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There is a growing interest in automatic classification of mental disorders based on
neuroimaging data. Small training data sets (subjects) and very large amount of high
dimensional data make it a challenging task to design robust and accurate classifiers
for heterogeneous disorders such as schizophrenia. Most previous studies considered
structural MRI, diffusion tensor imaging and task-based fMRI for this purpose. However,
resting-state data has been rarely used in discrimination of schizophrenia patients from
healthy controls. Resting data are of great interest, since they are relatively easy to collect,
and not confounded by behavioral performance on a task. Several linear and non-linear
classification methods were trained using a training dataset and evaluate with a separate
testing dataset. Results show that classification with high accuracy is achievable using
simple non-linear discriminative methods such as k-nearest neighbors (KNNs) which is
very promising. We compare and report detailed results of each classifier as well as
statistical analysis and evaluation of each single feature. To our knowledge our effects
represent the first use of resting-state functional network connectivity (FNC) features to
classify schizophrenia.
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INTRODUCTION
Population studies show that lifetime prevalence of all psychotic
disorders is as high as 4% (http://www.nimh.nih.gov/statistics/
SMIAASR.shtml). These disorders can impair normal life signif-
icantly and impose huge societal cost (Rice, 1999). Clinically, the
patient’s self-reported experiences and observed behavior over the
longitudinal course of the illness constitute the basis for diagnosis.
The overlapping symptoms of mental disorders and the absence
of standard biologically-based clinical tests make differential diag-
nosis a challenging task. Early diagnosis of these diseases can
significantly improve treatment response and reduce associated
costs (McGlashan, 1998).

Advances in neuroimaging technologies in the past two
decades have opened a new window into the structure and func-
tion of the healthy human brain as well as illuminating many
brain disorders such as schizophrenia. Schizophrenia is among
the most prevalent mental disorders affecting about 1% of the
population worldwide (Wyatt et al., 1995; Bhugra, 2005). This
devastating, chronic heterogeneous disease is usually character-
ized by disintegration in perception of reality, cognitive prob-
lems and chronic course with lasting impairment (Heinrichs
and Zakzanis, 1998). Multiple structural and functional brain
abnormalities are widely reported in patients with schizophre-
nia (Shenton et al., 2001; Calhoun et al., 2009a; Karlsgodt
et al., 2010). Most neuroimaging-based studies of schizophre-
nia focus on showing aberrations of some features (structural

or functional) in a patient group by comparing them to a con-
trol group. While many of these findings are statistically sig-
nificant in the average sense, discrimination ability of those
features is under question for classification purposes on a case-
by-case basis. Since classification provides information for each
individual subject, it is considered a much harder task than
reporting group differences. In the case of classifying schizophre-
nia patients, a small number of training samples (subjects) and
high dimensional data make it a challenging task to design
an accurate, robust classifier for such a heterogeneous brain
disorder.

Recently, there is a growing interest in designing objec-
tive prognostic/diagnostic tools based on neuroimaging and
other data that display high accuracy and robustness. The rel-
atively small amount of research on MRI-based classification of
schizophrenia patients can be divided into three categories based
on the type of discriminating features used: structural-based
(Csernansky et al., 2004; Nakamura et al., 2004; Davatzikos et al.,
2005; Fan et al., 2005, 2007b; Caan et al., 2006; Pardo et al., 2006;
Kawasaki et al., 2007; Yoon et al., 2007; Caprihan et al., 2008;
Sun et al., 2009; Takayanagi et al., 2010, 2011; Ardekani et al.,
2011), functional-based (Georgopoulos et al., 2007; Calhoun
et al., 2008b; Demirci et al., 2008a; Michael et al., 2008; Arribas
et al., 2010; Shen et al., 2010; Castro et al., 2011) or combination
of structural and functional features (Fan et al., 2007a; Ford et al.,
2002).

www.frontiersin.org July 2013 | Volume 7 | Article 133 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Brain_Imaging_Methods/10.3389/fnins.2013.00133/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MohammadArbabshirani&UID=91529
http://community.frontiersin.org/people/KentKiehl/1052
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GodfreyPearlson&UID=6054
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=VinceCalhoun&UID=884
mailto:vcalhoun@mrn.org
http://www.nimh.nih.gov/statistics/SMI_AASR.shtml
http://www.nimh.nih.gov/statistics/SMI_AASR.shtml
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Arbabshirani et al. Resting-state classification of schizophrenia

In recent years, spontaneous modulation of blood oxygenation
level-dependent (BOLD) signal during the resting condition has
found fruitful clinical applications (Fox and Greicius, 2010).
Resting-state fMRI (rfMRI) experiments are less prone to multi-
site variability, allow a wider range of patients to be scanned
and make it possible to study multiple cortical systems from one
dataset (Fox and Greicius, 2010). Moreover, more accurate con-
nectivity maps can be detected using rfMRI data compared to
task-based fMRI data (Xiong et al., 1999). With considerable lit-
erature on rfMRI group comparisons, researchers have started
tackling more challenging task of using the found abnormalities
or so called biomarkers to discriminate patients from healthy con-
trols. The main target of these studies has been the Alzheimer’s
disease (Li et al., 2002; Greicius et al., 2004; Wang et al., 2006;
Supekar et al., 2008). However, rfMRI data have been rarely used
for discrimination of schizophrenia (Cecchi et al., 2009; Shen
et al., 2010; Du et al., 2012). Shen et al. (2010) used an atlas-based
method to extract mean time-courses of 116 brain regions in the
resting-state for both healthy controls and schizophrenia subjects.
The correlation between these time-courses made the feature vec-
tor for each subject. By using feature selection and dimensionality
reduction techniques, they reduced the dimensionality down to
three where they classified patients from controls with a high
accuracy (93% for patients and 75% for healthy controls).

