more complex
computation and weight storage. A dense array of synapses circuitry on the periphery.

The density for a 10nm EEPROM device acting as a synapse
begs the question of whether other nanotechnologies can improve
on the resulting Si synapse density. One transistor per synapse is
hard to beat by any approach, particularly in scaled down Si (like
10nm), when the synapse memory, computation, and update is
contained within the EEPROM device. Most nano device tech-
nologies [i.e., memristors (Snider et al., 2011)] show considerable
difficulties to get to two-dimensional arrays at a similar density
level. Recently, a team from U. of Michigan announced the first
functioning memristor two-dimensional (30 x 30) array built on
a CMOS chip in 2012 (Kim et al., 2012), claiming applications in
neuromorphic engineering, the same group has published inno-
vative devices for digital (Jo and Lu, 2009) and analog applications
(Jo et al., 2011).

Phase change memory is often considered a potential option
for neuromorphic synapses, often due to initial success in such
devices commercially (i.e., by Samsung (Chung et al., 2011; Choi
et al., 2012), although earlier papers are also published). Micron
started production of 1 Gbit memories in 2012. Even with all
of the commercial development, the phase change memories
are an order of magnitude larger area of flash devices at the

same technology node, often due to selectivity issues due to high
temperature controls needed for programming. In general, a sin-
gle transistor is needed for programming, the same number of
transistors for a flash device.

Even if the functionality was the same, then the question
of additional cost of the technology infrastructure must be
addressed. Further, the phase change methodolody puts into
question all approaches that use external IC memories, since at
some point, the value must be stored, and if digitally, requiring
multiple cells per value. Such techniques include multiplexing
synaptic memories to save locally on the resulting die area. The
resulting issues we discuss in later sections on power efficiency
and cost of communication makes such approaches prohibitively
expensive.

COMPARISON OF FABRICATED ICs OF SOMA AND SYNAPSE ARRAYS

Figure 8 shows a complexity comparison for channel and synap-
tic numerical and silicon models. Computational neuroscience
community has an understanding of model complexity for
digital computation based on years of research (Izhikevich,
2003). Physically based implementations do not follow the same
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tradeoffs, partially because we have transistor channel approaches
built upon similar physics with biological devices. For example,
digital computation shows a factor of 1000-fold reduced compu-
tational load when modeling with an integrate and fire neuron
and HH physics based modeling (Izhikevich, 2003). For analog
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FIGURE 7 | Single-Transistor Learning Synapse density with process
node. We plot both the synaptic density per mm? as well as total number
of synapses per reticle, as well as data points from experimentally verified,
floating-gate array of devices.

approaches the differences among many metrics between these
two approaches is small.

Table 1 shows the structure presented in this paper results in
the best synaptic density over other ICs built to date (Indiveri
et al., 2006; Schemmel et al., 2006, 2008b; Camilleri et al., 2007;
Brink et al., 2012). We define synapse density as the synapse area
normalized by the square of the process node. Further, we achieve
this synapse density in a working neural array with synapse com-
plexity capable of high storage as well as STDP behavior; these
techniques will scale down and have relatively similar density to
EEPROM density at a given process node. These results demon-
strate the resulting advantage of floating-gate approaches for
neuromorphic engineering applications.

These approaches only consider the impact for dense simple
synapses; we will discuss the impact of dendritic computation in
the following areas. Having a memory that is also a transistor, as
is typical for floating-gate approaches, will have advantages over
other approaches.

DENDRITE MODELS

The computation in dendritic areas is highly debated, particularly
given the complexity and computational richness available here.
In many modeling and implementation approaches, the dendrite
is approximated to be a wire, greatly simplifying the resulting
network and enabling a system that is tractable by a range of
computational principles. For our discussions, the possible effec-
tiveness of dendritic computation is considered, particularly given
recent results that indicate efficient computational models using
these structures.

Using channel model approaches, one can successfully build
dense dendritic compartments and configurable structures
(Farquhar et al., 2004b) that compare well to classical mod-
els of dendrites (Nease et al., 2012). The resulting computation
from dendritic elements is often debated, and in most computa-
tional models is ignored because of the increased computational
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FIGURE 8 | Comparisons of implementation measures for digital and
analog implementations for channel models and synapse models.

A spectrum of easy to complicated aspects understood in one area (i.e.,
digital) might have no similar approach in the other area (i.e., physical
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devices). Although the moving from an integrate and fire neuron to a HH
based neuron might be a difference of 1000 in computational complexity for
digital approaches, the difference in transistor, capacitor, or bias count is very
small for physically implemented approaches.
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Table 1 | Comparison of synapse density and function of working implementations.

Chip built Process Die No of Synapse Syn Synapse storage
node (nm) area (mm?) synapses area (um?) density resolution and complexity
GT neuronld (Brink et al., 2012) 350 25 30,000 133 1088 >10 bit, STDP
FACETSs chip (Schemmel et al., 2006, 2008b) 180 25 98,304 108 3338 4 bit register
Stanford STDP 250 10.2 21,504 238 3810 STDP no storage
INI chip (Indiveri et al., 2006) 800 1.6 256 4495 7023 1 bit w/learning dynam
ISS + INI chip (Camilleri et al., 2007) 350 68.9 16,384 3200 26,122 2.5 w/learning dynam

Bold value indicates synapse density as the synapse area normalized by the square of the process node.

complexity. Given recent results that show powerful computa-
tional aspects of dendritic structures in engineering applications
(George and Hasler, 2011; George et al., 2013), it is unreasonable
to ignore such effects.

INTERCONNECTIONS BETWEEN NEURONS

Communication is one of the significant differences between what
would appear to be the capabilities of Si and biology. Si is mostly
a two-dimensional interconnect [although there is getting to be
more research efforts in limited 3D approaches (Culurciello and
Andreou, 2006)] while neural tissue allows for 3D interconnec-
tion between the roughly 2D computation sheets in cortex.

Solving the 3D issue is significant for hardware implementa-
tions. On the otherhand, we can transmit events that are digital
signals over wires on a digital chip in less than 1 ns; therefore it
seems natural to take advantage of this aspect of the Si physics
to handle event communication. Of course, to multiplex many
axons on a single wire, particularly one going a long distance (over
a board or sets of boards), requires a sparse firing rate among
neurons. Biological neurons fire, on average, once every 2 s; this
firing rate would enable such time-multiplexed communication
schemes to work well, although some event coding schemes don’t
allow for such low event behavior.

The class of communication schemes that use this technique
are called Address Event Representation (AER). Figure 9 shows a
typical block diagram communicating events on and off the IC.
For example, a typical communication is to just send an address
from a particular neuron when it creates an event; the firing of
an address communicates both that a neuron fired, and its logical
address for data processing purposes. If we have a sparse number
of events, then the communication happens almost instantly and
without issue of collisions with other events. AER is often used to
enable reconfigurability through digital storage and processing.
Leaning on the digital system allows for rapid prototyping, but
with significant cost in some areas (power, complexity). Current
AER systems are used as a standard interface primarily between
neuromorphic sensors ICs and next layer of processing connected
to it. This approach enables neuromorphic systems a level of con-
figurability and programmability using AER (and other digital
interfaces) to directly communicate to digital systems.

Typical architectures could allow for senders and receiver ele-
ments in a one-dimensional or a two-dimensional scheme; a two-
dimensional communication scheme often requires significant
complexity in the resulting asynchronous design. One can expect
a range of circuit approaches under these conditions; clearly the

> AER ,) Computational ,’ AER 3
Addressin (- Block - Addressout
—» Receiver _»—) (neurons, synapses) _)—) Sender 3

Ack. > €— Ac
Kin < Module 3 Input & Output Module Akgut
Reqin » :; through events :: —)ReqOut

LK

Other Analog / Digital 1/0O signals

FIGURE 9 | Block diagram of our address event representation (AER)
communication scheme. AER approach is used to interface the input and
output events (action potentials) of a network of neurons to the outside
world. We use an AER receiver to get input events, and an AER transmitter
to send output events.

technique that scales with current digital design (e.g., VHDL to
silicon implementation) will have a significant advantage for the
entire community.

COMPUTATION COMPLEXITY TOWARD NEUROMORPHIC
APPLICATION

The last section gave a sense that feasible approaches are available
to build all of the basic components in digital as well as physi-
cal computational models. These thoughts lead to two additional
questions:

e How do these approaches scale up to networks of neurons, say
cortical neurons, of small vertebrates (i.e., fish) to mammals
(i.e., mouse, cat) and finally humans?

e What computations are possible using these techniques that
can compete with current implementations, whether digital or
physical implementation?

Both questions are important as the computational complexity is
considered that is required for neuromorphic approaches.
Although, computational neuroscience has decades of experi-
ence and significant results, finding neural system concepts that
provide competitive engineering applications is only beginning.
At the time of writing, the short list of particularly efficient
neuromorphic computational algorithms currently proposed are

e Analog Neural Network (ANN)

o Winner-Take-All (WTA) Networks (Lazzaro et al., 1988;
Indiveri et al., 2001; Chicca, 2006)

e Wordspotting (e.g., Juang and Rabiner, 1991; Lippmann and
Jankowski, 1994) in groups of cortical cells

Frontiers in Neuroscience | Neuromorphic Engineering

September 2013 | Volume 7 | Article 118 | 8


http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Hasler and Marr

Achieve large neuromorphic hardware systems

In the following paragraphs, we will model the computational
load for each of these approaches as well as the computa-
tion required for a full ODE solution to the components that
are currently understood. The comparisons are made in terms
of the minimum digital computational complexity to perform
the algorithm, and will express these comparisons in Multiply-
Accumulates required for the operation. Building this framework
allows for performance comparisons with traditional engineer-
ing solutions, always with an eye to where will these approaches
exceed the capabilities of existing systems. Whether a digital
or physical computation technique, the traditional implementa-
tion of algorithms (i.e., digital on FPGAs, DSPs, or analog on
FPAAs) versus the corresponding neuromorphic implementation
of algorithms are compared.

ANN: ANALOG NEURAL NETWORK MODEL

The rise of the neural network community in the 1980’s solidi-
fied a framework of neuron models that have shown a range of
diversity to solve problems in many applications, so much so,
that many of these techniques are considered standard techniques
taught in most universities. The approach has its early roots in
the perceptron (Rosenblatt, 1958) and adaptive filter (Widrow
and Hoff, 1960) models that then extend to multilevel neural
network models, hopfield models, as well as other related com-
putational models. The simplest one-node approach is seen in
Figure 10, where we have an input being multiplied by a weight
value, all of those values added together at the soma compart-
ment, where a linear or non-linear function is applied before
we receive the output. ANN approaches include having contin-
uous valued (i.e., tanh functions) or spiking (i.e., integrate and
fire neurons, rate encoded signals) devices as well as feedforward
or feedback stages (Figure 11). Often, when adding many values
together, we will draw all the lines connected together and use
Kirchoff’s current law (sum of currents into a node equal sum
of currents leaving a node) to do the summation of values; effec-
tively this model assumes the dendrite is a wire and it performs
no effective computation.

