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Our early life nutritional environment can influence several aspects of physiology, including
our propensity to become obese. There is now evidence to suggest perinatal diet can
also independently influence development of our innate immune system. This review
will address three not-necessarily-exclusive mechanisms by which perinatal nutrition can
program neuroimmune function long-term: by predisposing the individual to obesity, by
altering the gut microbiota, and by inducing epigenetic modifications that alter gene
transcription throughout life.

Keywords: hypothalamic-pituitary-adrenal axis, obesity, glucorticoids, gut microbiota, epigenetics

PERINATAL DIETARY INFLUENCE ON IMMUNE SYSTEM
DEVELOPMENT
The immune system of a newborn animal is relatively naïve and
influences from the environment are necessary to allow it to
become fully functional. Early exposure to pathogens develops
an adaptive (Flajnik and Kasahara, 2010) and innate (Galic et al.,
2009; Spencer et al., 2011) immunity that will facilitate appropri-
ate responses to additional pathogens throughout life. However,
there is now evidence that the early life diet is also crucial in
programming long-term immune function.

SPECIFIC NUTRIENTS IN PERINATAL DIET INFLUENCE IMMUNE
SYSTEM DEVELOPMENT
Specific nutrients within an individual diet can influence
immune system development in different ways. Thus, antiox-
idants, oligosaccharides, polyunsaturated fatty acids (PUFAs),
folate, and other vitamins have all been implicated in pro-
gramming the developing immune system (West et al., 2010).
For example, omega-3 PUFAs, those found in fish, fish oils,
green plants, and some nuts and seeds (Huffman et al., 2011;
Kremmyda et al., 2011), have an anti-inflammatory role. They
inhibit cytokine production and may also alter gene expression
and stimulate eicosanoid metabolism to control inflammation
(Shek et al., 2012). Thus, a diet high in omega-3 PUFAs leads
to a suppression of arachidonic acid-derived eicosanoids such as
prostaglandin E2 (PGE2). PGE2 exerts pro-inflammatory effects
and reduces the production of T helper type 1 (Th1) cytokines,
such as interferon (IF) γ and interleukin (IL)2 and enhances
production of Th2 cytokines like IL-4 and IL-5. A shift in the
Th1/Th2 balance toward a Th2-dominant profile is associated
with impaired immune tolerance and allergies (Gottrand, 2008).
High maternal intake of fish is thus associated with protection,
in the infant, from allergic diseases such as eczema and asthma
(Calvani et al., 2006; Romieu et al., 2007; Sausenthaler et al.,
2007). Omega-6 PUFAs, those found in vegetable oils (Huffman

et al., 2011; Kremmyda et al., 2011), are pro-inflammatory and
may contribute to metabolic syndrome and cardiovascular disease
(Patterson et al., 2012). A shift in the ratio of omega-3 to omega-6
PUFA intake in the diet to favor omega-6 encourages an allergenic
Th2-dominant profile and is thus likely contributing to the recent
increase in the incidence of childhood allergies (Shek et al., 2012).
Folic acid is another example of a dietary component that influ-
ences immune development. Folic acid supplementation during
pregnancy reduces the risk of neural tube defects and other con-
genital malformations (Wilcox et al., 2007), but it also predisposes
infants toward allergies and immune dysfunction. For instance,
folate supplementation in the first trimester of pregnancy predis-
poses infants to developing wheeze and respiratory infections in
early life (Haberg et al., 2009).

PERINATAL DIET INFLUENCES IMMUNE SYSTEM DEVELOPMENT
THROUGH THE GUT MICROBIOTA
One mechanism by which specific nutrients in the early life diet
may be able to influence the adult immune system is by affecting
the development, diversity, and function of the gut microbiota.
In humans, the gastrointestinal tract is home to more than 100
trillion bacteria comprised of more than 1000 species (Qin et al.,
2010). It also hosts numerous viruses, archaea, parasites, and
fungi that together make up the gut microbiota (Ashida et al.,
2012). This microbiota exists in a symbiotic relationship with its
human hosts and can influence barrier function, trophic effects,
metabolism, and the development of the adaptive and innate
immune systems (Matamoros et al., 2013).