The main purpose of this study is using resting-state func-
tional network connectivity (FNC) features for classification
of schizophrenia patients. Using functional connectivity (FC)
methods, researchers have shown disrupted functional integra-
tion in schizophrenia patients (Friston and Frith, 1995; Frith
et al., 1995; Josin and Liddle, 2001; Bokde et al., 2006; Mikula
and Niebur, 2006; Salvador et al., 2010). Liang et al. reported
decreased FC among insula, prefrontal lobe and temporal lobe
and increase connectivity between cerebellum and several other
brain regions. Meyer-Lindenberg et al. (2001) reported abnormal
FC in fronto-temporal interactions in schizophrenia in selected
regions of interest (ROIs) using positron emission tomography
(PET) brain scans on working memory task. Salvador et al. (2010)
reported hyper-connectivity within medial and orbital structures
of the frontal lobe and hyper-connectivity between these regions
and several cortical and sub-cortical structures in schizophre-
nia patients. FC is defined as correlation (or other kinds of
statistical dependency) among spatially remote brain regions
(Friston, 2002). FC analysis documents interactions among brain
regions during a task as well as during rest. Two widely used FC
approaches are: (a) seed-based analysis (Biswal et al., 1995, 1997;
Lowe et al., 1998; Cordes et al., 2000, 2002; Stein et al., 2000;
Ford et al., 2005) and (b) spatial independent component anal-
ysis (ICA) (McKeown et al., 1998; Calhoun et al., 2001a; van de
Ven et al., 2004; Esposito et al., 2005; Garrity et al., 2007). In
the seed-based approach, individual seed voxels from predefined
brain regions of interest (ROI) are chosen and the cross correla-
tion of other voxels’ time courses (TCs) with the selected seeds
then computed, to derive a correlation map. This map can then
be thresholded to identify voxels showing significant FC with the
seed voxels.

An alternative approach is based on ICA, a multivariate data-
driven method which as a blind source separation method, can

recover a set of signals from their linear mixtures and has yielded
fruitful results with fMRI data (Calhoun et al., 2009b; Calhoun
and Adali, 2012). ICA estimates maximally independent com-
ponents using independence measures based on higher-order
statistics. Compared to general linear model approaches, ICA
requires no specific temporal model (task-based design matrix),
making it ideal for analyzing resting state data (Kiviniemi et al.,
2003). Depending on data matrix formation, one can perform
either temporal or spatial ICA (sICA) on fMRI data. sICA is
the predominant ICA approach used for fMRI data (McKeown
et al., 1998; Calhoun et al., 2001a,b). sICA decomposes fMRI
data into a set of maximally spatially independent maps and their
corresponding time-courses. Each thresholded sICA map may
consist of several remote brain regions forming a brain func-
tional network. sICA generates consistent spatial maps (SMs)
while modeling complex fMRI data collected during a task or
in the resting-state (Turner and Twieg, 2005) although the task
can result in a subtle modulation of the spatial patterns (Calhoun
et al., 2008a). The dynamics of the BOLD signal within a sin-
gle component is described by that component’s TC. Regions
contributing significantly within a given component are strongly
functionally connected to each other.

There is growing interest in studying FC among brain func-
tional networks. This type of connectivity, which can be consid-
ered as a higher level of FC, is termed FNC (Jafri et al., 2008)
and measures the statistical dependencies among brain func-
tional networks. Each functional network may consist of multiple
remote brain regions. Spatial components resulting from sICA are
maximally spatially independent but their corresponding time-
courses can show a considerable amount of temporal dependency.
This property of sICA makes it an excellent choice for studying
FNC, which can be studied by analyzing these weaker depen-
dencies among sICA TCs. These dependencies can be analyzed
by correlation methods (Jafri et al., 2008) or algorithms such
as dynamic causal modeling (Stevens et al., 2007) or Granger
causality (Stevens et al., 2009; Havlicek et al., 2010).

It has been shown that there are significant FNC differences
between schizophrenic patients and the control group in the
resting-state possibly showing deficiencies in the brain functional
processing in the patients (Jafri et al., 2008; Calhoun et al., 2009a,
2011). Jafri et al. (2008) reported increased FNC among frontal,
temporal, visual and default-mode networks and decreased FNC
between temporal and parietal networks. We hypothesized that
disrupted functional integration in schizophrenia patients as cap-
tured by FNC analysis entail valuable information that can be
used to discriminate patients automatically. To test our hypothesis
we conducted a feasibility study of using FNC features for classi-
fication of schizophrenia patients to our knowledge for the first
time. In order to show that our method can provide significant
results regardless of the type of machine learning algorithm, we
report the results for several linear and non-linear classification
methods such as minimum least square linear classifier, Fisher’s
linear discriminant classifier (LDC), quadratic classifier, binary
decision tree, support vector machine (SVM), k-nearest neighbor
(KNN), artificial neural networks (ANN), naïve Bayes, logistic
linear classifier (LLC) and dissimilarity-based classifier. Careful
considerations were taken to avoid common pitfalls in automatic
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classification studies such as using very small cohort, using test-
ing dataset information in the training phase and incomplete
report of the results (Demirci et al., 2008b). The results show that
the proposed method can classify the schizophrenia patients with
very high specificity and sensitivity.

MATERIALS AND METHODS
PARTICIPANTS AND PARADIGM DESCRIPTION
One session of resting-state fMRI data was collected from 28
healthy and 28 schizophrenic patients. Participants gave written,
informed, Hartford hospital and Yale IRB approved consent at
the Institute of Living and were compensated for their partici-
pation. Schizophrenia was diagnosed according to the DSM-IV
TR criteria on the basis of a structured clinical interview (SCID)
(First et al., 1995) administered by a research nurse and review
of the medical file. Exclusion criteria included any participants
with auditory or visual impairment, mental retardation (full scale
IQ < 70), traumatic brain injury with loss of consciousness
greater than 15 min, presence or history of any central neuro-
logical illness and a positive urine pregnancy test. Participants
were also excluded if they met criteria for alcohol or drug depen-
dence within the past 6 months or produced a positive (assessed
by urine toxicology screen on the day of scanning). Although
patients were slightly older than controls (SZ age = 39.7 ± 10.1;
HC age = 36.5 ± 11.3), the difference was not statistically sig-
nificant (two sample t-test p-value: 0.27). All but three patients
and one control were right handed. Healthy participants were
free of any DSM-IV TR Axis I disorder (SCID) or psychotropic
medication and had no first-degree relatives with a psychotic
illness.

IMAGE ACQUISITION
Scans were acquired at the Olin Neuropsychiatry Research Center
at the Institute of Living/Hartford Hospital on a Siemens Allegra
3T dedicated head scanner equipped with 40 mT/m gradients and
a standard quadrature head coil. The transaxial functional scans
were acquired using gradient-echo echo-planar-imaging with the
following parameters (repeat time (TR) = 1.50 s, echo time (TE)
= 27 ms, field of view = 24 cm, acquisition matrix = 64 × 64,
flip angle = 70◦, voxel size = 3.75 × 3.75 × 4 mm3, slice thick-
ness = 4 mm, gap = 1 mm, 29 slices, ascending acquisition). Six
“dummy” scans were performed at the beginning to allow for
longitudinal equilibrium, after which the paradigm was auto-
matically triggered to start by the scanner. The resting state scan
consisted of one 5 min run.