In terms of computational level, a one layer ANN would
simply require the computation for the vector-matrix multipli-
cation. Assuming we have m synapses (or inputs) per neuron,
and # neurons, a complexity of mn would result for the synaptic

Axon
Out

FIGURE 10 | Block diagram of a single neuron abstraction, typical in
analog neural network (ANN) approaches.

computation. The rest of the computation depends on the com-
plexity of the resulting neuron. Taking the simplest typical model,
the output node would be a tanh(-) function, or roughly 4
multiply-accumulates (MAC) per neuron computation. Usually,
the computation in the somas is much smaller than the computa-
tion in the synapses when m is of moderate size.

Figure 10 shows graphically the similarity of a spiking network
of integrate and fire neurons to continuous-valued approaches.
Spiking networks, rate encoded, etc., with PSP from synapses,
give exactly the same computation. When a spiking network is
operating with low spike rates (e.g., 1 Hz), typically seen with real
neurons (with dendritic components), the computation takes a
different form. At low (1 Hz and below, rare for rate-encoding)
rates we probably have outputs from strong-inhibition WTA cir-
cuits (or multiple layers), and most likely an event based coding
based on the location of the neuron element. Such compu-
tational approaches are open questions, although some initial
applications are starting to be presented such as in robotic path-
planning (Koziol et al., 2012) and sparse image/data reconstruc-
tion (Shapero and Hasler, 2012b). Further, we can extend classic
ANN approaches to Gaussian mixture Models (GMM), radial
basis function, and other similar network approaches by taking
the difference of two sigmoids.

WINNER TAKE ALL (WTA) + VECTOR MATRIX MULTIPLY (VMM)

WTA networks of neurons was an early area where Si engineering
and neuroscience positively interacted with each other, providing
a unique and efficient means of computation. As a simple defini-
tion, the network is composed of multiple (n) excitatory somas
that all synapse or connect (excitatory synapses) onto a single
neuron that provides inhibitory feedback connection to all of the
original soma elements. The net effect is that we have an adap-
tive threshold, which can be global or local, that is the largest of
some function on the inputs. Whether these “somas” are contin-
uous valued or spike representations is dependent on the design
and computing environment. The classic circuit implementation
was based on continuous valued elements, that closely utilized
transistor device physics to build an efficient circuit (Lazzaro
et al., 1988). Following that success, others built multiple spike-
based representations to complete the connection between these
circuit approaches and biological computation (Indiveri et al.,
2001; Bartolozzi and Indiveri, 2007). Further, by having local
reciprocal inhibitory connections, one can make the WTA net-
work a locally winning network, similar to WTA networks with
horizontal diffusor connections between neighbor neurons. The
network performs one form of an analog max function, which
enables analog sorting computations.

The approach provides a much more accurate model of corti-
cal computation with ANN type models; the added complexity
is only at the soma compartments. Figure 12 shows the block
diagram of this approach. For n somas, we have n + 1 dynam-
ical equations. Spiking or non-spiking is similar. For effective
digital numerical computation, at least a factor of 10 greater
than the input samples would be needed for the dynamics. Some
non-linearities are needed on each neuron to reduce their input,
which in the simplest case would be say 2 MAC/element. So
we are looking at approximately 30 MAC % (n+ 1) for a WTA
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FIGURE 11 | Basic block diagram illustrating the most typical of neural
models, that of a fully connected array of synapses, possibly
reciprocally connected, connected to an array of neurons. The block
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typical approach for an array of neurons with continuous valued outputs;
such an approach is called an analog neural network (ANN). The
connection between spiking networks and ANN approaches starts with the
realization that many neuron models, such as the family of integrate and
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modulators. Typically such functions are used for analog to digital
converters (ADC), where the signal (or a low-pass filtered version) is
recovered by performing a low-pass filter operation. For neural modeling,
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synapses effectively perform a low-pass filter on the resulting input event
stream, particularly for rate encoded outputs. This model breaks down for
low event rates, particularly for place coding; this case is rare for such
networks which are based upon integrate and fire based neurons that are
resulting in rate encoded signals. Typically, dealing with continuous-valued
elements has similar implementation complexity and lower power
consumption; The primary operation in either case is a Vectormatrix
multiplication (VMM), with similar complexity in either case. One might
find particular niche applications where one structure can be optimized
over the other approach. The non-linearity block for the ANN approach
might be a time-dependant non-linearity; for Hodgkin—-Huxley type neurons,
the resulting function resembles more of a bandpass filter function. The
mesh architecture approach enables direct computing through memory.

network for a basic structure. When we consider more local win-
ning approaches, which are necessary, then these values clearly
increase. When putting these elements into a network, one would
still want a VMM at the input to model the synaptic inputs into
these soma elements. As in the ANN case, the computational
complexity of the synapses would be much larger than the soma
elements, even for the WTA components, if m is large.

WORDSPOTTING NETWORKS
One recent addition to these computing platforms is a recent
algorithm demonstrating experimentally in Si that neurons with
at least basic dendritic structure can compute wordspotting algo-
rithm (George and Hasler, 2011; George et al.,, 2013), a key
engineering approach for many classifier applications. Figure 13
summarizes this approach. There are similarities between the
dendritic structure and typical HMM classification structures
used in speech recognition for wordspotting algorithms (Lazzaro
et al., 1997), but with far more states in dendritic structures than
can be practically used in any classifier.

Given this algorithm potential, we will discuss the computa-
tional complexity of this approach based on the equivalent simple

HMM classifier computation; certainly both practical HMM
algorithms as well as real dendritic computation is more com-
plex. A lower bound on this computation would be 2 MAC per
state variable for the required sample rate for continuous inputs.
A typical dendrite would have over 1000 state variable equivalents
in its continuous structure.

For a particular neuron timeconstant, T, we would want to
have multiple samples for proper operation. This discussion uses
an effective discrete time sample rate 5 times more than t; we
use T = 1 ms here. Therefore, conservatively, we have each tree
computing 10 MMAC just for feedforward HMM computation.
Then on top of that would be computations for learning and other
functions.

The need for dendritic models is still debated in compu-
tational neuroscience (Hausser and Mel, 2003; Gonzales et al.,
2011), including the resulting functionality being multiple spa-
tially constrained neurons or more advanced features (Polsky
et al., 2004); the question partially gets answered by the resulting
computational efficiency demonstrated through Si based models.

The question of model detail is a classic one in compu-
tational neuroscience often debates the clear tradeoff between
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FIGURE 12 | Modeling a group of neurons using a Winner-take-all
(WTA) network, along with the synaptic weighting through a typical
VMM approach. WTA has inspiration from the interactions of cortical
somas and coupled inhibitory interneurons. These approaches allow for a
small number of winning neurons, and sharpens up the neuron responses
as well as reduces the overall spike rate. The computational power of this
approach, whether using spiking neurons or as circuit implementation using
a range of dynamics is still an active area of research.

Sensor Signal to First Layer .
Sensor N X Refined
Inputs —>> Slgna.l > Symb(?] = > C({rl.lcal. § Symbols
Processing Conversion Classification

- o

- - Event (Probability) Representation of “Simple” Symbols

YYYYYYYYYYYYYYYYYYYY

O] o
0o —% O > £
OO0 ()—-———{}——5’4}—0 — OO >2
oo —2o—o0E | 3
ooio =o—0 e O—O0—0"— [ ?
—\. J =) g
=02 —O—08[F §
2}9——(}8——-——u——Q——(}—————(}—\Z———}(}—— 2>z
0-0-0 H >—O——O—E[F &
HONION OO O 02— oucal Ea
T 60G 05005050 0" ¢
00—~ 00—0-0—0—0

MMMMMMMA |
FIGURE 13 | Block diagram for computation through a number of
neurons with dendritic structure; this structure comes from modeling
of groups of cortical neurons. This approach is similar to wordspotting
networks used for speech recognition systems. The inputs come from
another event generation layer, whether a layer of cortical neurons or as
part an initial transform from sensor inputs to symbol event representation.

Linear dendritic lines are being assumed in this figure, although both
biological neurons and Si implementations utilize a multi-branching tree.

model complexity and computation complexity (i.e., [zhikevich,
2003), based on digital computation of ODEs. When consider-
ing electrical (and some ion related) modeling using physical
(analog) hardware, transistor channel modeling, pioneered by

Farquhar and Hasler, 2005, changes these constraints. For exam-
ple, modeling a Hodgkin—Huxley (HH) model neuron requires
6-7 transistors directly modeling the channel population and gat-
ing mechanisms. Implementing the simplest integrate and fire
neuron requires 67 transistors for its operation (Mead, 1989).
The most effective electrical model, tuned to biological parame-
ters like channel currents, often becomes the model of choice.

Dendritic processing is capable of significantly improved
power efficiency, operating on a problem set that is well known in
engineering applications (i.e., HMM, Viterbi, and related classifi-
cation algorithms). Dendritic elements are a primary and funda-
mental structure in cortex, having a significant (factor of 1000 or
better) power efficiency. Therefore, modeling a dendrite as a wire
leaves far too much potential efficiency on the table. Further, such
techniques would be utilized for engineering applications requir-
ing these functions. The known efficiencies discussed so far do not
make up the computational efficiency gap observed between cur-
rent computers and neurobiological systems; it is suspected that
neurobiological systems are computing additional functions not
currently modeled.

The precision required for such operation is typically a func-
tion of system SNR, which is a function of effective capaci-
tance (addressed in later sections) and parameter programming
precision. Biological systems would follow similar noise lev-
els, or potentially higher due to additional devices at a node,
as a result of physical noise processes. Mismatch in analog
is classically a significant question, a problem that is directly
addressed by using floating-gate approaches; without program-
ming approaches, these mismatch issues easily overwhelm a sys-
tem design. Floating-gate elements can be programmed to 100 uV
or smaller floating-gate voltage resolution, allowing precision
better than 1% accuracy, better than it is believed neurobio-
logical systems currently employ; straightforward tradeoffs are
possible (i.e., increased area) if more accuracy is needed for
programming.

FULL COMPARTMENT ODE MODELING

Another bound to the problem is provided, where we numerically
compute the equivalent Ordinary Differential Equations (ODE)
for each soma, dendrite, and synapse elements.