An adult’s gut microbiome can be influenced by long-term
changes in environmental factors. Hildebrandt and colleagues
have shown 3 months of high fat diet (HFD)-feeding can influ-
ence a change in gut microbiota composition toward an increase
in Firmicutes and Proteobacteria and a decrease in Bacteroidetes
phyla in female mice (Hildebrandt et al., 2009). Although these
changes were independent of obesity, other groups have shown
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a high fat, high sugar diet encourages increased adiposity and
this phenotype can be transmitted to initially lean (normal diet)
animals via transplantation of the microbiota (Turnbaugh et al.,
2008). Most evidence, however, suggests the adult gut flora is very
stable and short-term environmental influences in adulthood
have limited effect (Wu et al., 2011). An infant, on the other hand,
is not born with an established gut microbiome. Rather, the gut
is colonized from bacteria in the environment in the first hours
to days of life and the microbiome gains diversity and becomes
stable and adult-like by around 3 years of age (Mackie et al.,
1999; Palmer et al., 2007). In particular, an individual’s diet dur-
ing the early colonization phase can be tremendously important
in determining the later composition of the gut microbiota.

Breast milk is a major source of the bacteria that col-
onize the gut (Martin et al., 2012). Breast-fed infants have
higher counts of Bifidobacteria, Lactobacilli, and lower counts
of Bacteroides, Clostridium coccoides group, Staphylococcus, and
Enterobacteriaceae than formula-fed (Rinne et al., 2005; Fallani
et al., 2010). Breast milk is also rich in oligosaccharides, which
have a strong pre-biotic effect, promoting bacterial growth (Sela
and Mills, 2010). Oligosaccharides found in human milk can
improve the diversity of the microbiota, particularly promoting
growth and metabolism of Bifidobacteria (Scholz-Ahrens et al.,
2007). Human milk oligosaccharides can even improve glucose
homeostasis (Laitinen et al., 2009). This interaction between
breast milk oligosaccharides and gut bacteria also encourages
immune system development and prevention of disease (Innis,
2007). Maternal diet strongly influences the composition of the
breast milk and probably, therefore, the types of bacteria avail-
able to colonize the infant’s gut. For instance, in rats, a maternal
diet high in olive oil leads to high oleic-acid levels in the milk.
A maternal diet high in PUFA is reflected in high PUFA concen-
trations in milk. Saturated fats are also transferred to the milk
(Priego et al., 2013). When infants are introduced to a more com-
plex diet at weaning there is a marked increase in Bacteroidetes,
and a shift toward a more diverse colony (Koenig et al., 2011). The
infant’s post-weaning diet can therefore also affect the makeup of
the gut microbiota. High dietary fat, for example, can cause a shift
toward increased representation of Clostridium populeti bacteria
and a reduction in Lactobacillus and Bacteroides species (Patrone
et al., 2012). In weaned piglets the quantity and type of carbohy-
drate in the diet can influence the gut microbiota so that a diet
high in hulled barley supplemented with beta-glucan encourages
a Lactobacilli-dominant gut microbiota (Pieper et al., 2008).

Exactly what this means for the infant is yet unclear as there is
no consensus as to what constitutes a “normal” gut microbiome
(Matamoros et al., 2013). However, changing the makeup of the
bacterial colony can certainly influence the immune system long-
term. Infants given Bacteroides fragilis supplements early in life
have high salivary secretory immunoglobulin A (IgA) and more
basal IFN-γ production. They also have reduced expression of the
pathogen-associated molecular pattern receptor, toll-like receptor
(TLR)4, mRNA and an attenuated pro-inflammatory response to
stimulation with lipopolysaccharide (LPS) than those not given
the B. fragilis supplements (Gronlund et al., 2000; Sjogren et al.,
2009). These findings suggest the possibility that early coloniza-
tion with B. fragilis can accelerate the maturation of the IgA

system, leading to improved Th1/Th2 balance, a reduced like-
lihood of allergies developing, and a reduced response to LPS.
A Lactobacilli-dominant colonization in infancy also reduces the
likelihood the child will develop allergies by age five, while a
Staphylococcus aureaus-dominant colonization has the opposite
effect (Johansson et al., 2011). This latter bacterium has been
linked to asthma and allergic rhinitis in childhood (Bjorksten
et al., 2001). Lactobacillis tends to suppress numbers of interleukin
(IL)-4, IL-10, and IFN-γ -secreting cells after stimulation with
phytohaemagglutinin, whereas early life S. aureaus colonization
has the opposite effect. Colonization with Lactobacilli also lowers
cytokine responses to stimulation with an allergen (Martino et al.,
2008). The Lactobacilli data suggest that this bacterium is able to
suppress the immune response.