PROPOSED APPROACH
The block diagram in Figure 1 shows our approach. We divided
the data into separate training (16 healthy subjects + 16 patients)
and testing (12 healthy subjects + 12 patients) randomly. The
raw fMRI data was first preprocessed. Then the training data were
analyzed with group ICA. Subject specific SMs and time-courses
were computed using back reconstruction. Next, FNC analysis
was performed on the subject specific ICA time-courses. FNC was
calculated between each pair of selected components.

Several classifiers were trained using the training data and were
evaluate using the testing data. Leave-one-out cross validation

(LOOCV) inside the training set was used to select the hyperpa-
rameters for the classifiers. The optimum parameters for relevant
classifiers were selected based on the averaged validation error
over 32 validation iterations. In the testing phase, a separate ICA
was performed on the testing dataset and the extracted brain
networks where matched with those of training ICA based on
maximum Pearson correlation coefficient. Finally, performances
of trained classifiers were evaluated using the testing features.

As a supplementary study, the FNC features were statistically
analyzed within each group of subjects using one sample t-tests
and between groups using two-sample t-tests on the training
dataset. Statistical test within each group test the null hypothesis
that each feature has a mean of zero. Features surviving the test
have non-zero mean which is statistically significant (which tells
us there is a significant correlation between the pair of compo-
nents). Two sample t-tests between groups test the null hypothesis
that corresponding FNC features in the two groups (controls
and patients) have the same mean. Features surviving this test
are the ones significantly (from a statistical point of view) dif-
ferent between control and patient groups (and tell us that the
correlation between the pair of components is greater in one
group compared to the other group). Note that these results are
presented for descriptive purposes but were not used for fea-
ture selection or at all in the classification process. Each of the
blocks in Figure 1 is described in more details in the following
subsections.

Preprocessing
Data were preprocessed using SPM5 software (http://fil.ion.ucl.
ac.uk), motion corrected, spatially normalized into standard MNI
space and slightly subsampled to voxel size 3 × 3 × 3 mm3, result-
ing in 53 × 63 × 46 voxels. Next, spatial smoothing with a 10 ×
10 × 10 mm3 FWHM Gaussian kernel was performed.

Group ICA and back reconstruction
Prior to the ICA, data dimensionality was reduced at two levels
using principal component analysis (PCA). First at the subject
level, dimensionality was reduced to 80. Then reduced data from
all subjects and all sessions were concatenated together and put
through another reduction step. The number of components for
the second level reduction was estimated to be 20 by minimum
description length (MDL) criterion (Li et al., 2007). This is also
the number of IC components. Note the MDL is a data driven
approach, so it is not dependent on whether data are collected at
rest or during a task.

Infomax group sICA (Calhoun et al., 2001a) was conducted to
decompose the aggregated data into components using GIFT soft-
ware (http://icatb.sourceforge.net/). SICA applied to fMRI data
identifies temporally-coherent networks (TCNs) by estimating
maximally independent spatial sources, referred to as SMs and
their corresponding TCs.

In order to validate the number of ICA components chosen by
MDL and also measure the robustness of each of them, ICA was
repeated 10 times using ICASSO (http://www.cis.hut.fi/projects/
ica/icasso). Each time, the ICA algorithm was started from a
different initial point and the resulting components were clus-
tered to estimate the reliability of the decomposition (Himberg
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FIGURE 1 | The proposed approach. The pink blocks on the top show the feature extraction steps. The statistical analysis box (green) is not part of the
classification approach. The light green blocks describe the classification stage. Orange clouds indicate the corresponding figures and tables in the Results section.

et al., 2004). Robustness and reliability of components were well
validated by ICASSO results showing compact clusters.

In order to estimate subject-specific SMs and TCs, a back-
reconstruction approach based on PCA compression and pro-
jection was used (Calhoun et al., 2001b; Erhardt et al., 2010).
Subject-specific TCs were reconstructed separately for patients
and controls.

Component selection
SMs were reconstructed and converted to Z values for each of the
subjects. All of the components were visually inspected and the
non-artifactual components were selected. Non-artifactual com-
ponents are expected to have peak activation in the gray matter
and have low spatial overlap with known ventricles, vascular,
motion and susceptibility artifacts.

Functional network connectivity
The FNC toolbox (http://mialab.mrn.org/software/#fnc) was
used for the FNC analysis. As mentioned before, significant tem-
poral correlation can exist among the sICA TCs. The FNC toolbox
computes maximum lagged correlation among the components.
The maximum lagged correlation was computed as in (Jafri et al.,
2008). First the TCs of the ICA components were interpolated to

allow us detection of any delays less than the TR of the scanner
(Calhoun et al., 2000; Ford et al., 2005). We assume ρ for the
Pearson correlation coefficient between two TCs named X̄ and Ȳ
of dimension T × 1 where T is the number of time points in TCs.
Starting reference point of the TCs is named io and �i represents
the non-integer change in time. ρ�i represents the Pearson corre-
lation between X̄i0 which is vector at the reference time point io
and Ȳi0+�i which is vector Ȳ shifted �i from the reference time
point. This correlation between the overlapping points of X̄i0 and
Ȳi0+�i can be computed as follows:

ρ�i =
(

X̄T
i0

)
(Ȳi0 +�i)√

X̄T
i0

X̄i0 ×
√

Ȳ T
i0 +�iȲi0 +�i

(1)

The ρ�i vector is calculated for each pair of TCs when one of TCs
is shifted �i units from −3 to +3 s (i.e., ± 2 TR). The maximum
correlation and the corresponding lag is calculated and saved for
each of the subjects and separately for rest and task. Allowing lag
between signals is important to account for variations in hemo-
dynamic response shapes among brain regions as well as among
subjects. Although the lag can give an idea of temporal order of
fMRI TCs, the source of the lag is not completely understood and
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could be due to mixture of functional and physiological effects.
For these reasons, we will not report any analysis on the lag
parameter in this paper. The lag corresponding to the maximum
correlation was checked to be distributed in ±3 s interval and
often away from its maximum or minimum.

Prior to computing correlations, ICA TCs were filtered. There
are reports that show task related and other interesting infor-
mation resides in lower frequencies while noise and artifacts
contributes mostly to the higher frequency contents of the TCs
(Cordes et al., 2001). We applied a bandpass Butterworth fil-
ter with cut-off frequencies at 0.017 Hz and 0.15 Hz to the
ICA TCs. Also, we regressed out the motion parameters from
the FNC values to remove any movement bias from the
analysis.