If we use a fixed sample rate, which is easier for comparison
rather than adaptive rates as well as for real-time interactions,
typically one uses a factor of 10 larger sample rate than the incom-
ing signals. To numerically solve the ODE at this sample rate,
we will chose a 4th order Runga—Kutta method; we would esti-
mate roughly 10 MAC per computation, which models a few
non-linearities. One can choose a wide range of methods and
oversampling but generally will get similar results. Finally, for a
typical line, we will assume we would need at least five state vari-
ables per node; therefore, the overhead for a single node is a factor
of 500 MACs/node.

This level of computation is over 40 times larger than for the
wordspotting approach. This ODE solution probably captures a
better sense of the real biological computational requirements.
For example, normalization and pruning of data in a wordspot-
ting HMM classifier type model requires more computation that
could be modeled by biological channel models.
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COMPUTATIONAL MODEL COMPARISONS

Table 2 shows a summary measure of the algorithms mentioned
in the previous sections. These initial measure of complexity gives
a sense of what is possible with classical digital computation tech-
niques, as well as looking at comparisons for more physically based
approaches. Figure 14 illustrates these tradeoffs assuming neurons
with 1000 synapses each and an effective input signal frequency of
1 kHz. As we go to higher than real time speeds, we would face lin-
early higher more MACs per operation. All of the functions scale
similarly in number of computations, but with significantly dif-
ferent scale factors. All lines do not include any overhead of the
processor, data communication, and memory access, but rather
only is there enough raw computation for the task.

The algorithmic comparisons between the best formulation of
these particular algorithms are made to achieve the resulting func-
tionality for digital computation. If one was to make a comparison
to say a SPICE level simulation, the numbers would be signif-
icantly higher; even if we computed the resulting ODE models
the computation time would be much larger than we illustrate,
such as in the ANN case, or the wordspotting case, where in both

Table 2 | Multiply accumulates per second (MACs) required for a
network with m synapses per neuron and n neurons.

Computation MAC (1 neuron/input) MAC (n neurons)

ANN 44+ m n+m)f
WTA + synapses 30+ m n (30 + m) f
Wordspotting 30+ 11Tm n(30+ 11m)f
ODE dendrite sim 500 m n (500 m) f

Other issues are assumed to be negligable for this table. Input data rate
assumed to be f (Hz). Assume average dendrite has 1 compartment per synapse.

100Mf 8
ODE solution
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FIGURE 14 | Plot illustrating the computation described in Table 2 for
the computation assuming 1000 synapses and assuming real time
operating frequency (1kHz). One curve for the ANN and WTA complexity
is plotted because they are effectively identical on this plot. To reach a
computational level of 10'2 neurons with 1000 synapses or 10" neurons
with 10,000 synapses, we would be missing a gap of 10,000 in the
resulting computational complexity to the wordspotting approach, for the
limited level of modeling of biological computation would achieve.

cases we compare against the best case practice algorithm for that
solution as the metric for the number of MAC elements. The
computation to compute the resulting ODE is shown because it
might be the case that the biological system is enabling that level
of computation through the electrical modeling.

The incoming data rate (say 1 event per 2s) has little to do
with whether systems of neurons would need to be computed
using ODEs. The total input firing rate from all synapses (i.e.,
100 synapses), not the output firing rate, would directly impact an
ODE sample rate. Further, given that the ODEs are multitimescale
processes, resulting in stiff ODEs, the resulting digital step size for
computation may be rather small even for 0.5 Hz output event
rates.

Using the largest computer currently available [IBM Sequoia,
2-8 PMAC (/s) range sustained (TOP500 List, 2012)] one could
build a 10° to 10'° neuron (with 1000 synapses) ANN network,
build a 10® neuron wordspotting model, or build a 10° to 107
neuron ODE model operating in real time. For the wordspotting
model, that still leaves us with 10* factor in computation from
a human cortex 10! neurons with 1000 synapses or 10! neu-
rons with 10,000 synapses, with questions how we might achieve
that resulting large hurdle. Even with a factor of 10 over current
digital supercomputer architectures, we still stand far away from
building a human cortex.

Physically based computation approaches give some perspec-
tive on how to approach this issue. One key aspect of physical
computation, originally discussed by Mead (Mead, 1990), is that
it could be a factor of 100-1000 more dense than custom dig-
ital approaches. The fundamental argument is the number of
transistors that are needed for an operation is significantly less
than for a digital computation, say for a multiplication. In prac-
tice, analog transistors might be slightly larger and the routing
needs to be more careful than for a digital system, so in prac-
tice an efficiency improvement of 100 seems realistic. On the
otherhand, most architectures have memory locally configured,
reducing both complexity and memory access times, resulting
in an improvement in density. In many cases, like a VMM net-
work, there is effectively a memory array where the computation
is done through the memory, and therefore, the entire compu-
tation is complete in the complexity of accessing 2-3 rows of
digital memory. These modifications give promise that will enable
a solution to achieving the resulting complexity for neural archi-
tectures. These approaches could reasonably be extended to other
supercomputing problems.

To illustrate the different complexity of computation, we will
consider the relative size of digital processor as well as more
physical implementations. Figure 15 shows the resulting compar-
ison between these approaches, as well as a relative factor of 500
expected between the two approaches. Using current chip data for
these approaches, it is assumed that we can implement roughly
8 pyramidal cell neurons/mm? in a 350nm CMOS process, a
chip which includes local FPGA style routing as well as synap-
tic and dendritic modeling using local memory elements. From
this data, the scaling can be approximated as roughly quadratic
with process dimensions. This data per mm?, as well as the max-
imum IC size on a wafer can be plotted, typically 2cm x 2cm in
area, or the size of the reticle stepping. Further, these approaches
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FIGURE 15 | Projection showing the number of neuron computations
possible on a single IC (2 x 2cm), assuming both digital and analog
computation, as a function of process node.

can be compared to an array of digital processors, typical of video
processor ICs, and optimistically assume quadratic scaling with
technology. A recent Nvidia IC achieves 512 processors on a single,
reticle sized IC in a 40 nm process (Daly, 2011); it is assumed one
processor could handle a wordspotting complexity neuron model
in real time. Such an approach requires that the communication
scales effectively as the resulting system is built; that issue will be
discussed further when considering power dissipation issues.

What is the physical size of an analog system scaled up
to human cortical levels (10'') neurons and 10,000 synapses?
Conservatively 3 million neurons per IC would require 300,000
chips; the digital solution requires roughly 10-20 million ICs. In
terms of building a physical system, one could vertically stack
multiple chips in a package (e.g., 30 is possible), and one could
put multiple chips on an IC board (say 100 on a 30 x 30 cm
board). The analog approach requires a set of 100 boards for this
architecture, which seems possible given current technologies.
A similar digital system would require 40k boards, if possible;
effectively, digital solution will have a hard time reaching the com-
plexity of a human brain, as well as having a portable application
at the complexity of a mouse (i.e., 400 boards). This size system
is probably not a portable system, but possible as a small rack
computer.

SILICON DIE COST SCALING FOR NEUROMORPHIC COMPUTING

Silicon die area is linearly related to larger IC cost; therefore, an
idea of the resulting cost of these neuromorphic type approaches
is formed. The total cost for a fabricated IC is the wafer cost
and the mask cost. The cost for the mask set is a one-time cost,
and typically much larger than the per wafer cost. A wafer has a
number of square (or rectangular) reticles that are repeated over
an entire wafer; for a typical 20 cm diameter wafer, one approxi-
mately gets 50 reticles of roughly 2 x 2 cm size. Figure 16 shows
a typical scaling of wafer cost with process node; a human cortex
solution is entirely a question of per die cost, and would be the

production cost of these system ICs. For a 10 nm IC process, the
die cost would be approximately $20 M, which is high for indi-
vidual households, but in the range for large commercial systems.
A digital system requires a factor of 400 more ICs, so base cost
would be a similar factor to these analog estimates. These costs
only consider the IC cost, not the rest of the system communica-
tion and memory complexity, which will be higher for the digital
computation system.

Our calculations stop at 10 nm devices, since theoretically the
MOS transistor scaling stops around 10 nm devices; of course,
one should never underestimate the impact of smart individuals
to further push these limits, with the resulting benefits. Further,
there is a possibility of new technologies pushing these limits
further. To date, no technology has shown enough promise to
compete with Si approaches with appropriate memory technolo-
gies. Any approach needs to compete with Si 10 nm node, the
aspects of interfacing to a Si substrate, which would be necessary
for any novel technology in the short term. If a technology can
not show to get at least densities greater than a factor of two over
a 10 nm process, the odds of its adoption is unlikely given the rest
of the system complexity required.

POWER-EFFICIENCY OF NEUROMORPHIC SOLUTIONS

The obvious question missing after addressing the potential com-
putational approaches, both for physical and digital processing
systems, is the need to address the resulting power consumed
by each system, as well as address the related question of the
required communication to perform these computations. Further
from Mead (Mead, 1990), it is expected that physical comput-
ing systems would be more power efficient by using physical
computation techniques, and not just more area efficient com-
putation, because of the far fewer devices needed for a single
computation.

One of the amazing thing about the human brain is its ability
to perform tasks beyond current supercomputers using roughly
20W of average power, a level smaller than most individual
computer microprocessor chips. A single neuron emulation can
tax a high performance processor; given there is 10'> neurons
operating at 20 W, each neuron consumes 20 pW average power.
Assuming a neuron is conservatively performing the wordspot-
ting computation (1000 synapses), 100,000 PMAC (PMAC =
“Peta” MAC = 10'> MAC/s) would be required to duplicate the
neural structure. A higher computational efficiency due to active
dendritic line channels is expected as well as additional computa-
tion due to learning. The efficiency of a single neuron would be
5000 PMAC/W (or 5 TMAC/WW). A similar efficiency for 10!
neurons and 10,000 synapses is expected.

Building neuromorphic hardware requires that technology
must scale from current levels given constraints of power, area,
and cost: all issues typical in industrial and defense applications;
if hardware technology does not scale as other available technolo-
gies, as well as takes advantage of the capabilities of IC technology
that are currently visible, it will not be successful.