PERINATAL DIET INFLUENCES IMMUNE SYSTEM DEVELOPMENT
THROUGH EPIGENETIC MODIFICATIONS
An interrelated mechanism by which perinatal diet can influence
the innate immune system is through changes in the epigenome.
Epigenetics refers to stable, heritable, environmentally-induced
modifications to gene expression that occur independently of
alterations to the DNA sequence (Christensen and Marsit, 2011).
These modifications include changes in cytosine methylation, his-
tone modification, and changes in non-coding RNAs such as
microRNAs (Milagro et al., 2013). Together these mechanisms are
responsible for regulating the degree of expression of a particular
gene and the timing of its expression (Zeisel, 2009; McKay and
Mathers, 2011). While epigenetic research is still a very young
field, there is a large body of evidence accumulating to sug-
gest diet, particularly in early life, can influence this epigenome
long-term (Lillycrop et al., 2008). There are now data reveal-
ing almost every dietary component, from broccoli to betaine
can influence the epigenome. Broccoli, for example contains sul-
foraphane, which induces histone modifications and has been
implicated in preventing cancer (Dashwood and Ho, 2008; Delage
and Dashwood, 2008; Nian et al., 2009). Betaine is found in
grains and some vegetables and has been found to influence DNA
methylation to promote fetal brain development (Sinclair et al.,
2007; Mehedint et al., 2010; Zeisel, 2011).

Dietary components may also alter the epigenome to influence
immune function, and there is a particular window of vulnerabil-
ity for this during early development (West et al., 2011). Folate
for example is a methyl donor. At least in mice, folate supplemen-
tation in pregnancy causes DNA hypermethylation, particularly
in key metabolic genes (Waterland et al., 2008). Supplementation
with methyl donors such as folate is also associated with altered
immune function resulting in increased development of aller-
gic asthma and eczema (Hollingsworth et al., 2008; Haberg
et al., 2009). PUFAs also have the potential to cause epigenetic
modifications. Crucially, PUFAs may be able to alter nuclear
factor κB (NFκB)-mediated transcription of pro-inflammatory
cytokines to influence the sensitivity of the immune response
(Benatti et al., 2004; Waterland, 2006). NFκB is a transcrip-
tion factor responsible for regulating the expression of more
than 400 genes, including those responsible for pro-inflammatory
cytokines, chemokines, and adhesion molecules (Vanden Berghe
et al., 2006). NFκB-mediated transcription may be particularly
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vulnerable to early life influence and may be a principal mecha-
nism by which epigenetic programming can influence immune
system development long-term (Benatti et al., 2004; Vanden
Berghe et al., 2006). NFκB itself is closely regulated by glucocorti-
coids and these are influenced by hypothalamic-pituitary-adrenal
(HPA) axis activation (Sapolsky et al., 2000). Epigenetic program-
ming by early life stress can result in changes in the methylation
status of the glucocortiocoid receptor (GR) in the hippocampus
and hypothalamus, altering negative feedback onto the hypotha-
lamus, and thus HPA axis sensitivity (Liu et al., 1997; Weaver
et al., 2004; Stevens et al., 2010; Begum et al., 2012). Early life diet
can also impact HPA axis reactivity long-term (Boullu-Ciocca
et al., 2005; Spencer and Tilbrook, 2009; Bulfin et al., 2011), alter-
ing the glucocorticoid response to stress. Enhanced circulating
glucocorticoid levels in response to stress then feed back to inhibit
NFκB-mediated cytokine production (Figure 1). The HPA axis in
particular will be discussed in the next section.