Statistical analysis
For all FNC analyses, correlations were transformed to z-scores
using Fisher’s transformation [z = arctanh(r)]. Then, robustness
of maximum lagged correlation between each pair of TCs was
tested separately for rest and task using t-tests. Finally, to deter-
mine the significant differences of rest versus task, paired t-tests
were conducted on the two groups. The cut-off p-value for all of
the tests was set at p < 0.05 and was corrected for multiple com-
parisons using the false discovery rate (FDR) method (Genovese
et al., 2002).

Classification
We evaluated the performance of several well-known linear and
non-linear classifiers. This will give us a better view of the com-
plexity of the features. If simpler classifiers (such as linear clas-
sifiers) classify the data successfully, it means that the features
have a simple structure (classes are almost linearly separable).
However, if just complicated non-linear classifiers classify the
data successfully, it is an indication that data has a more com-
plex structure. The decision boundary in a linear classifier is
a hyperplane while in a non-linear classifier the boundary can
take any shape. In another sense, the classifiers can be divided
into generative and discriminative. In generative classifiers, the
probability density functions (pdf) of all classes are modeled
and the Bayes theorem gives the posterior probabilities. On the
other hand, discriminative classifiers try to estimate the posterior
probability directly or skip the challenging step of pdf estima-
tion and determine the decision boundary based on the observed
data (discriminant methods). Generative methods are often sim-
pler and more computationally efficient but require estimation
of pdf which require substantial amount of data. For complex
data sets with few training samples, discriminative methods yield
a better performance. It should be noted that in this study we
computed the prior probabilities for the two classes from the data
(which is equal) since the distribution of the data is very different
from the real prevalence of schizophrenia (around 1%). All classi-
fiers were implemented using Matlab (MathWorks, Inc.). Naïve
Bayes, logistic linear and quadratic classifiers along with deci-
sion trees (DT) were implemented using PRTools (http://www.

prtools.org) which is a Matlab-based pattern recognition toolbox
(Duin et al., 2007). In this section, these methods will be briefly
reviewed.

Linear methods.
Linear Bayes normal classifier. This simple classifier assumes
Gaussian pdf for both classes with equal covariance matrices but
different means. The joint covariance matrix is the weighted aver-
age of class covariance matrices (weighted by prior probabilities).
Using the Bayes rule, these assumptions lead to a linear decision
boundary. This classifier is also called LDC (Duda et al., 2001).

Fisher linear classifier (FLC). Fisher’s linear discriminant views
classification as a dimensionality reduction task. Fisher formu-
lation tries to maximize class mean separation while minimizing
class overlap during linear dimension reduction. This choice of
direction for projection can be used as a linear classifier in a two
class problem. Fisher’ linear classifier is special case of minimum
least square linear classifier (Bishop, 2006).

Logistic linear classifier (LLC). Logistic regression in method of
learning functions from f : X → Y . X = [X1 X2 . . . Xn] is the
training vector with n variables and is the target value (class).
Logistic regression assumes a parametric for the distribution
P(Y |X). The parameters are estimated from the training data.
Assuming that is binary (two class problem), the logistic regres-
sion can be formulated as below:

P(Y = 0|X = exp
(
w0 + ∑n

i = 1 wiXi
)

1 + exp
(
w0 + ∑n

i = 1 wiXi
) (2)

P(Y = 1|X) = 1

1 + exp
(
w0 + ∑n

i = 1 wiXi
) (3)

One of the nice properties of the logistic regression is its ability to
provide a linear discriminant between the two classes. Each new
object is assigned to a class that has a larger probability for that
object. Simplifying this rule results in a classification rule:

if w0 +
n∑

i = 1

wiXi > 0 → Y = 0 Otherwise Y = 1 (4)

LLC also provides the weight for each feature so it can be used to
rank the features.

Linear perceptron classifier. This classic linear discriminant tries to
minimize the error function which is the number of misclassifi-
cations. This classifier can be considered as simple feed forward
ANN (Rosenblatt, 1958). First the input vector is transformed
using a non-linear transformation to give a feature vector. The
algorithm then tries to change the weight vector of the neural
network using gradient stochastic descent algorithm to minimize
the error in an iterative manner. At each iteration, the weight
vector of the network is manipulated by perceptron learning
rule. The perceptron convergence theorem guarantees that the
perceptron learning algorithm can find the solution in finite num-
ber of steps if such a solution (data is linearly separable) exists
(Block et al., 1962).

Linear support vector machine (SVM). Over the last 15 years fol-
lowing the work by Cortes et al. (Cortes and Vapnik, 1995),
SVM has proven useful in many machine learning and pattern
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recognition analysis problems. Moreover, when data classes are
heterogeneous with few training samples, SVMs appear to be
especially beneficial (Melgani and Bruzzone, 2004). This binary
classifier aims at finding a hyperplane that maximizes the mar-
gin between the two classes. The training samples closest to the
decision boundary are called support vectors. By allowing a mar-
gin (called soft margin) that allows for misclassification of some
noisy samples, SVMs avoid the overfitting problem.

Non-linear methods.
K-nearest neighbor. KNN is a method of classifying objects based
on proximity to the training samples (Cover and Hart, 1967). This
instance-based learning method is among the simplest machine
learning approaches. Each object is classified by the majority
voting of the training samples in the neighborhood. The most
common class among the k nearest neighbors is determined and
is assigned to the object (Bremner et al., 2005). KNN can result in
complex decision boundaries. The optimum k is determined by
cross validation. Different distance metrics such as Euclidean, city
block, cosine and correlation can be used to measure the proxim-
ity of the samples. KNN is fast, simple and guarantees an error
rate no worse than twice the Bayes error if the amount of data
approach infinity. We used just Euclidean distance metric in our
analysis.

Naïve Bayes classifier (NBC). The naïve Bayes classifier is a simple
generative classifier based on Bayes theorem. The naïve assump-
tion of NBC is that it assumes independence among the features.
Although this over-simplified assumption is violated in most
of the machine learning problems, this approach worked very
well for many complex problems even when the independence
assumption is not valid (Domingos and Pazzani, 1997; Rish,
2001). One of the main advantages of NBC is that it requires small
amount of data to estimate the parameters of pdf function for
each feature. Since the features are assumed to be independent,
the joint pdf of the features is simply the multiplication of indi-
vidual pdfs of each feature. When dealing with continuous data,
typically Gaussian distribution is assumed for each feature. The
pdf parameters are estimated from the training data. NBC works
quite well in anti-spam filtering problems (Seewald, 2007).