POWER EFFICIENCY IN TRADITIONAL DIGITAL COMPUTATION
Although one might expect that conventional digital systems are
simply going to keep scaling, to the contrary it certainly seems
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information; real numbers are typically proprietary information of the
particular vendor. We assume that one mask set is required for the cost of
the system; in mass production of such units, the mask cost would already
be spent. The resulting system cost is then almost entirely dependent on the
die cost.

that MOSFET devices will scale to some lower limit around
the 10nm level (or smaller), and digital system performance
improvements due strictly to classical MOSFET transistor scaling
can no longer be expected. For example, computational efficiency
of floating-point MAC units has only slowly improved over the
last 11 years (factor of 2); the result is digital computation is
moving toward lower precision type computations, favoring com-
petition with neuromorphic and analog systems. Figure 17 was
generated by normalizing a “computation” as a 32-bit multiply
accumulate (MAC) operation (Marr et al., 2011); the approach
seems independent of the particular computation architecture
(DSP, FPGA, etc.); typically DSP or low-power microprocessors
are used in low-power computation, due to the high baseline cur-
rent required for FPGA devices (=1 W for large devices). MAC
operations are often the key aspect for high performance, signal
processing, and power efficient computing, as well as is a well
defined computation operation to compare approaches.

This power efficiency asymptote changes the paradigm in dig-
ital processing; one can not use single- or double-precision arith-
metic without considering its cost in power. In practice, energy
efficient computing systems are increasingly being designed with
smaller and smaller word lengths for a particular operation
to reduce the required power for the resulting computations.
Decreasing the word length roughly gives a quadratic decrease
in power dissipation; a limit of 100 W/TMAC for 32-bit MAC
units is expected, which scales to 6 W/TMAC for 8-bit MAC
computation. At 8 bit operations, conventional numerical anal-
ysis of ODEs is highly error prone and unstable, so successful
use of these calculations requires reformulating models, if possi-
ble, for the dynamics. ODE computations of multiple timescales,
such as adaptive filters, require significantly higher resolution
to achieve reasonable SNR levels; the ideal summation in ana-
log approaches eliminates many of these constraints. Adding
non-linear operations introduces additional complexities, both
in terms of MAC operations as well as resulting dynamics.
Finite word length effects are still serious issues in these cases,
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FIGURE 17 | Plots of computational efficiency for digital multiply
accumulate (MAC) operations normalized to 32 bit size computation.
Over the last several years, the computational efficiency has not scaled
along the lines expected by traditional Moore's law type scaling. A closer
look suggests an asymptote is being reached in MAC computational
efficiency using classical digital techniques. The computation efficiency
levels off below 10 MMAC/mW (or 10 GMAC/W or 100 pJ per MAC). The
asymptotic curve falls off from the linear trend at approximately the
90-65 nm minimum feature size node. One hypothesized factor might be
mismatch between digital components requiring larger transistors, and
requiring larger capacitance to be charged for each operation.

particularly where one gets accumulation of values over a period
of time. Further, expertise in small word length digital compu-
tations is rare, nearly as rare as experienced analog IC designers.
Finally, at 8 bit accurate computations, the argument that digital
is more accurate than analog computations is no longer valid.
One can expect innovation to improve this approach. One
example of a recent asynchronous approach optimizes based on
average delay rather than optimizing on worst case delay, and
therefore shows results that could get past the 100 pJ per MAC
barrier (Marr et al., 2011). Another approach is to consider the
asymptote seems set by device mismatch; therefore, the use of
programmable analog techniques (Degnan et al., 2005) might

Frontiers in Neuroscience | Neuromorphic Engineering

September 2013 | Volume 7 | Article 118 | 14


http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Hasler and Marr

Achieve large neuromorphic hardware systems

be able to overcome some of these issues. Any more special-
ized solution for getting past the digital efficiency asymptote
requires an approach that can be pulled through the typical deep
digital-design tool flow.

COMPUTATIONAL EFFICIENCY COMPARISON BETWEEN DIGITAL,
PHYSICAL, AND NEUROBIOLOGICAL SYSTEMS

Figure 18 shows a viewpoint to compare ranges of power effi-
ciencies. In this section we discuss the computational aspect of
these comparisons, comparisons not including the cost of com-
putation (communication power is zero). The next subsection
looks at the cost of communication, which must be minimized to
not cancel out improvements in computational power efficiency.
We will consider computational efficiency versus effective capac-
itance, the capacitance that an additional input is required to
modulate. Typically, the computational efficiency is proportional
to the resulting effective capacitance; local SNR is proportional to
effective capacitance due to thermal voltage. Computational effi-
ciency is a measure that normalizes across real-time, and faster
than real-time, approaches.

We approach the discussion by reviewing computational effi-
ciency in digital and typical analog signal processing approaches,
and then focus on the opportunities seen by the wordspot-
ting structures in comparison to biological neuron computa-
tional efficiency (5 TMAC/WW), in the next paragraphs. From
the previous subsection, a digital system using 8 bit MAC arith-
metic is a 3 x 107 factor higher than the biological compu-
tation numbers. Analog signal processing techniques have been
shown to have a factor of 1000 improvement, on average, on
computational efficiency for many algorithms. If we implement
the biological approach as a sequence of VMM computations
and similar approaches, efficiencies of roughly 10 MMAC/pW
or 10 TMAC/W would be achieved; analog VMM and similar
approaches are in the 1-10 TMAC/W range. Understanding neu-
ral computation offers opportunities of significant improvement
in computational efficiency (5 x 10%).

From the discussions and data presented so far, it is expected
Neuromorphic algorithm approaches are techniques that will
have higher energy efficiencies than typical analog signal pro-
cessing algorithms; the improvement and impact, as well as
the architecture demonstrating these efficiencies, is illustrated in
Figure 18. For a dendrite implementation, such as the circuit
that demonstrated the wordspotting algorithm, this neuromor-
phic approach has higher computational efficiency compared to
classic analog signal processing techniques. This implementa-
tion gives some insight into the advantages of techniques used
in cortical structures. The time constant (1 ms) is set by the
conductance at each node with the capacitance (C) at each node,
which, in turn, sets the bias current because the transistors near
rest, Viest, (say 10 mV above Ey) are ohmic. For the dendritic line,
the effective average energy per MAC equivalent operation is

1
Energy/MAC = EC(Vrest — EQ)Vaa (2)

For a VMM computation, the efficiency per operation set by total
effective line capacitance (Ce) is (Schlottmann and Hasler, 2011)

Energy/op = 12nCetUT Vg

where Ur is the thermal voltage, kT/q. The effective line capac-
itance is capacitance at the input line divided by amplifier loop
gain driving the line. In one sense, the VMM requires getting
the data to the computation in a matrix array, with the associ-
ated capacitance; with the dendrite approach, the computation
starts closer to the inputs. Getting the data to that part in the com-
putation would be a separate discussion, and is addressed in the
following section.

Both approaches scale linearly with power supply voltage
(V4q); decreasing the supply results in a proportional improve-
ment in efficiency. Typical numbers are mentioned for V4 at
2.5V. For a VMM, one could imagine decreasing the supply volt-
age to 0.5V, probably limited to the driving amplifier headroom.
The dendritic line, with the use of programmable analog ele-
ments, should be able to decrease the supply voltage to biological
levels (180mV) (Siwy et al., 2003). For a digital structure, the
dynamic power decreases with V3, due to switching energy, and
is proportional to the capacitance of the entire multiplier circuit.
The capacitance of the entire multiplier element is orders of mag-
nitude larger than a typical single floating-gate transistor doing
an equivalent vector-matrix multiplication shown in Figure 19.
Static digital power tends to increase with decreasing Vy; (Kim
et al., 2003), and can offset the resulting gains, as well as increase
transistor mismatch, requiring larger (Width * Length) devices
and larger capacitance.

Using the equivalent computation of a network of cortical
neurons in Table 2, the different computational approaches are
compared. Figure 20 plots computational efficiency versus effec-
tive capacitance, as well as providing a comparison between these
computational approaches. Effective capacitance is defined as the
resulting increase of charge required for an additional node of the
computation occurring in parallel. The classical 32-bit MAC dig-
ital power wall is at the top of the graph, and the power wall
for 8-bit computation is nearly at the top of the graph; power
efficiency would scale as the total capacitance for the digital oper-
ation. When power is a constraint for a digital system, SNR can
not be assumed to be effectively infinite. A typical value for a
VMM compiled in an FPAA would be at 10 MMAC/pW (=10
TMAC/W) power level. By utilizing the computation efficiency
in dendritic structures for wordspotting approaches, a basic com-
piled structure with large node capacitances (i.e., &1 pF) shows
an improvement in power efficiency of a factor of 10, a more
dedicated approach would show an improvement of 450 over
the VMM structure. Decreasing the resulting power supply to
biological levels (V43 = 180 mV), shows another factor of 10
improvement in power efficiency (45 PMAC/W). All of these fac-
tors, with typical node capacitances results in structures within
two orders of magnitude of the power efficiency of biological sys-
tems; the Si internode capacitance could be further decreased as
nodes scale down. These neuromorphic techniques show promise
to approach the computational efficiency and raw computational
power as mammalian nervous systems.

1fF
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three orders of magnitude over analog SP techniques (Ramakrishnan

et al.,, 2012). The second approach was based on a local, configurable
architecture (FPGA/FPAA) for routing neurons with a high percentage of
local connectivity.

Further, scaling capacitance at each node has a direct impact on
the thermal noise at that location, whether in a silicon or biolog-
ical system. The best case (lowest level) for thermal noise current
(1) in a device is related to its bias current (I) as

©)

where Af is the bandwidth of interest; for a Si transistor in sat-
uration, we exactly reach this level (Sarpeskar et al., 1993). Low
current levels are often needed to achieve the resulting power
efficiency, which requires programming to low currents (i.e., pA
levels, similar to biological levels), leading to lower, classically
measured SNR levels, typical of biological systems. For example,
for 1 kHz bandwidth, we get a relative noise variance as

s | 10fA | 1pA
% noise 20 2

10 pA
0.2

1nA
0.02

Further, for coupling of capacitors with transistor source junc-
tions (subthreshold), the noise level is related to the familiar
kT/C = (Ur/q)/C noise, where C is the capacitance at that node.

Figure 20 shows a table of SNR at each of these capacitance nodes,
which are consistent with the low currents mentioned above.

As capacitances scale down, the resulting bias currents for the
real-time performance will also decrease as a result. For neuro-
morphic circuits, faster than real-time performance is not only
possible, but often easier. Fortunately, MOSFET transistors can
easily handle smaller currents, although for lower threshold volt-
age processes, either the source voltage must be moved relative
to the substrate or the gate voltage must be outside the resulting
power supply voltages, easily achieved with floating-gate devices.
Typically, the lowest currents are bounded by the dark current in
the drain and source junction devices, limiting current levels in
the 1-10 fA range in practice, but still enabling biological time
constants with small (say 1-10 fF) capacitances. The current lev-
els, as well as the resulting thermal noise levels, would be similar
to biological levels.