PERINATAL DIETARY INFLUENCE ON ADIPOSITY—LINKS TO
IMMUNE SYSTEM DEVELOPMENT
Dietary factors in early life clearly have a crucial influence on
immune system development. The second half of this review will
focus on how early life nutrition can program a pro-inflammatory
basal immune profile by pre-disposing an individual to an obese
phenotype.

Obesity is becoming a huge problem worldwide. In devel-
oped countries such as Australia and the US, 70–74% of adult
males and 56–64% of adult females are now either overweight or
obese, with 28% of both classified as obese (BMI > 30). As many
as 25–32% of Australian and US children are classified as over-
weight or obese (Cretikos et al., 2008; Nhanes, 2009-2010; AHS,
2011-2012).

PERINATAL NUTRITION CAN PROGRAM ADULT WEIGHT AND
METABOLISM LEADING TO ADIPOSE-DEPENDENT CHANGES IN
IMMUNE FUNCTION
Obesity itself, whether due to metabolic changes programmed in
early life or to adult factors, is linked to changes in the inflamma-
tory profile. It is now recognized that obesity is associated with,
and may even be precipitated by, a chronic low-grade systemic
and local inflammation (Gregor and Hotamisligil, 2011). This
metabolic inflammation can contribute to insulin- and leptin-
resistance at various levels, including at the hypothalamus (Thaler
and Schwartz, 2010).

Dietary factors such as PUFAs and glucose, as well as changes
in the gut microbiota, are able to trigger a chronic low-grade
inflammatory profile initially in white adipose tissue (WAT). This
change is characterized by macrophage infiltration into WAT,
apoptosis and necrosis of adipocytes, and reduced vascularity
(Shu et al., 2012). These changes result in an abnormal prepon-
derance of adipose-tissue macrophages, and these can make up
almost 40% of the cells in obese adipose tissue (Weisberg et al.,
2003; Xu et al., 2003). Adipose tissue macrophages, and poten-
tially an increase in pattern recognition receptors on adipocytes
themselves, lead to local inflammation with a predominance
of pro-inflammatory over anti-inflammatory cytokines released
(Shu et al., 2012). Hotamisligil and colleagues showed early

FIGURE 1 | Perinatal diet may influence glucocorticoid negative

feedback following immune challenge. (A) Pathogens such as
lipopolysaccharide act at toll-like receptors (e.g., TLR4) on immune cells
leading to phosphorylation of inhibitory factor (I)κB, releasing nuclear factor
(NF)κB from its complex and allowing it to be translocated to the nucleus.
NKκB is responsible for the transcription of pro- and anti-inflammatory
cytokines, the former of which stimulate the cyclo-oxygenase 2-mediated
conversion of aracidonic acid into prostaglandins. Prostaglandins (e.g.,
PGE2) act at the brain to stimulate fever and sickness behavior and recruit
the HPA axis. Once released, glucocorticoids (GC) negatively feed back to
inhibit further NFκB-mediated transcription of cytokines. (B) The perinatal
diet may influence glucocorticoid negative feedback by altering expression
of glucocorticoid receptors (GR) in the hippocampus and hypothalamus
leading to less efficient glucocorticoid-mediated inhibition of NFκB and an
exacerbated immune response.

on there is a substantial increase in expression of the pro-
inflammatory cytokine tumor necrosis factor (TNF)α in several
rodent models of obesity and that neutralizing TNFα could
improve insulin-sensitivity in these animals (Hotamisligil et al.,
1993, 1995; Uysal et al., 1997). The pro-inflammatory profile in
the adipose leads to cytokine, adipokine, and fatty acid release
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into circulation, which have downstream effects on liver, muscle,
and brain, and ultimately contribute to insulin-resistance (Shu
et al., 2012).

As a result of these changes in the inflammatory profile, obese
subjects have compromised immune function and are more likely
to die from an acute infection than those of normal weight
(Falagas and Kompoti, 2006). For instance, excessive body weight
gain immediately postnatally predisposes infants to atopy and
wheezing disorders (Pike et al., 2010). Obese patients in general
are also twice as likely to die in intensive care due to infection-
related complications as normal weight patients (Falagas and
Kompoti, 2006).