Quadratic Bayes normal classifier. Quadratic discriminant analysis
(QDC) is closely related to linear discriminant analysis. It assumes
that the data is normally distributed with different mean and
covariance matrices. This results in a quadratic decision boundary
(Duda et al., 2001).

Binary decision tree. DT find use in a wide range of applications.
DT partitions the input space into cubic regions. In classifica-
tion a class label is assigned to each region in the input space.
Interpretability of the DT makes them very popular specially in
medical diagnosis (Bishop, 2006). Each decision is a result of a
sequence of binary decisions. In order to learn a model from the
training samples, the structure of the tree and the threshold value
for each node should be determined. There are many variations
of DT but most of them rely on the top–down greedy search in
the space of possible trees called ID3 algorithm (Quinlan, 1987)
and its successor C4.5 (Quinlan, 1993). Selecting optimal tree

structure is usually infeasible due to large number possibilities.
Usually the tree is started with a single root node and then at each
step one node is added to the tree. This is called greedy strategy
for growing the tree. At each node an attribute (feature) should
be selected to be tested. There are several criteria to measure the
worth of each feature such as information gain, diversity index,
Fisher’s criterion (the same used in Fisher discriminant analysis)
and gain ratio. The threshold values and structure of the tree is
chosen so that the classification error is minimized. A criterion to
stop growing the tree (pruning) should also be devised. Often the
tree is fully grown and then the tree is pruned back to find the best
tree for that structure. Graphical representation and human inter-
pretability of the DT makes them very popular. However, since the
edges of the decision regions are aligned with the axis of the fea-
ture space they are very suboptimal (Bishop, 2006). One of the
main advantages of DT is interpretability. Moreover, they show
the importance of each feature for classification in a graphical
illustration.

Artificial neural networks. Multilayer ANN is the extension of linear
perceptron classifier. These networks can result in complex non-
linear decision boundaries. A well-known structure for a tree layer
structure: Input layer, hidden layer and output layer. Each neuron
in each layer has connections to other neurons of the subsequent
layers. Non-linear transfer function of the neurons in the hidden
layer can take any form such as sigmoid. The weights of the nodes
are changed using a technique called backpropagation (Werbos,
1990). At each iteration, the output of the network is compared
to correct answers and based on a predefined error function, an
error value is computed. This error is fed back to the network
and the weights of each node are adjusted to minimize this error.
This can be done by gradient descent technique if the activation
function is differentiable. Other method of minimizing the error
is using Levenberg–Marquardt algorithm (Levenberg, 1944).

Another class of ANN uses radial basis activation function
in the hidden layer (Chen et al., 1991). Usually this kind of
network requires more neurons than standard feed forward back-
propagation network but can be trained much faster. Topology of
ANN used in this study can be found in the Results section.

Non-linear support vector machine. By using the kernel trick, SVM
can map the not-linearly separable data into a higher dimen-
sional space where the samples are hopefully lineally separable.
This mapping to higher dimensional space is difficult, but since
SVM formulation depends on the inner product of each of train-
ing samples with the support vectors, the kernel is defined as this
inner product so the problem is solved in the same fashion as the
linear case. There are many kernel functions but the most widely
used ones are Gaussian radial basis function (RBF) and polyno-
mial kernel. There is at least one parameter in a kernel (except
for the linear kernel) which should be optimized along with the
soft margin usually by grid search over reasonable values of that
parameter. RBF and polynomial kernels are defined as below:

K(Xi, X) = exp

(
−‖xi − x‖

σ

)
(5)

K(Xi, X) = [xi.x + 1] p (6)
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In the above equations, support vectors are denoted by xi and each
training point is denoted by x. σ is a parameter proportional to the
width of the RBF kernel. p is the degree of the polynomial ker-
nel. A detailed mathematical formulation of SVM can be found
in Burges (1998).

Parameter selection
The parameters for each classifier were selected by grid search.
Unfortunately, there is no exact theoretical solution for the opti-
mum value for most of the parameter. The parameters were
selected based on the average validation error.

EFFECT OF MEDICATION
One limitation of this study is the fact that patients are medicated.
It is highly desirable to evaluate the performance of the pro-
posed method on diagnosed but not yet medicated schizophre-
nia patients. It has been shown that antipsychotic medications
have a normalizing effect on the functionality of the schizophre-
nia patients’ brain (Davis et al., 2005). Moreover, prior fMRI
and EEG studies on not medicated schizophrenia patients have
reported altered FC (Omori et al., 1995; Meyer-Lindenberg et al.,
2005).

It has been shown that the main targets of antipsychotic
treatments in schizophrenia patients are cortical and subcortical
motor networks (Wenz et al., 1994; Muller et al., 2003; Rogowska
et al., 2004; Abbott et al., 2011). Recently the effect of antipsy-
chotic treatment on resting-state FNC was studied (Lui et al.,
2010) and it was shown that after treatment patients showed three
connectivity changes compared to healthy controls. From these
three changes only one (FNC between the temporal and parietal
network) was present in this study. To further reduce the effect of

medication on classification results, we repeated the classification
with all described methods on reduced set of features where the
motor network related features along with temporal-parietal FNC
feature were excluded.

RESULTS
From the 20 ICA components, 9 components were selected as
non-artifactual, relevant networks. Since we selected nine IC
components and we were interested in connectivity between each
pair of networks, we ended up with 36 FNC features for each
subject

(9
2

)
. Figure 2 illustrates the SMs of the selected IC com-

ponents. These networks are: auditory network (IC #2), frontal-
parietal networks (IC #6 and 9), default-mode networks (IC #12,
13, and 19), visual networks (IC #15 and 20) and motor net-
work (IC # 18). Detailed information of each spatial map such as
regions of activation, Brodmann area, volume and peak activation
t-value and coordinates are provided in Table 1.