POWER EFFICIENT NEURON EVENT COMMUNICATION

In the previous section, we have developed models on compu-
tation scaling, particularly requirements toward cortical comput-
ing requirements. These models are necessary for understanding
computation, but not sufficient because we need to consider
the resulting power dissipation for communication. So for this
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FIGURE 19 | Programmable floating-gate transistors performing a
vector matrix multiply using current-domain mathematics.
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FIGURE 20 | Plot of computational efficiency versus capacitance level
for VMM (analog) and Dendrite computation (neuromorphic,
wordspotting) physical algorithms for V44 = 2.5 V. For both algorithms,
the efficiency improves linearly with decrease in V4q, since power scales
linearly with Vg here. We also show the computational efficiency for the
dendrite computation for Vg4q = 180 mV, typical of neurobiological
systems (Siwy et al.,, 2003). We also include a table of effective SNR,
computed from thermal noise at the node over signal size (~Ur), as a
function of capacitance.

discussion, a computational scheme that fits the power budget
is assumed, as modeled in the previous section, particularly for a
cortical structure. To consider the power consumption for com-
munication, we must consider communication of events, mem-
ory access, and resulting infrastructure requirements, discussions
we did not address in the previous section.

CONSTRAINTS FROM BIOLOGICAL COMPUTATION

For biological systems, the communication is primarily commu-
nicating events, or action potentials, which are effectively digital
signals. In some cases, we might start preconditioning signals for
computation, but where successful, it has minimal effect. Analog
encoding is possible, and might have power efficiency improve-
ments if the event encoding is directly representable in analog
signals, which for non-rate encoded signals is challenging. For
the remainder of this section, we assume we are communicating
digital events between neurons.

Neurobiological computation systems also address power effi-
ciency constraints. The human cortex consumes about 20 W of
power, of which, only a fraction of this power is used for compu-
tation; going forward, we will assume 25% of average power (5 W)
for communication of events from somas to synapses. One for-
mulation for switching energy, which is commonly used in digital
for charging or discharging a capacitor is

1
Energy = ECLde, (4)

where Cp is the capacitive load, and Vg4, is the power sup-
ply, which for a biological communication is between 140 and
180 mW (Hodgkin et al., 1952). The total energy for a biological
event is twice this value (using the digital modeling of charg-
ing and discharging a capacitance). Calculating capacitance from
power in a digital model, given a typical spike rate in the cortex
occurring once every 2s (0.5 Hz firing rate), and 10'?> neurons
in the cortex, this results in 245 pF total capacitance on an axon
line for a biological system, corresponding to 30.6 mm average
total cable length of 1 pm diameter axon cable (fairly thin axon).
This calculation shows that digital communication must be con-
strained to replicate the low switching energy of the biological
system. Average event rate for neurons in cortex has been consen-
sus below 1 Hz, although that level depends on region to region of
cortex [i.e., Early auditory cortex is 2.5-4 Hz average rate (Kock
and Sakmann, 2009; Koulakov et al., 2009; Roxin et al., 2011)]
(Sejnowski and Churchland, 1992; Kock and Sakmann, 2009).
Typical axons range in diameter from 1 to 20 pm, although val-
ues outside this range are found (Verveen, 1962; Debanne et al.,
2011) , and typically have elaborate arborization patterns to large
numbers of neurons, often within a single region of the brain
(Debanne et al., 2011). Mylenation will extend the length due to
lower capacitance, particularly for larger axons which also have
larger diameters; small, thin axons tend to have little mylenata-
tion axons. If a typical sum total length of all mylenated axons in
the human brain is 1.5 x 108 m (Kandel et al., 2000), the result-
ing axon length for a particular neuron is 1.5mm increase of
the 30.6 mm average cable length per neuron; the effect mostly
increases the length of long-distance connections.

The net result is that with most communication on biolog-
ical axon lines, even though they might be present everywhere,
including intricate three-dimensional patterns, one does find an
exponentially decreasing distribution of axon cable length in cor-
tex, consistent with the neural communication being constrained
to a tight power budget. This result is consistent with data that
most neurons have a high level of local interconnection (Douglas
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and Martin, 2004), such as nearby cortical neurons; any cortical
architecture must explicitly incorporate these effects to achieve
the necessary power efficiency gains. Further, these results are also
consistent with the low average spike rates found in cortical sys-
tems (1 spike per second); an entire cortical network operating
with rate encoded signals (i.e., 3-300 Hz) would consume 100
times the power, and therefore the axon cable length for a cor-
tical power dissipation requires 100 times shorter cables, which is
impractical. We expect that constraining silicon communication
power may be required based on this biological inspiration.

CONSTRAINTS FROM DIGITAL COMPUTATION SYSTEMS

Classical digital computation systems have considerable depth of
experience in communication of digital signals, including event
structures. For typical CMOS communication, (4) is directly
relevant to digital systems communication; for source coupled
approaches (Emitter or Source Coupled Logic), the Vfi 4 term
is modified by voltage swing times V;, resulting in somewhat
lower dynamic power but potentially higher static current; we will
focus on the classical approach through this discussion, which will
have minimal differences for other encoding schemes. Classically,
communication of information over a longer distance is expen-
sive in power; a good summary for these approaches is written
elsewhere (Culurciello and Andreou, 2006). The capacitance for
a line is a function of the distance of the connection, as well
as making connections from one package to another or making
connections between boards or other approaches. Given digital
communication is fast, in theory, communication could happen
with small delay; a low average spike rate is essential in having the
communication being nearly instantaneous.

Figure 21A shows a few representative levels for com-
munication of events, typical boundary locations for typical
communication. Where possible, we want to have as much com-
munication locally on a single IC for low-power operation, since
that decreases the total amount of capacitance needed to be
charged and discharged (i.e., 1 pF for long distance connection
on chip), as well as allows for a (lower) range of V44 could be
supplied as well as a range of possible communication schemes.
Further, the tighter integration between memory elements and
computation further decreases communication power; ideally, as
in the STLS approaches, the memory and computation are inte-
grated together, eliminating this particular issue. The types of
approaches at a local level needed to optimize the use of mem-
ory in the routing architecture. For example, efficient FPGA
approaches achieve both approaches, integrating the non-volatile
memory for the connections with the communication of events
in a low capacitance infrastructure. Further, dendritic struc-
tures bring more of the information refinement to the axon
outputs.

Almost all systems require communication between multi-
ple chips. When communicating events with a neighbor chip
(e.g., 1 chip right next to the transmitting IC), the minimum
capacitance is typically set by 10 pF by specification (due to pack-
aging, bonding, etc.), as well as off chip communication tends
to be at larger V4 (5, 3.3, 2.5V; we assume 2.5V for these
calculations), resulting in a higher energy computation. Such
an approach results in 31.3pJ per bit [or 31.3 WwW/(Mbit/s)]
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FIGURE 21 | Modeling of power required for transmitting an event.

(A) We consider computation between devices on a single IC, between
neighboring ICs, on a single board, and distances beyond a single board
(i.e., between two boards). Each of these steps requires considerably more
power for communicating the resulting event; the more local the
communication, the more power efficient the resulting computation. (B)
Communication power versus number of events (Gbit) communicated. We
consider the three cases of transmitting a bit on a chip (average C; = 1 pF,
Vgg = 0.5V), transmitting a bit to a neighboring chip (average C; = 10 pF,
Vgg = 2.5V), and transmitting an event address of 8 bits on a board
(average C; = 80pF, Vqy = 2.5V). Each case requires 0.12, 31.3 pJ, and 2
nJ energy communication per bit, respectively. We would expect even
more power consumption for longer distance communication (i.e., between
boards), because of the larger capacitance for these approaches. On board
requires address communication, because when transmitting sparse
events encoding the address gives an optimal solution.

independent of the communication scheme. Such event commu-
nication schemes could transmit an event in only a single bit on
the resulting line. Further, the introduction of 3D silicon pro-
cessing (die stacking, multiple grown layers, etc.) has introduced
technologies that can reduce the effective off chip capacitance by
an order of magnitude, and therefore, such approaches should be
utilized where available in a particular technology for multichip
approaches.

When we communicate over distances longer than nearest
neighbor chips, we typically employ an Address Event communi-
cation scheme (i.e., AER), which requires sending the location of
a particular spike between chips. At least, this requires an address
for the particular line, as well as the particular chip we are consid-
ering; on a single board, an 8 bit address would be a lower limit
for such approaches. In such an approach, a communication of
an event would travel multiple minimum chip distances (i.e., 8
is a lower bound for an average number), resulting in roughly
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2 n]J per operation. As we go to longer distances, and particularly
when we go to different boards, we see a significant increase in
capacitance and addressing as well as routing infrastructure; the
goal is to minimize the number of such long distance events that
need to be communicated, while preserving the capability.

Figure 21B shows a graph of the power required for commu-
nicating a number of events for these different schemes. When
trying to reach biological efficiencies for communication, we
have significant limits even communicating single events between
neighboring ICs, not to mention longer distance communication.
For 10'2 events per second results in 30 W of power consumption
(1 Tbit/s). The result requires most of the computation to be local;
fortunately, neurobiological systems use a similar approach in the
fact that over 90% of neurons in cortex project locally to nearby
neurons (i.e., nearest 1000 pyramidal cells).

For example, if the off chip (not nearest neighbor communica-
tion) to is budgeted for 1 W of power, then only 0.05% of events
can use this communication channel. Further, if we budget 1 W
for off-board events, then with the additional capacitance and bits
for selection needed, one would see 64 times more capacitance,
resulting in 0.001% events communicating off board. As addi-
tional technology becomes available, such as multiple die stacking
in a given package or three-dimensional circuit fabrication, the
resulting capacitance for communication will decrease, improv-
ing some of these numbers, but the containing concepts will still
be the same. We expect similar type issues in neurobiological sys-
tems; even though the brain can communicate over long distances
by many wires, the resulting energy to do so would be prohibitive
in its current energy budget. Such constraints keep the commu-
nication overhead for the system manageable, and therefore the
communication structure never becomes too large a burden for
the system scaling to large sizes.

The low spike rate has a similar effect for synthetic systems as
it does in biological systems; increasing spike rate by a factor of
100, typically necessary for implementations using rate encoded
approaches, increases power by at least a factor of 100, signifi-
cantly limiting where such systems can be used. Of course, most
rate encoding approaches simplify neuron elements to elementary
sigma-delta converters, eliminating most of the computational
possibilities.