It has been clear for some time that early life nutrition is able
to program growth and can influence development of the central
pathways subserving feeding and metabolism (Spencer, 2012).
Babies born to overweight or obese mothers are significantly more
likely to become overweight or obese themselves (Dabelea et al.,
2000; Ruager-Martin et al., 2010), and babies born to mothers
who ate a high fat, junk food diet while pregnant have higher
levels of body fat when they are born, irrespective of whether
or not the mothers were obese during pregnancy (Albuquerque
et al., 2006; Srinivasan et al., 2006; Ashino et al., 2012). Associated
with this excess body fat are indices of metabolic syndrome
such as hyperinsulinemia and insulin resistance (Dabelea et al.,
2000; Boney et al., 2005; Sewell et al., 2006; Catalano et al.,
2009).

Paradoxically, babies that were undernourished in utero are
also more likely to develop obesity and associated metabolic dis-
orders (Spencer, 2012). In the first instance, in utero factors that
cause the baby to be born small may also alter its metabolic
pathways to encourage energy storage when food is available
(Vickers et al., 2000, 2003; Bellinger et al., 2004; Bellinger and
Langley-Evans, 2005). Secondly, preferred practise with small for
gestational age babies is a program of intensive feeding to encour-
age appropriate brain and lung development (Lubchenco et al.,
1972a,b; Brandt et al., 2003) and this catch up growth in the post-
natal period also predisposes an individual to obesity (Ong et al.,
2000, 2006; Brandt et al., 2003; Desai et al., 2005).

The importance of these findings is reflected in statistics
showing overweight children are significantly more likely to be
overweight adults than those of normal weight. As mentioned,
excessive weight gain in the first week of life increases the long-
term risk of obesity (Stettler et al., 2005). Furthermore, compared
with children with a BMI below the 50th percentile, children
between the 50 and 74th percentiles of BMI are approximately
five times more likely to become overweight adults (Baird et al.,
2005; Field et al., 2005; Druet et al., 2012).

PERINATAL NUTRITION CAN PROGRAM CHANGES IN IMMUNE
FUNCTION THAT ARE INDEPENDENT OF ADIPOSITY
We can conclude from these studies there is an obvious con-
nection between early life events programming an increased
propensity to obesity and obesity itself resulting in a basal pro-
inflammatory profile and susceptibility to infection. However,
it is also apparent being overweight in early life can have
independent and compounding effects on the inflammatory pro-
file in adulthood.

Interesting evidence for the long-term effects of early life diet
on the adult immune system comes from individuals who were
undernourished in utero or as infants and did not develop obesity.
Thus, a study of three rural villages in Gambia revealed subjects
were significantly more likely to die of infectious disease in adult-
hood if they had been born during the nutritionally debilitating
“hungry” season of July–December than during January–June
when food was plentiful (Moore et al., 1999). A calorie restricted
perinatal diet has also been shown to influence macrophage
activation in adulthood so that adult rats undernourished dur-
ing lactation had fewer alveolar macrophages and these released
less nitric oxide in response to a fluoxetine challenge (Ferreira
et al., 2009). Similarly, adult rats undernourished during lactation
showed no change in immune parameters after an immune chal-
lenge either under control conditions or after being subjected to
footshock, while control rats (normal diet during lactation) had
elevated leukocyte counts and antibody titers (Barreto-Medeiros
et al., 2007). These data suggest neonatal malnutrition can lead to
a less reactive or less efficient immune response.

There is also some evidence that animals made obese as a result
of perinatal diet can have changes in neuroimmune function in
later life that are independent of the obesity per se. Several groups
have now shown rats suckled in small litters, where they have
greater access to the dam’s milk, gain weight faster and main-
tain a higher body weight into adulthood (Plagemann et al., 1999;
Schmidt et al., 2001; Morris et al., 2005; Rodel et al., 2008). We
have shown these overweight rats, both males and females, have
a significantly exacerbated neuroimmune response to LPS. This
response is categorized by exacerbated NFκB activation in the
overweight rats, more circulating pro-inflammatory cytokines,
and bigger fevers (Clarke et al., 2012).