The maximum lagged correlation was computed for each of
the subjects in each group. For each of the correlation pairs, stu-
dent t-test was conducted with an FDR-corrected p-value thresh-
old of 0.05 to identify significant correlations. Figure 3 shows the
average correlation and the corresponding t-values. The black cir-
cles determine the correlation pairs that survived the t-test. It
is seen that there are more significant correlation pairs (12) in
the control group compared to patients group (10). Interestingly,
the mean correlation between the auditory network (IC #2) with
each of the visual networks (IC #15 and 20) and the motor net-
work (IC #18) is significant for the healthy group but not for the
patients. To determine which correlation pairs are significantly
different between the two groups, two sample t-tests were con-
ducted with a FDR corrected p-value threshold of 0.05. Also a

FIGURE 2 | Spatial maps of the nine selected IC components.
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Table 1 | Brain regions, corresponding Brodmann areas, volumes, maximum t-values and spatial coordinates of each component in talairach

space.

BA Vol. T max X-Y-Z coordinates

ATTENTIONAL NETWORKS

IC 6

R middle frontal gyrus 8 35.2 22.3 (45, 40, −10)
R inferior parietal lobule 40 16.6 27.3 (45, −62, 39)
R inferior frontal gyrus 44, 45 28.1 19.5 (48, 40, −12)
R superior frontal gyrus 6, 8, 9 23.1 16.4 (39, 17, 49)

IC 9

L middle frontal gyrus 8 25.2 33.5 (−45, 31, 32)
L inferior parietal lobule 40 25.0 36.0 (−53, −41, 46)
L inferior frontal gyrus 44, 45 20.9 25.8 (−53, 27, 21)
L superior frontal gyrus 6, 8, 9 26.9 21.8 (−45, 37, 31)
VISUAL NETWORKS

IC 15

R/L superior parietal lobule 5, 7 7.0/6.1 36.4/31.2 (18, −64, 56)/(−15, −64, 53)
R/L precuneus 7 28.3/26.2 30.8/31.6 (9, −58, 61)/(−15, −67, 50)
R/L cuneus 7, 19 8.5/7.3 28.3/23.4 (21, −71, 31)/(30, −77, 31)

IC 20

L/R cuneus 7, 19 21.2/24.8 32.8/40.2 (6, −67, 9)/(−6, −73, 6)
L/R lingual gyrus 18, 19 21.2/24.8 31.4/43.8 (9, −84, 2)/(−6, −76, 4)
DEFAULT-MODE NETWORKS

IC 12

R/L precuneus 7 27.6/27.1 45.1/33.7 (6, −51, 33)/(−3, −54, 33)
R/L cingulate gyrus 23, 24, 31 19.6/15.9 32.4/29.1 (9, −54, 28)/(−3, −45, 30)

IC 13

R/L anterior cingulate cortex 32 10.2/11.6 29.3/34.5 (6, 26, −6)/(−6, 26, −4)
R/ L medial frontal gyrus 9, 10 13.6/12.9 22.3/23.9 (12, 40, −10)/(−9, 38, −7)

IC 19

R/L superior frontal gyrus 6, 8, 9 27.0/27.6 33.5/32.2 (9, 62, 16)/(−6, 59, 22)
R/L medial frontal gyrus 8, 9, 10 14.7/16.6 31.0/25.6 (3, 50, 17)/(−3, 44, 14)
MOTOR NETWORK

IC 18

R/L precentral gyrus 4, 6 11.9/11.8 23.0/32.2 (12, −20, 67)/(−30, −20, 56)
R/L medial frontal gyrus 6, 32 10.6/9.6 29.2/29.2 (6, −8, 64)/(−9, −23, 59)
R/L postcentral gyrus 1, 2, 3 11.8/12.2 24.3/32.2 (15, −38, 60)/(−15, −38, 60)
AUDITORY NETWORK

IC 2

R/L superior temporal gyrus 22 23.6/19.1 27.8/23.8 (50, −14, 6)/(−48, −17, 9)
R/L postcentral gyrus 1, 2, 3 16.1/16.4 24.1/20.3 (59, −20, 15)/(−50, −14, 17)
R/L insula 13, 47 12.6/13.1 23.6/22.7 (42, −8, 6)/(−45, −17, 12)

mean correlation difference between the two groups (control-
patients) was computed for each correlation pair. These results are
shown in Figure 4. Starred pairs indicate those features surviving
the paired t-test.

The classification results on the testing dataset for described
classification methods (section Classification) are summarized in
Table 2. For each method, overall classification accuracy, sensi-
tivity, specificity, positive predicative value (PPN) and negative
predictive value (NPV) are provided. Moreover, we reported
the Wilson’s binomial confidence interval (Wilson, 1927) for

each classifier. For relevant methods, the choice of parameters
selected during the training phase along with the topology of
ANN s are also included in Table 2. As discussed in section
Effect of Medication, to reduce the effect of medication on the
classification results we repeated the analysis on the reduced set
of features. Out of 36 features, 9 features that were more sus-
ceptible to medications were excluded from the feature set and
the whole classification was repeated on the remaining 27 fea-
tures. The excluded features are 8 motor related features (all FNC
features involving IC18) along with a temporal-parietal feature
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FIGURE 3 | Left: Mean of correlation pairs for controls and patients. Right: T -value of each correlation pair resulted from student t-test with p-value threshold
of 0.05 corrected for FDR. Black circles indicate the pairs surviving the t-test.

FIGURE 4 | Left: Mean correlation difference between control subjects and patients (control-patient). Right: T -value resulting from two sample t-test with
p-value threshold of 0.05 corrected for FDR. Stars show pairs that survived the paired t-test.

(FNC between IC2 and IC15). The results are summarized in
Table 3.

One of the main advantages of using DT is the graphical rep-
resentation. One can represent decision alternatives and possible
outcomes schematically. The visual approach is particularly help-
ful in comprehending sequential decisions and outcome depen-
dencies. DT for both the Fisher’s and information gain criteria
are illustrated in Figures 5, 6, respectively.

DISCUSSION AND CONCLUSIONS
We investigated whether resting-state FC features are able to dis-
criminate between schizophrenia patients and healthy control
groups. Using group ICA, the training dataset was decomposed
into independent spatial components and their corresponding
TCs. Then, FNC was computed between each pair of func-
tional networks on the back reconstructed data using the max-
imum lagged correlation method. Several linear and non-linear
classifiers were trained using the training data and were evaluated
using the testing data. One of the common pitfalls in classification
of mental diseases is using cross-validation to measure the gener-
alized error (Wood et al., 2007; Demirci et al., 2008b). Another

pitfall is selection of parameter/model in a way that maximize the
performance in the final classifier in the testing dataset (Demirci
et al., 2008b). To avoid this, we used separate training and testing
datasets. Separate ICAs were performed on training and test-
ing datasets. Cross validation was used in the training phase just
for parameter/model selection. ICA successfully extracted similar
non-artifactual networks from both training and testing datasets.
This not surprising since it has been shown that there are several
consistent functional networks across subjects in the resting state
(Damoiseaux et al., 2006; Smith et al., 2009; Allen et al., 2011).