Rarely is the digital communication included in power for
computation (Figure 22). For example, the computation power
to access 1 MMAC of data from a nearby memory block, requiring
two 2 Mbyte, 32 bit input data, and 1 Mbyte, 32 bit output data,
results in 3.1 mW (V43 = 2.5 V) of power, even though one might
find a DSP chip computing at 4 MMAC(/s)/mW power efficiency
(TMS320VC5416, 2008). A memory chip or data source further
away requires even higher level of power. As another example,
using a memory element one chip away for remapping neuron
addresses, which is usually a first step to storing synaptic weights
in off-chip memory, requires sending an 8 bit address off the
chip and an 8 bit address back on the chip. Just this power alone
requires 0.5nJ per remapping in the best case; at 10'? events/s,
we require 500 W for this simple computation. Such an expensive
computation must be used in particular targeted areas.

Figure 23 shows the tradeoffs between these systems, as well as
simple comparisons between a small network of simple neurons
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FIGURE 22 | Diagram showing typical computation models for digital
and analog approaches. For a typical digital computation, we must access
the data (as well as instructions), communicate it to the processor, perform
the computation, and communicate the results back to the memory. When
this memory is an off-chip device, the resulting power consumed for
communication is much higher than an efficient processor. The analog
approach directly computes through the memory, and therefore minimizes
the resulting issues and complexity due to communication. One could use
digital based computation and memory to achieve some advantages,
limited by the computational efficiency limits for digital techniques.

and synapses. Using external memory as the primary approach for
programmability and configurability, as is the typical use of AER
communication schemes, comes at a huge cost that makes scaling
to large systems impractical. The advantages of AER communica-
tion, which include enabling long-range, sparse interconnections,
comes with the added cost of digital communication, costs that
are very small for sparse, infrequent events, and that depend
on the distance required for communication (on-chip, off-chip,
off-board). Adding the additional cost of FPGA or other high
performance digital processing only further weakens the appli-
cability of these approaches going forward. One sees exactly the
same issue when using multiplexing of a memory with an analog
system, whether to load synaptic weights in an external memory.
This result shows the heavy energy cost of computation and mem-
ory that are not co-located; although this approach might have
advantages in initial system building, it requires communication
across sizable capacitance, and therefore requiring more power, as
well as system complexity.

ENERGY EFFICIENCY COMPARISONS FOR OTHER NEUROMORPHIC
IMPLEMENTATIONS

Many neuromorphic systems claim to be power efficient, and
compared to typical digital off-the-shelf approaches, these claims
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FIGURE 23 | lllustration of the costs of external communication for
configurability and storage. \Where possible, we want data-flow
operations where memory and computation are co-located with local
routing/configurability. Moving configurability is moved off of the
processing die substantially increases computational cost because of the
power and complexity requirements for moving the data to an external
processor/memory, even if next to the IC. Moving memory away from
Processing, say for multiplexing Synaptic values, further increases the
resulting power and complexity cost, even if the original device gets
simplier and smaller. These schemes include rate encoded approaches
encoding synapse values because of the increased event rate. We include
values for a small network of 1000 neurons with 100 synapses operating
with a 1 KSPS operating speed assuming a typical ANN (i.e., Vectormatrix
multiplication) neuron structure.

are often right. In each of these approaches, the IC power effi-
ciency is between the digital and analog SP techniques, with much
lower system power efficiency due to the high-level for communi-
cation overhead (including FPGAs for routing). Many techniques
start with a power efficient neuromorphic sensor , such as the
DVS imager (Lichtsteiner et al., 2008), which compares well
to commercial cameras, making it a favorite sensor interface
for many neuromorphic platforms. Unfortunately, neuromorphic
techniques have not often improved past the analog SP effi-
ciency; often the approaches, including event-based approaches,
reduce down to Vector-Matrix Multiply operations, as sometimes
explicitly said by the authors (Serrano-Gotarredona et al., 2009).
These facts leave us with a small list of potential neuromorphic
computational models currently used; the authors believe more
efficient algorithms will be discovered/invented over the coming
years.

We will comment on a few representative neuromorphic sys-
tems, while amazing feats of engineering as platforms for neural
simulation and modeling, do not reach the desired power effi-
ciency targets. The Caviar project illustrated a heroic effort
building large-scale neuromorphic processing capabilities using
the computation from the DVS imageer (Lichtsteiner et al,
2008). The resulting convolution IC, the primary workhorse
of the architecture, was capable of 12 GMAC, low-precision
operations in roughly 100 mW of power; these impressive num-
bers are still two orders of magnitude less power efficient than
VMM type operations, even though the core operations are sim-
ilar. The resulting system integration cost is significantly higher
(even when not using USB monitors of USB events) as well
as requiring FPGA ICs for routing (i.e., synapse mapping), as
a tradeoff for system modularity; lower event rates would fur-
ther improve the resulting system. Related algorithms using
DVS imagers, while computationally interesting including stereo
processing (Ni et al.,, 2012; Rogister et al., 2012), show use-
ful neuromodeling approaches considering practical algorithms,
but often computed on a standard digital computer. The pos-
sible efficient implementation being better than the analog SP
line is neither demonstrated theoretically or experimentally at
this time.

The SpiNNaker approach (Furber and Brown, 2009; Rast
et al.,, 2011; Furber, 2012; Painkras et al., 2012) uses efficient
event-based communication structures, but utilizes 18 standard
ARMD968 integer-math processors (=4 GIPS in 1 W) for solving
any of the neuron dynamics, and therefore will be almost as effi-
cient as the digital power-efficiency wall, far from the analog SP
computation possibilities. Further power limitations occur when
the processors require off-chip memory, typical of many cur-
rent implementations. Other resulting systems, such as Neurogrid
(Lin et al., 2006; Silver et al., 2007) and Wafer level implementa-
tions from the group centered in Heidelberg (Schemmel et al,,
2008a,b) in best cases get close to the analog VMM efficiency,
typical of an ANN.

Any practical neural implementation must make sure that the
resulting infrastructure does not overwhelm the efficient compu-
tation. Such an implementation must consider system communi-
cation of events, communication to outside processors, and other
multiplexing structures. Without architectures that can, in the
particular implementation technology scale from one to billions
of neurons, clearly has advantages over other approaches. Many
previous attempts to scale up single or small networks of neu-
rons have often slowed down development because of these issues.
The Silicon Cortex Project (SCX, from INT) spent enormous engi-
neering effort to communicate between a few neurons on a single
board in the multi board system (Deiss et al., 1999; Indiveri et al.,
1999); the Central Pattern Generator (CPG) system by Patel et al.,
faced similar issues (Patel et al., 1999, 2006). The resulting system
design for the communication, programming, and configuration
infrastructure far outweighed the neuromorphic computation
issues. Even successful multilayer model implementation are con-
strained by similar approaches, and face significant challenges to
scale past current levels, primarily due to the digital communica-
tion infrastructure (Lin et al., 2006; Silver et al., 2007; Schemmel
et al., 2008b; Serrano-Gotarredona et al., 2009).
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COMMERCIAL CONSIDERATIONS TO DRIVE THESE
SYSTEMS

Although one can discuss how to build a cortical computer on
the size of mammals and humans, the question is how will the
technology developed for these large systems impact commercial
development. The cost for ICs alone for cortex would be approxi-
mately $20 M in current prices, which although possible for large
users, would not be common to be found in individual house-
holds. Throughout the digital processor approach, commercial
market opportunities have driven the progress in the field. Getting
neuromorphic technology integrated into commercial environ-
ment allows us to ride this powerful economic “engine” rather
than pull.

In most applications, the important commercial issues include
minimization of cost, time to market, just sufficient performance
for the application, power consumed, size and weight. The cost of
a system built from ICs is, at a macro-level, a function of the area
of those ICs, which then affects the number of ICs needed system
wide, the number of components used, and the board space used.
Efficiency of design tools, testing time and programming time
also considerably affect system costs. Time to get an application to
market is affected by the ability to reuse or quickly modify existing
designs, and is reduced for a new application if existing hard-
ware can be reconfigured, adapting to changing specifications,
and a designer can utilize tools that allow rapid modifications
to the design. Performance is key for any algorithm, but for a
particular product, one only needs a solution to that particular
problem; spending time to make the solution elegant is often a
losing strategy.

The neuromorphic community has seen some early entries
into commercial spaces, but we are just at the very beginning
of the process. As the knowledge of neuromorphic engineer-
ing has progressed, which have included knowledge of sensor
interfaces and analog signal processing, there have been those
who have risen to the opportunities to commercialize these tech-
nologies. Neuromorphic research led to better understanding of

sensory processing, particularly sensory systems interacting with
other humans, enabling companies like Synaptics (touch pads),
Foveon (CMOS color imagers), and Sonic Innovation (analog—
digital hearing aids); Gilder provides a useful history of these two
companies elsewhere (Gilder, 2005). From the early progress in
analog signal processing we see companies like GTronix (acquired
by National Semiconductor, then acquired by Texas Instruments)
applying the impact of custom analog signal processing tech-
niques and programmability toward auditory signal processing
that improved sound quality requiring ultra-low power levels.
Further, we see in companies like Audience there is some success
from mapping the computational flow of the early stage audi-
tory system, and implementing part of the event based auditory
front-end to achieve useful results for improved voice quality.
But the opportunities for the neuromorphic community are just
beginning, and directly related to understanding the computa-
tional capabilities of these items. The availability of ICs that have
these capabilities, whether or not one mentions they have any
neuromorphic material, will further drive applications.

One expects that part of a cortex processing system would have
significant computational possibilities, as well as cortex struc-
tures from smaller animals, and still be able to reach price points
for commercial applications. In the following discussion, we will
consider the potential of cortical structures at different levels of
commercial applications. Figure 24 shows one typical block dia-
gram, algorithms at each stage, resulting power efficiency (say
based on current technology), as well as potential applications
of the approach. In all cases, we will be considering a single
die solution, typical for a commercial product, and will mini-
mize the resulting communication power to I/O off the chip (no
power consumed due to external memories or digital process-
ing devices). We will assume a net computational efficiency of 10
TMAC/mW, corresponding to a lower power supply (i.e., mostly
500 mV, but not 180 mV) and slightly larger load capacitances;
we make these assumptions as conservative pull back from possi-
ble applications, although we expect the more aggressive targets

2 - IOMMAC / pW ~ IOMMAC / uW ~4.5GMAC / uwW ~4.5GMAC / pW
Refined
Sensor Sensor Sensor Signal to First Layer Second Layer Symbols
Tnputs > Signal S Signal > Symbol § >»| Cortical 5 >»  Cortical gi) (X X}
Conditioning Processing Conversion | Classification Classification
Speech | Microphone Cepstrum Basic Auditory Phoneme Low SNR
Recognition | Interface / filtering p Features (VQ, GMM) | Classification Wordspotting
Image | Image aquistition, | Retina Edge / Corner Movement Sequence Gesture
Processing | color calculations | (edge enhancement) | Detection Classification Recognition, etc.
Baseband | Demodulation of | Frequency Fundamental Comm Frequency Complex Signal
Communications | desired band Decomposition Symbol Detection Hopping Recognition Detection
FIGURE 24 | Typical signal processing chain using configurable symbols, through a WTA approach (Lazzaro et al., 1988), we
analog approaches and neural based classifiers. Once the input have a cascade of classifier layers typical of processing in
signal becomes established as a refined probability of low-level cortex.
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would be reachable. We assume the external power consumed
is set by 1 event/second/neuron average event-rate off chip to a
nearby IC. Given the input event rate is hard to predict, we don’t
include that power requirement but assume it is handled by the
input system. In all of these cases, getting the required compu-
tation using only digital techniques in a competitive size, weight,
and especially power is hard to foresee.