Importantly, there are some fundamental differences between
the changes in neuroimmune function in rats made over-
weight due to early life overfeeding and those in rats made
overweight due to HFD-feeding in adulthood. Firstly, neona-
tally overfed rats do not have a profile of basal inflammation.
There are no differences in basal circulating pro-inflammatory
cytokine concentrations between those suckled in small litters
(overweight) and those suckled in control litters (Clarke et al.,
2012). As discussed above, several studies have shown human
(Hak et al., 1999; Yudkin et al., 1999) and rodent (Hotamisligil
et al., 1993) obese subjects have higher levels of circulating pro-
inflammatory cytokines under unstimulated conditions, reflect-
ing a pro-inflammatory profile. This difference may be a result
of the degree of obesity, dietary composition, and/or that the
perinatal overfeeding is able to prime the system to display an
over-active response to immune challenge without affecting the
basal inflammatory profile (Pohl et al., 2009).

The second key difference between immune dysfunction as
a result of perinatal obesity and that of diet-induced obesity
in adulthood is that perinatal obesity leads to an exacerbated
immune response to a TLR4-mediated challenge, but not to a
TLR3-mediated one (Clarke et al., 2012). The TLR family con-
tains as many as 13 mammalian TLR, most of which respond
to specific pathogen-associated molecular patterns. In the case of
Gram negative bacteria, the pyrogenic moiety, LPS, interacts with
cluster of differentiation (CD)14 on the cell membrane, allowing
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MD2 to associate with TLR4. This interaction activates a myeloid
differentiation primary response gene (MyD88)-dependent path-
way, culminating in the phosphorylation of NFκB-interacting
inhibitory factor (I) κB, which releases NFκB from its com-
plex. NFκB is then translocated to the nucleus of the cell where
it stimulates the transcription of pro- and anti-inflammatory
cytokines (Cartmell et al., 2003; Conti et al., 2004; Galic et al.,
2009). Pro-inflammatory cytokines act at the brain to stimu-
late cyclo-oxygenase 2-mediated conversion of arachadonic acid
into prostaglandins. These then act in the ventromedial preop-
tic area of the hypothalamus to disinhibit neuronal pathways
that normally stimulate heat conservation, ultimately resulting
in a regulated increase in body temperature; fever (Figure 1A)
(Blatteis et al., 2000; Morrison et al., 2008). In the case of a
virus, the viral double-stranded RNA interacts with TLR3 to stim-
ulate the immune cascade via an interferon regulatory factor
3-dependent pathway. Polyinosinic:polycytidylic acid (PolyI:C) is
a synthetic double-stranded RNA that mimics a virally-induced
immune response and fever by activating TLR3. In neonatally
overfed rats the response to LPS is exacerbated, while the response
to PolyI:C remains normal (Clarke et al., 2012).

As with TLR4, there is increased TLR3 expression in neonatally
overfed rat adipose tissue (Clarke et al., 2012). However, unlike
in humans with adult-onset obesity (MMWR, 2009; Fuhrman
et al., 2011) and adult HFD-fed rodents (Smith et al., 2007),
the immune response to a TLR3 ligand is not altered in rats
made obese due to neonatal overfeeding (Clarke et al., 2012). A
possible explanation for differential effects on TLR4 and TLR3
signaling is in the receptor location, with TLR4 being membrane-
bound and TLR3 internalized (Kumar et al., 2009; Konner and
Bruning, 2011). Thus, although obesity in general may increase
TLR3 expression, perinatally-induced obesity may not cause cor-
responding changes in transport of the ligand into the cell. For the
patient, this may mean early-life programming of obesity may be
associated with some form of protection against a viral infection
in comparison with adult-onset obesity.

Perinatal overfeeding is, unlike adult onset obesity, also able to
exacerbate immune responses independently of sickness behavior.
Generally, an immune response elicits a variety of sickness behav-
iors in addition to the pro-inflammatory and febrile changes.
These include anorexia, lethargy, depression, reduced activity,
loss of libido (Dantzer and Kelley, 2007). Although there is a
typical expression of sickness behavior with LPS in perinatally
overfed rats, this is not exacerbated in these animals as the pro-
inflammatory and febrile responses are (Clarke et al., 2012).
In contrast, adult-onset obesity is strongly associated with an
increase in sickness behavior relative to lean adults (Lawrence
et al., 2012). Several aspects of sickness behavior are likely to
be mediated centrally. For instance, leptin is a significant mod-
ulator of the anorexia associated with infection (Luheshi et al.,
1999), and treatment with leptin anti-serum can reverse LPS-
induced anorexia (Sachot et al., 2004; Harden et al., 2006). Leptin
responses to LPS are similar in neonatally overfed and control
rats despite pronounced differences in other cytokines, potentially
facilitating similar sickness responses (Clarke et al., 2012).