The high accuracy of different classifiers in this study con-
solidates the disconnection hypothesis in schizophrenia patients
(Friston and Frith, 1995; Frith et al., 1995; Josin and Liddle,
2001; Bokde et al., 2006; Mikula and Niebur, 2006; Salvador
et al., 2010). Using FC methods, researchers have shown disrupted
connectivity patterns in schizophrenia patients during rest and
task in several brain regions (Meyer-Lindenberg et al., 2001;
Boksman et al., 2005; Honey et al., 2005; Liang et al., 2006; Jafri
et al., 2008). In our experiment, connectivity between two DMN
nodes (IC #12 and 13) was found to be significantly lower in
schizophrenia patients compared to healthy controls (Figure 4).
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Table 2 | Testing classification results using full set of features.

Method Overall Acc. (%) Sens. (%) Spec. (%) PPV (%) NPV (%) CI (%) Parameters

L
in

e
a

r
m

e
th

o
d

s

Linear discriminant (LDC) 71 42 100 100 63 [51 85]

Fisher linear (FLC) 67 42 92 83 61 [47 82]

Logistic linear classifier (LLC) 63 33 92 80 58 [42 78]

Linear perceptron 79 75 83 82 77 [59 91]

SVM (linear) 83 75 92 90 79 [66 94] C = 1.5

N
o

n
-l

in
e

a
r

m
e

th
o

d
s

KNN (euclidean) 96 100 92 92 100 [78 100] K = 1

Naive bayes classifier 79 75 83 82 77 [59 91]

quadratic classifier (QDC) 63 33 92 80 58 [42 78]

Decision tree (info. gain) 88 92 83 85 91 [68 96] No pruning

Decision tree (fisher criterion) 96 100 92 92 100 [78 100] No pruning

Neural net. by back-propagation 92 100 83 86 100 [73 99] Layers: 3
Hidden nodes: 6

RBF neural net. 96 100 92 92 100 [78 100] Layers: 3
Hidden nodes: 12

SVM (RBF) 96 100 92 92 100 [78 100] C = 1.25
σ = 1

SVM (polynomial) 96 92 100 100 93 [78 100] C = 0.12
P = 3

Overall Acc, overall accuracy; Sens, sensitivity; Spec, Specificity; PPV, positive predictive value; NPV, negative predictive value; CI, Wilson’s binomial confidence

interval. Bold classifiers perform above the chance (lower bound of confidence interval is greater than 50%).

Table 3 | Testing classification results using reduced set of features (27 features).

Method Overall Acc. (%) Sens. (%) Spec. (%) PPV (%) NPV (%) CI (%) Parameters

L
in

e
a

r
m

e
th

o
d

s

Linear discriminant (LDC) 79 58 100 100 71 [59 91]

Fisher linear (FLC) 79 58 100 100 71 [59 91]

Logistic linear classifier (LLC) 71 42 100 100 63 [51 85]

Linear perceptron 75 58 92 87 69 [55 88]

SVM (linear) 83 67 100 100 75 [64 94] C = 2

N
o

n
-l

in
e

a
r

m
e

th
o

d
s

KNN (euclidean) 96 92 100 100 92 [78 100] K = 1

Naive bayes classifier 67 58 75 70 64 [47 82]

quadratic classifier (QDC) 58 75 42 56 62 [38 75]

Decision tree (info. gain) 83 83 83 83 83 [64 94] No pruning

Decision tree (fisher criterion) 79 83 75 77 82 [59 91] No pruning

Neural net. by back-propagation 88 83 92 91 85 [68 96] Layers: 3
Hidden Nodes: 4

RBF neural net. 75 50 100 100 67 [55 88] Layers: 3
Hidden Nodes: 18

SVM (RBF) 88 100 75 80 100 [68 96] C = 1.5
σ = 0.75

SVM (polynomial) 83 83 83 83 83 [64 94] C = 0.12
P = 3

Overall Acc, overall accuracy; Sens, sensitivity; Spec, Specificity; PPV, positive predictive value; NPV, negative predictive value; CI, Wilson’s binomial confidence

interval. Bold classifiers perform above the chance (lower bound of confidence interval is greater than 50%).

This reduced within DMN connectivity is interesting and in line
with recent findings (Camchong et al., 2011; Mingoia et al.,
2012; Orliac et al., 2013). One explanation can be gray matter
thinning and greater psychopathology in patients(Goghari et al.,
2007; Jang et al., 2011). Some recent DTI studies have shown

anatomical disconnection in several brain regions in temporal
and frontal lobe in schizophrenia patients (Buchsbaum et al.,
2006). Moreover some studies have associated anatomical damage
and FC disconnection in patients by analyzing DTI and functional
data together (Zhou et al., 2008). This anatomical-functional
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FIGURE 5 | Fisher’s decision tree using full set of features. This tree includes 8 features in 10 nodes.

FIGURE 6 | Information gain decision tree using full set of features. This tree includes six features in six nodes.

association may be the reason for successful automatic diagno-
sis studies using DTI (Caprihan et al., 2008; Ardekani et al.,
2011) and fMRI studies (Georgopoulos et al., 2007; Calhoun
et al., 2008b; Demirci et al., 2008a; Michael et al., 2008; Arribas
et al., 2010; Shen et al., 2010). While anatomical studies using
either DTI or structural MRI are popular in classification of
schizophrenia patients, functional studies are limited mostly to
task-based studies. Resting-state studies in case of classification
of schizophrenia are rare and have been just recently started

(Shen et al., 2010; Venkataraman et al., 2012). Most of the con-
nectivity fMRI studies (resting-state or task-based) have used
FC features which means that the features are temporal statisti-
cal dependencies among brain regions. Using FC methods have
some limitation such as the choice of seed-voxel in each region
(that may be different for patients and controls) and very high
number of extracted features. Shen et al., extracted average time-
courses from 116 brain regions which means 6670 features for
each subject. High number of features requires additional step
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such as feature selection and reduction to avoid curse of dimen-
sionality. Moreover, most of the features in that fashion are not
discriminative. Using FNC on the other hand, doesn’t require
seed-voxel selection. Moreover, the number of extracted features
is much less than FC methods (36 features in our experiment
based on 9 functional networks). Based on our experiments, it
can be inferred that FNC methodology is a concise abstraction
of the connectivity pattern in the brain that can successfully cap-
ture the differences between schizophrenia patients from healthy
controls.