We expect progress in these neuromorphic systems and that
should find applications in traditional signal processing and
graphics handling approaches. We will continue to have needs
in computing that outpace our available computing resources,
particularly at a power consumption required for a particular
application. For example, the recent emphasis on cloud comput-
ing for academic/research problems shows the incredible need for
larger computing resources than those directly available, or even
projected to be available, for a portable computing platform (i.e.,
robotics). Of course a server per computing device is not a com-
puting model that scales well. Given scaling limits on computing,
both in power, area, and communication, one can expect to see
more and more of these issues going forward.

We expect that a range of different ICs and systems will be
built, all at different targets in the market. There are options for
even larger networks, or integrating these systems with other pro-
cessing elements on a chip/board. When moving to larger systems,
particularly ones with 10-300 chips (3 x 107 to 10° neurons) or
more, one can see utilization of stacking of dies, both decreas-
ing the communication capacitance as well as board complexity.
Stacking dies should roughly increase the final chip cost by the
number of dies stacked.

In the following subsections, we overview general guidelines
to consider when considering using neuromorphic ICs in the
commercial market, first for low-cost consumer electronics, and
second for a larger neuromorphic processor IC.

SMALL, HIGH-VOLUME CONSUMER ELECTRONICS ICs

In one case, we will consider a small die of 1 mm? (10 nm pro-
cess node), typical of commodity parts say in audio devices or cell
phones components (Table 3). The cost is roughly a linear func-
tion of the die area, but also a function of packaging, testing time,
production costs, and sales cost. We might expect a chip cost of
$2 range, resulting from a die cost less than $1. In 1 mm? area,
we could imagine a network of 60,000 cortical neurons, result-
ing in 10 TMAC equivalent computation in 1 mW of power. We

Table 3 | Table of possible specifications for commercial
Neuromorphic ICs.

Consumer IC Processor IC

Die size 1 mm?2 40 mm?
Chip cost $2 $100
Neurons 60,000 3,000,000
MAC 10 TMAC 500 TMAC
Comp power TmwW 50 mW
Out events 1000/s 10,000/s
Comm power 70nW W

assume roughly 1000 neurons project outside of the IC per sec-
ond, therefore with addressing bits would require 4 kb/s, resulting
in 125 nW of average output communication.

Even at the price point for a high-volume commercial device
($2 range, Table 3), we have computational power rivaling most
computer clusters and arrays of graphics chips integrated as a
component on a board. Potential applications are as a word
spotting front-end, and robust speech recognition in low SNR
environments. A practical application would require some level
of analog signal processing to create the input symbols for the
computation, similar to the pathways we see leading up to cortex
from the sensory systems. Further, these systems can be operated
at frequencies higher than real time, requiring a linearly increase
in power consumed for increase in operating frequency; these
approaches could enable using these techniques for front-end
classification of baseband communication systems.

POTENTIAL OF A NEUROMORPHIC PROCESSOR IC

In another case, we will consider a large die of 400 mm?, the size
of an entire reticle, typical of the microprocessor ICs, graphics
ICs, and other higher end commercial ICs. We might expect a
chip cost of $100 range, resulting from a die cost under $50 per
die, given current pricing models. These chips would probably
exist in handheld or other electronic devices that sell above a
$350 range, which enables a wide range of commercial applica-
tions. In 40 mm? area, we could imagine a network of 30,000,000
cortical neurons, resulting in 500 TMAC equivalent computation
in 50 mW of power. We assume roughly 10,000 neurons project
outside of the IC per second, and with addressing bits would
require roughly 256kb/s, resulting in 8 mW of average output
communication power.

By comparison, these numbers show effectively a hand held
device having the computational power rivaling the largest of
today’s supercomputers in the power consumed by less than
most handheld devices, and at a price point that could be put
into higher end commercial devices, such as tablets or lap-
tops. Potential applications would include the speech recognition
examples for the smaller chip, as well as (or in addition to)
image processing emulation, particularly on 1 M pixel images,
including receptive field processing, image/scene classification,
and pre-attention mechanisms.

TOOLS FOR DESIGNING NEUROMORPHIC SYSTEMS

Modern system design expects a design environment to work
through all of the layers of abstraction to achieve reasonable appli-
cation performance; we should expect a similar approach for
neuromorphic systems.

In many cases, we can utilize existing tools, where they exist,
such as microcontroller programming or FPGA compilation
tools, where some even have interfaces from higher level lan-
guages like C or Simulink. Such tools even exist for analog signal
processing compilation, such as the tool suite controlled through
MATLAB (Koziol et al., 2010), using Simulink (Schlottmann
etal., 2012a) at the high level that compiles to a spice deck, which
in turn, can be compiled (Baskaya et al., 2009) to programmable
object code for the FPAA device. Higher-level tools also enable
the use of these systems in educational experiences (Twigg and
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Hasler, 2008), which will be essential to educating engineers to
design with neuromorphic concepts for system applications that
are superior to state of the art solutions.

In the literature, we find a large number of proposed tools,
typically being used by a few computational neuroscientists, each
being rewritten for a particular feature, or concept. Examples of
these tools would include PyNN (Davison et al., 2008), written
in Python, and JAER (JAER, 2011), based on Java and connects
to Python interfaces. Further, there are classic neural computa-
tion tools such as Genesis (Bower and Beeman, 1998), Neuron
(Hines and Carnevale, 1997), and Brian (Goodman and Brette,
2008) which have wide applicability, and are known to be use-
ful at different levels of abstraction/computation for the resulting
ODE solutions required.

Unfortunately, there are few approaches that attempt to bridge
across a range of approaches, in particular, tools used by multi-
ple computational groups as well as multiple hardware groups.
The notable exception is the PyNN tool, originating from the
Heidelberg group (EU FACETs program) which shows promise
for a tool to unify multiple groups through an open commu-
nity type tool used by multiple academics. PyNN is designed to
be a simulator-independent, Python-based open source language
designed for describing spiking neural network models. PyNN is
the one tool that is currently used for multiple heterogeneous neu-
ron platforms. For example, the FPAA tool flow shows initial tools
(Schlottmann et al., 2012a) that could also utilize a PyNN struc-
ture to compile to hardware. The base language we used for this
approach is PyNN (Davison et al., 2008), rather than a spice deck,
to specify the netlist level of the neuron structure. Extending PyNN
as a tool for design approaches would move further along this goal.

OVERVIEW OF ADAPTATION AND LEARNING

In this section, we give an overview considering adaptation and
learning in this hardware roadmap. Because learning function,
not to mention computation, is an open area of research, the
ability to predict potential long-term issues is challenging. We
have some visability into the device-level issues for adaptation and
learning, programming versus learning for an entire array, as well
as some development questions for learning synaptic elements;
we will consider each of these in the following subsections. We see
key issues for learning and adaptation to address going forward

e FG approaches sets the standard for a single 3-terminal device
providing integrated (non-volatile) memory, synapse density,
resolution (digital EEPROM store 4 bits/cell at 22 nm), low-
power, and local adaptation. Easy local control and mismatch
control are nice to have features.

e Development/Investigation of system level (groups of event
neurons) learning rules, including normalization of neu-
ron/synaptic activity.

e Neuron learning utilizing dendritic structure. Recent results
on dendritic computation gives hope to understand algorith-
mic issues. Circuit approach requires dense circuit models in
configurable architectures.

e Axon routing as well as slower timescale chemical changes
could further add capability, particularly once key neuron
learning aspects are stable.

DEVICE-LEVEL QUESTIONS FOR ADAPTATION AND LEARNING
Device-level neural system learning starts looking at synapse cir-
cuit models, as well as finding approaches to implement these
functions using as little additional synapse circuitry as possible
to enable tight computation. One metric of a learning model
is quantifying (and minimizing) the percentage increase in base
synapse cell size from an programmable synapse to an adap-
tive synapse. The floating-gate based learning structures, single
transistor learning synapses (STLS) (Hasler et al., 1995), the
floating-gate LMS adaptive filter (Hasler and Dugger, 2005), and
floating-gate STDP synapses (Ramakrishnan et al., 2011; Brink
et al.,, 2012; Nease et al., 2013), all show this overhead met-
ric is manageable and approaches zero in some cases; the cell
size is relative to EEPROM type devices, with the size, complex-
ity, IC processing, and manufacturing benefits mentioned earlier.
The LMS structure increases the cell size over a VMM structure
(Schlottmann and Hasler, 2011) by a factor of roughly 2, and
the STDP synapse structure size (Ramakrishnan et al., 2011) is
identical to the resulting floating-gate transistor-channel model
(Gordon et al., 2004). Mesh-type configurations are good for
synaptic arrays when the dendrites are considered wires even
when utilizing learning in the network, with additional circuit
control on the periphery of the array. Further, other parame-
ters such as additional power dissipation and added noise should
be low relative to the non-adapting computation, often seen in
floating-gate based approaches (Hasler et al., 1996; Hasler and
Dugger, 2005).

Some nanotechnology elements, such as memristors, also have
a clear multiple-timescale behavior that would enable potentially
adaptation and long-term storage in a single device. Widrow’s
original adaptive filter work was performed by what he called
three-terminal memristors (Widrow, 1960); enabling learning
function in two terminal memristors is a challenge because in
a mesh (crossbar) array it is hard to get desired functionality,
although some early simulation results showing the approach
might the possible (Zamarreo-Ramos et al., 2011). What is also
likely with similar nano device structures is to enable circuit ele-
ments that can modulate a conductance on a slow-timescale based
on network dynamics, in a dense structure, potentially integrated
above the Si IC. Neuroscience uses a wide range of timescales for
its computation and learning requiring we eventually need these
mechanisms (Sejnowski and Churchland, 1992).