It is yet unclear what this absence of an exacerbated sickness
response after perinatal overfeeding would mean for a human

subject. On one hand the subject is likely to be resilient to the feel-
ing of sickness associated with an immune challenge, despite hav-
ing exacerbated pro-inflammatory and febrile response, allowing
them to continue life as normal when sick. On the other hand,
sickness behavior is very important in promoting withdrawal so
the body’s resources are fully available to effectively combat the
infection (Carlton et al., 2012).

THE HYPOTHALAMIC-PITUITARY-ADRENAL AXIS
As a possible key explanation for how the early life nutritional
environment apparently programs adult immune function inde-
pendently of obesity is in epigenetic changes to key aspects of
the HPA axis. The HPA axis plays a significant modulatory role
in the immune response with glucocorticoids acting to inhibit
NFκB activation and downstream transcription of pro- and anti-
inflammatory cytokines (Figure 1) (Spencer et al., 2011). The
HPA axis is also exceptionally sensitive to the early life environ-
ment. It has previously been established early life changes in HPA
axis function are associated with changes in responses to LPS in
adulthood. For instance, early life exposure to an immune chal-
lenge can permanently alter HPA axis function (Shanks et al.,
1995, 2000; Hodgson et al., 2001). Early life immune challenge
leads to an exacerbated HPA axis response to LPS in later life and
blocking this increase with RU486 can restore a normal febrile
response and cytokine profile (Ellis et al., 2005; Mouihate et al.,
2010). At least some of the changes in HPA axis function that
derive from early life events are linked to epigenetic modifica-
tions. For instance, rats that received high levels of care from
their dams as pups (high levels of licking and grooming) have
hypomethylation of the GR in the hippocampus and this is associ-
ated with increased hippocampal GR mRNA and a more efficient
glucocorticoid negative feedback response to stress compared
with rats that were given less attention as pups (Liu et al., 1997;
Weaver et al., 2004). The hippocampal GR system plays a crucial
role in glucocorticoid negative feedback regulation of the HPA
axis, with glucocorticoids acting on GR at the hippocampus to
inhibit PVN activation (De Kloet et al., 2009). As such, epigenetic
modification of hippocampal GR may have significant effects on
HPA axis function (Liu et al., 1997; Weaver et al., 2004; Mueller
and Bale, 2006). Undoubtedly, glucocorticoid negative feedback
at the hypothalamus itself is also important and can be altered by
changes to the epigenome. For instance, maternal undernutrition
is linked to increased histone acetylation and hypomethylation of
the GR in the hypothalamus of the offspring, with a substantial
increase in GR expression in this region. These modifications are
closely linked with enhanced weight gain, and subsequent obesity,
in these offspring (Stevens et al., 2010; Begum et al., 2012).

Early life diet is certainly capable of altering how the HPA axis
functions. Females that become overweight as a result of early
life overfeeding have enhanced PVN and corticosterone responses
to acute stress (Spencer and Tilbrook, 2009). Conversely, males
made lean by early underfeeding have more efficient HPA axis
responses to stress, with reduced PVN neuronal activation and
corticosterone responses that return to baseline more quickly
(Bulfin et al., 2011). Neonatally overfed rats also have increased
expression of the GR and increased glucocorticoid signaling in
adipose tissue as adults (Boullu-Ciocca et al., 2005). In neonatally
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overfed rats, adult LPS leads to a significantly enhanced PVN
response to stress and a corticosterone response that is signifi-
cantly less efficient. Plasma corticosterone reaches a peak 30 min
after LPS in control animals before returning to baseline, but in
neonatally overfed rats the corticosterone levels still appears to
be increasing after 90 min (Clarke et al., 2012). Together these
data indicate early life overfeeding may lead to impaired devel-
opment of central and peripheral HPA axis and glucocorticoid
regulation resulting in altered HPA axis function in later life.
These changes are likely to be responsible for a delay in the
glucocorticoid response to an immune challenge, which would
culminate in exacerbated PVN/HPA axis activation and a less
effective glucocorticoid-mediated suppression of cytokine release,
and fever (Figure 1).