We have reported detailed classification results (sensitivity,
specificity, positive predictive value and negative predictive value)
as well as Wilson’s binomial confidence interval for each classifica-
tion method. The classification results in Table 2 show that non-
linear methods outperform linear methods, which was expected.
Among the linear methods, LDC, Perceptron and linear SVM
performed above the chance (lower bound of Wilson’s binomial
confidence interval is greater than 50%). All linear methods show
high specificity than sensitivity. Except for quadratic classifier,
all non-linear methods, performed above the chance. In over-
all, discriminative approaches outperformed generative methods.
As a general rule in this study, the less assumptions about the
data, the better the performance. Simple classifiers such as KNN
and decision tree performed very well on this specific machine
learning problem. Also, non-linear SVM showed significant per-
formance with only one misclassified sample. Despite of over-
simplified assumptions and little training data available in this
study, the performance of naïve Bayes is marginally above the
chance (79.17% overall performance). A poor classification was
achieved using the quadratic classifier. It can be hypothesized that
whether the assumptions of this classifier that two classes are nor-
mally distributed with different mean and covariance matrices
are not valid or small amount of data is not sufficient to accu-
rately estimate the mean and covariance matrix of each classifier.
It should be noted that conclusions regarding the performance
of different classifiers are limited to this specific problem using
one dataset. Performance of each machine learning algorithm
depends on the dataset and comparison among different clas-
sifiers has been heavily investigated in the machine learning
literature. Since our main goal is not comparing classifiers, we
didn’t conduct statistical tests to compare their performances
and just reported Wilson’s binomial score interval for each
classifier.

Table 3 shows the result of classification on reduced set of
features. Surprisingly, the overall error was reduced for all the lin-
ear methods except for linear perceptron. The main reason for
this phenomenon may be the curse of dimensionality (Pearlson,
2009) since we have only 32 samples for training and 36 fea-
tures. Using the reduced feature set (27 features), most of the
linear methods could estimate more accurate hyperplane. Linear
SVM performs robustly and equally on both full and reduced
set of features. Most non-linear classifiers still show above the
chance performance with lower overall performance compared
to the full feature set. KNN still classifies with high accuracy.
Again, QDC performed very poorly. In overall, reduction of fea-
tures didn’t greatly affect the results and very high performances

were still achievable. This suggests that medication didn’t bias the
classification.

DT don’t transform the data from the original feature space.
Moreover, they classify the data based on thresholds they put
on each of the features. This makes it possible for the investi-
gator to observe the decision tree and analyze it. One can see
how features are distributed in different levels of the decision
tree and what thresholds on which features discriminate the
classes. This property is especially of interest in the medical diag-
nosis field since decision tree provides classification structure
which includes thresholds on the symptoms. This discrimina-
tive information of each feature is very valuable in medical
problems.

In our problem the symptoms are FNC features. One can
observe that how each feature discriminate the two groups.
This information may reflect FNC abnormalities in schizophre-
nia patients. First of all decision tree introduces the important
features which are 8 and 6 in Figures 5, 6, respectively. Top
node features are among the most important features which are
among the feature identified by the two-sample t-test. Also, the
decision tree can identify the type abnormality which is dis-
criminative between the two groups. For example, it is seen
from Figure 5 that subjects with temporal-motor FNC lower than
0.34 and temporal-visual higher than 0.25 are patients. Or from
Figure 6 it is evident that all subjects with temporal-visual FNC
lower than 0.57 are healthy controls. In other words, all patients
have higher temporal-visual FNC (as do some of the healthy
controls).

Figures 5, 6 illustrate Fisher’s and information gain DT,
respectively (full set of features). Fisher’s decision tree includes
eight features in nine nodes. Information gain decision tree
includes six features in six nodes. It is interesting that using
small subset of features, DT perform well in classification. Fisher’s
decision tree outperforms information gain tree when full set
of feature are used but it is more complicated. However, both
trees can be considered very simple. Using reduced set of features,
information gain tree outperforms Fisher’s tree.

Prior studies mentioned in the Introduction section reported
accuracies ranging from 79 to 98%. Several limitations and con-
siderations make it very hard to compare different approaches
of automatic classification of mental disorders. For example,
study size, MRI scanner parameters, nature of extracted fea-
tures, type of classifier, medication and disease severity in
the patient group varies among the different studies. In the
absence of standard training and testing datasets, comparison
of different approaches based only on the classification rate is
ambiguous.

One of the issues in the current study was that the patients
were slightly older than healthy controls. We looked at the
misclassified subjects in each of the classification experiments
and couldn’t find any systematic age pattern. Note also, it has
been shown that schizophrenia patients have stronger FNC
(Jafri et al., 2008) whereas subjects that are older have reduced
FNC (Allen et al., 2011). So, this potential confound would
likely have a canceling effect making the diagnosis even harder.
Regardless, based on the above observation we do not believe age
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is a factor in our classification results. To avoid any bias, we also
repeated the classification when age was regressed out from the
FNC features and exactly same performance was achieved.

In this study, we separated the data into training and testing
dataset. One may wonder how our method works in a clinical
situation when we have only one new subject. We assume that
we have trained our model using enough training data. In this
situation here are two options: (1) we can use the group ICA com-
ponents of the training data as regressors and calculate the subject
specific time-courses. (2) For a more accurate estimation another
ICA can be done on an extended dataset containing training data
and the new subject data. Note that we won’t use the information
of this new ICA analysis for training the classifiers/models but
just to extract IC networks/time-series for the new test subject.
This approach is more accurate but slower especially in the case
of big training data. Since the main goal of this paper is to
study the feasibility of using FNC features, we didn’t investigate
methods.

In this study we showed that the resting state FNC fea-
tures can be successfully exploited in order to automatically
discriminate schizophrenia patients. To the best of our knowl-
edge this the first study using resting-state FNC features to
classify schizophrenia patients. Acquiring scans from schizophre-
nia patients is more feasible in the resting state due to the
short acquisition time and avoidance of cognitive task-related
impairment confounds. Moreover, the data is less prone to
multi-site variability (Pearlson and Calhoun, 2009). It was
demonstrated that just 5 min resting state data can be used
to classify patients reliably and accurately using FNC features
and simple classifiers such as KNN. Moreover, performance
of several linear and non-linear methods were evaluated and
compared.
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