Introduction of dendritic structure, motivated by previous
sections for its computational importance and efficiency, sig-
nificantly changes the elegant mesh array of synaptic devices.
Dendrites add complexity both in terms of required added cir-
cuitry as well as potentially additions to the learning algorithms,
such as requiring local Ca** and localized synaptic learning,
where the detailed biological modeling in these areas are still open
questions. A dense configurable array of adapting synapses with
dendritic reconfigurability still enables these approaches, even
with the ever improving research in this area.

WRITING/READING SYNAPSE VALUES FROM A CORTICAL MODEL

If the synapse strengths/weights are learned, this alleviates the
need for loading a large number of parameter values into a
system. Assuming we are loading a cortex of 10'> synapses,
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Table 4 | Summary table for loading synapses in a human brain (10).

Load time 15 min 1 day 10 days
Communication

Rate 11.3 Thit/s 116 Gbit/s 11 Gbit/s
Power 10.4 kW 109 W 1MW

this requires significant communication time and overall system
power. Table 4 shows the cost and complexity for communicating
the resulting digital values to the synapses. The computations use
10 bit accuracy for the device values, 300 pF system load capaci-
tance, and V4 at 2.5 V. We expect to have many parallel input data
streams to load the entire array for a sustained rate of 11.3 Tbit/s,
probably coming from multiple memory sources to hold the 1000
TByte golden memory target. These issues are typical for loading
a supercomputer system (TOP500 List, 2012). We have a simi-
lar issue for reading the network; reading the entire state of the
weights (and/or all potentials) once is an expensive proposition.

Loading a single IC with 10° synapses (say 10° neurons) in
a second would require 10 Gbit/s data link into the IC requir-
ing 1.6 W for communication for a 50 pF load (minimum level
for IC test with zero-insertion force socket). The challenge of
parallel programming these number of synapses on chip is man-
agable, and the resulting power requirements are significantly less
than the data communication. These numbers directly impact the
final cost of such a system; IC testing can be a significant cost in
manufacturing of a final product; loading values in 1s prevents
one such product limitation. For the 10'> synapse data loading
the power consumption and performance will be limited by the
system communication, not the IC complexity.

For a 20 W system, loading the weights frequently is not pos-
sible; this point further illustrates the untenable case of storing
synapse weights in one place and using them somewhere else,
even in a multiplexed system. Once a memory is programmed,
adapted, and/or learned, reloading the memory is costly; there-
fore, non-volatile memory is critical to minimize the cost of
loading a system. On the other hand, occasionally loading an
entire cortex of 10'° synapses, say on the order of once a day, is
a feasible proposition, as well as having programmed code at the
initial condition or reset condition for a commercial machine.

One might wonder if every synaptic weight, as well as every
neuron parameter, can be learned or adapted from the result-
ing environment. History developing with adaptive systems,
both non-spiking (Hasler and Dugger, 2005) and spiking (Brink
et al., 2012; Nease et al., 2013), required some precisely pro-
grammed elements, although fewer than the total number of
learned parameters. Often these programmed parameters should
be insensitive to environmental conditions, often requiring a few
precision current and voltage sources. The programming of these
few parameters often have a large effect on the resulting algorithm
behavior. This behavior leads one to speculate whether the brain
uses the precise data from the human genome, estimated to be
roughly 3.2 billion base pairs long contain 20,000-25,000 distinct
genes represented by 800 Mbytes of data (International Human
Genome Sequencing Consortium, 2004; Christley et al., 2008) to

set the behavior in a similar way the parameters of billions of
neurons and 10'3 synapses.

THOUGHTS ON LEARNING AND DEVELOPMENT OF NEURON ARRAYS
One classic question for biological learning networks is how
the synapses from an array of neurons, say from one or multi-
ple layers in cortex, would converge to a system equilibrium to
investigate the resulting functions of the neuron array, and com-
pare with biological studies. Several fundamental studies exist
in this area treating neurons as an ANN type model with dif-
ferent learning rules finding patterns corresponding to Principle
Component Analysis (PCA) (e.g., Linsker, 1988; MacKay and
Miller, 1990), Independent Component Analysis (ICA) (e.g.,
Bell and Sejnowski, 1995, 1997; Hoyer and Hyvarinen, 2000),
and a range of modified approaches based on this work (Blais
et al.,, 1998; Zylberberg et al., 2001; Falconbridge et al., 2006;
Saxe et al., 2011). These approaches are built around fundamen-
tal continuous-time ANN algorithms on PCA algorithms (Oja,
1982; Sanger, 1989) as well as ICA built from non-linearities
(Hyvirinen and Oja, 1997), each with grounding to talk about
potential computation and applications coupled with approaches
to build such algorithms (Cohen and Andreou, 1992, 1995; Hasler
and Akers, 1992).

The fundamental issue is the difficulty of making such progress
with spiking neurons. The lack of computational models in spik-
ing networks, including representations of events and resulting
realistic sensory data, complicates the analysis of the resulting
learning network. Most learning experiments use encoding struc-
tures that reduce the network (e.g., Savin et al., 2010), although
they recognize issues of rate encoding, reducing many of the
results to ANN approaches.

The case becomes even less studied when considering realistic
dendritic structures. Development with dendrites with spike rep-
resentation is an open question, and an exciting area of research.
Early research on the wordspotting dendritic computation with
STDP learning has some similarity to HMM learning rules, but
the careful connection is yet to be understood. Further questions
come from understanding and implementing the development
axon growth/routing algorithms used in development, particu-
larly as implemented in hardware (Boerlin et al., 2009). Some
evidence exists that dendritic activity strongly affects the direc-
tions of the axonal projections (e.g., Richardson et al., 2009). We
expect wide-open opportunities as well as high-impact results
coming from investigations in this area.

CONCLUSIONS

This study concludes that useful neural computation machines
based on biological principles at the size of the human brain
seems technically within our grasp. Building a supercomputer
like structure to perform computations in human cortex is within
our technical capability, although more a question of funding
(research and development) and manpower. Figure 25 shows a
representative cortical system architecture of silicon neuron struc-
tures. The heavy emphasis on local interconnectivity dramatically
reduces the communication complexity. We show these capabil-
ities are possible in purely CMOS approaches, not necessarily
relying on novel nanotechnology devices.
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FIGURE 25 | A potential view of how one could build a brain/cortical
structure; the approaches follow constraints outlined throughout this
discussion. The approach could be integrated as a set of boards with a
large number of neural ICs, where at each level of complexity, local
communication is emphasized for power efficient computation as well as
low integration complexity. Most of the on-chip communication would be
local, most of the chip-to-chip communication would be between
neighboring ICs in an extended FPGA like fabric. The system would
Interface to typical biological sensors, like retina (vision), microphones for
audition, and chemical sensors, as well as non-biological (i.e.,
communication spectrum) inputs. A particular neuron array could be
integrated with additional FPAA structures enabling integration of analog SP
for the front-end processing (i.e., acoustic front-end processing).

Figure 26 shows the potential computational energy efficiency
in terms of computation for digital systems, analog signal pro-
cessing, and potential neuromorphic hardware-based algorithms.
Computational power efficiency for biological systems is 8—9
orders of magnitude lower than the power efficiency wall for
digital computation; analog techniques at a 10nm node can
potentially reach the same level of computational efficiency. The
resulting tradeoffs show that a purely digital circuit approach
are less likely because of the differences in computational effi-
ciency. These approaches show huge potential for neuromorphic
systems, showing we have a lot of room left for improvement
(Feynman, 1960), as well as potential directions on how to achieve
these approaches with technology already being developed; new
technologies only improve the probability of this potential being
reached.

Figure 27 illustrates the key metrics of computational effi-
ciency, communication power, and system area. Physical com-
puting, based on neuromorphic concepts, potentially can
dramatically improve system area and computational efficiency,
as illustrated throughout this discussion. Understanding that the
nervous system is power constrained is not only a key techno-
logical parameter, but understanding its implication for com-
munication enables building systems that won’t be handicapped
by its control infrastructure. This comparison requires keep-
ing communication local and low event rate, two properties

Power Efficiency Scaling

10MMAC(/s)/W —— 1st DSPs (1978 - 1981)
100MMAC(/s)/W ——
IMMAC(/s)/mW ——
_ | Energy Efficiency Wall
10MMAC(/s)/mW (32bit inputs)
100MMAC(/s)/mW ——
IMMAC(/s)/luW ——
10MMAC(/s)/luW —— Typical Analog VMM
Classifier (350nm IC)
IMMAC(/s)/nW ——
Dendritic Classifier
1OMMAC(/s)/nW —— (350nm IC)
1 Shrink by
100MMAC(/s)/nW sealing L, V.,
IMMAC(/s)/pW —— (<) Biological Neuron

FIGURE 26 | A summary comparison of power efficient computational
techniques, including digital, analog Signal Processing (SP)
techniques, and the potential for neuromorphic physical algorithms.
The potential of 8-9 orders of magnitude of achievable computational
efficiency encourages a wide range of neuromorphic research going
forward.

Communication Cost Area /
(Power) Volume
(Cost)

Physical Implementation (i.e. Analog)
of Neuromorphic Algorithms

Computation Cost
(1/Computational Efficiency)

FIGURE 27 | Overview figure illustrating the three dimensions
(computational efficiency, communication power, and system area) to
optimize to reach large-scale neuromorphic systems. Using physical
based (i.e., analog) approaches help to decrease computational efficiency
and system area, and heavy use of local communication, integration of
memory and computation, as well as low-event architecture reduces the
communication power required.

seen in cortical structures. Communication power efficiency is
handled by minimizing long-distance communication events,
focusing architectures on local communication, and refining
data to minimize the number of long-distance events communi-
cated. These points give some metrics for successful neuromor-
phic systems, in particular how much improvement in power
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efficiency achieved compared to a standard analog signal process-

ing approach.

Probably the largest hurdle is not about what we can build,
but identifying novel, efficient computation in neurobiology and
employing these techniques in engineering applications. This
question is the fundamental open question for neuromorphic
engineering as well as neuroscience. Given that the neuromor-
phic engineering building blocks also can be accurate models
for neurobiological behavior, these questions are directly related.
We painted a picture of the potential computational models
arising from neuro-modeling, including their potential com-
putational efficiency; we expect these models are just a start
to what is possible. We expect neuroscientists are bound to
make more fundamental discoveries about the nature of the
biological computation, discoveries that most likely will further
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