SEXUAL DIMORPHISM IN PERINATAL NUTRITIONAL PROGRAMMING
OF IMMUNE FUNCTION
Obesity can be manifested very differently in males and females.
For instance, Australian and US statistics show a greater propor-
tion of males than females are overweight or obese (Cretikos et al.,
2008; Nhanes, 2009-2010; AHS, 2011-2012). Males are also more
likely to accumulate visceral fat, a distribution that is more closely
associated with complications such as heart disease (Bjorntorp,
1996). HPA axis responses to psychological stress also differ as
a function of adiposity between males and females. Thus, per-
ceived stress has been associated with greater increases in BMI in
women, but not in men (Fowler-Brown et al., 2009), and female
rats overfed as neonates have exacerbated HPA axis responses to
restraint, while males do not (Spencer and Tilbrook, 2009). On
the other hand, there is little evidence to suggest there are substan-
tial sex differences in the neuroimmune response to an immune
challenge in terms of how it is programmed by the perinatal envi-
ronment. Most studies examining the effects of changes in gut
flora on immune function have either only included males, or
have found no effect of sex on immune-related outcomes (e.g.,
Calvani et al., 2006; Haberg et al., 2009; Patterson et al., 2012; Shek
et al., 2012). There are some sex differences in the effects of gut
flora on central nervous system circuitry. For example, hippocam-
pal serotonin concentrations are elevated in male germ-free mice,
but not females, compared with control mice with typical gut
flora colonization (Clarke et al., 2013). However, immunological
and neuroendocrine effects of changes to gut flora appear to be
similar between males and females (Clarke et al., 2013). There has
also been limited study on sex differences in epigenetic changes
imposed by the early life environment. In humans, women have
reduced global DNA methylation in peripheral blood compared
with men, implying there may be differences in vulnerability to a
challenge that influences methylation status (Zhang et al., 2011).

However, methylation status of inflammatory markers such as
IL-6 does not appear to be affected by sex (Zhang et al., 2012).
Although there are sexually dimorphic effects of neonatal over-
feeding on HPA axis responses to psychological stress (Spencer
and Tilbrook, 2009), these do not seem to be apparent in the
response to an immune challenge. As such, we have seen adult
immune responses to LPS are exacerbated in both males and
females made overweight due to neonatal overfeeding (Clarke
et al., 2012). Thus, further work is necessary to clarify the dif-
ferences, if there are any, between males and females in perinatal
programming of neuroimmune function.

SUMMARY AND FUTURE PERSPECTIVES
Clearly, early life diet is essential for programming many aspects
of adult physiology, including immune function and later sus-
ceptibility to disease. The gut microbiome and changes to the
epigenetic profile may be particular mechanisms by which early
life diet can alter immune function. In conjunction with these
mechanisms, early life diet can predispose a subject to obesity,
which has its own consequences for long-term immune func-
tion. Obesity that occurs as a result of early life diet may have
independent implications for the immune system. Recent stud-
ies even imply that if one must become obese, there appear to be
certain health advantages to doing it early on. At least, the basal
pro-inflammatory profile, responses to a viral infection, and sick-
ness behaviors seem to be unaffected in animals made obese by
early life overfeeding, although febrile and cytokine responses to
LPS are highly exacerbated. What this means for obese humans
and for designing appropriate early life diets remains to be seen,
but the implications for our immune systems are significant and
clearly more work is needed in this field. Future research is needed
to determine (1) how the early life gut microbiome can influence
immune system development and if we can alter this with diet,
(2) how early life influences, including diet, can cause epigenetic
modifications to alter immune system development and if these
can be reversed, and (3) how perinatal diet influences immune
function independently of adult adiposity and if there is potential
for early life interventions to reverse or ameliorate these effects.
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