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Adult hippocampal neurogenesis results in the formation of new neurons and is a process
of brain plasticity involved in learning and memory. The proliferation of adult neural
stem or progenitor cells is regulated by several extrinsic factors such as experience,
disease or aging and intrinsic factors originating from the neurogenic niche. Microglia is
very abundant in the dentate gyrus (DG) and increasing evidence indicates that these
cells mediate the inflammation-induced reduction in neurogenesis. However, the role of
microglia in neurogenesis in physiological conditions remains poorly understood. In this
study, we monitored microglia and the proliferation of adult hippocampal stem/progenitor
cells in physiological conditions known to increase or decrease adult neurogenesis,
voluntary running and aging respectively. We found that the number of microglia in
the DG was strongly inversely correlated with the number of stem/progenitor cells and
cell proliferation in the granule cell layer. Accordingly, co-cultures of decreasing neural
progenitor/glia ratio showed that microglia but not astroglia reduced the number of
progenitor cells. Together, these results suggest that microglia inhibits the proliferation
of neural stem/progenitor cells despite the absence of inflammatory stimulus.
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INTRODUCTION
In the mammalian brain, adult neural stem cells reside in the sub-
ventricular zone and subgranular zone (SGZ) of the hippocampus
and continue to produce new neurons throughout life (Altman,
1969). Adult neurogenesis has been observed in all mammalian
species including humans (Eriksson et al., 1998) and results in the
formation of new neurons in the olfactory bulb and the dentate
gyrus (DG) of the hippocampus. Radial glia-like (RGL) neu-
ral stem cells that reside in the SGZ of the DG, proliferate and
give rise to transit-amplifying progenitors (TAP) expressing the
T-box brain gene 2 (Tbr2) antigen which then give rise to dou-
blecortin (DCX)-expressing immature neurons (Gage, 2000; Yao
et al., 2012). After a phase of maturation, newly-formed neurons
express the mature neuronal marker Neu N, functionally integrate
into the hippocampal network (Toni and Sultan, 2011) and par-
ticipate to mechanisms of learning and memory (Aimone et al.,
2010). Each of these steps is highly regulated by signaling from the
neurogenic niche, and an increasing number of pro-neurogenic
factors are being discovered, with great potential interest for
cell-replacement therapeutic approaches. The neurogenic niche
is constituted by stem cells and their progenies, astrocytes, oligo-
dendrocytes, endothelial cells, microglia, mature and immature
neurons (Shihabuddin et al., 2000; Song et al., 2002; Zhao et al.,
2008; Bonaguidi et al., 2011). These cells release a wide array of
factors that control adult neurogenesis. However, the contribu-
tion of specific cell types on the processes of adult neurogenesis
remains poorly determined.

Of particular interest, microglia are abundant and widely dis-
tributed throughout the adult brain. These cells are involved

in the inflammatory reaction and act as the resident immune
cells of the brain. Their fine extensions and dynamic nature
enable microglia to survey the entire brain parenchyma for poten-
tial infection or cell damage and, upon activation, they release
cytokines and proceed to the phagocytosis of cell debris or infec-
tious micro-organisms. The experimental activation of microglia
by the administration of the bacterial endotoxin lipopolysac-
charide (LPS) has been shown to decrease adult neurogenesis,
by specifically inhibiting the proliferation or the survival of the
new cells (Ekdahl et al., 2003; Monje et al., 2003; Fujioka and
Akema, 2010). These effects may be mediated by the release of
cytokines such as IL-6, TNFα, IL-1β, since these molecules show
an inhibitory effect on adult neurogenesis in vitro or in vivo
(Vallieres et al., 2002; Monje et al., 2003; Keohane et al., 2010;
Kohman and Rhodes, 2013).

Recently, the role of microglia in absence of lesion or inflam-
mation has started to raise interest. Indeed, recent studies sug-
gest that resting microglia may be involved in the regulation of
physiological mechanisms such as dendritic spine maintenance
(Paolicelli et al., 2011) or the homeostasis of the neurogenic niche
by the removal of apoptotic newborn cells (Sierra et al., 2010).
Furthermore, neural progenitor cells (NPCs) regulate microglia
function in vitro, by the secretion of growth factors (Mosher et al.,
2012). However, the role of microglia on adult neurogenesis in
physiological conditions remains unclear.

Here, we examined the correlation between the amount of
microglia in the hippocampus and the proliferation of adult
neural stem cells, in physiological conditions. To increase the vari-
ability in progenitor proliferation, we used aging and voluntary
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exercise, as these parameters are known to decrease and increase
neurogenesis respectively (Kuhn et al., 1996; van Praag et al.,
1999, 2005; Encinas et al., 2011; Kempermann, 2011).

MATERIALS AND METHODS
ETHICS STATEMENT
This study was carried out in strict accordance with the recom-
mendations in the Guidance for the Care and Use of Laboratory
Animals of the National Institutes of Health. All experimental
protocols were approved by the Swiss animal experimentation
authorities (Service de la consommation et des affaires vétéri-
naires, Chemin des Boveresses 155, 1066 Epalinges, Switzerland,
permit number: 2301). Every effort was made to minimize the
number of animals used and their suffering.

EXPERIMENTAL ANIMALS
All animals used for this study were adult male mice. GFAP-GFP
mice were a kind gift from the laboratory of Helmut Kettenmann
(Max-Delbruck center, Berlin, Germany) (Nolte et al., 2001).
They express the green fluorescent protein (GFP) under the con-
trol of the human glial fibrillary acidic protein promoter (GFAP).
At the beginning of the experiment, the first group of mice was
6-week-old and the second group 7.5-month-old. Runner mice
were housed for 2 weeks in standard cages equipped with a run-
ning wheel (Fast-Trac; Bio-Serv, USA) and were allowed free
access to the running wheel. Non-runner mice were housed in
similar, adjacent cages without running wheel. All mice were
housed in a 12-h light/dark cycle and controlled temperature of
22◦C. Food and water were available ad-libitum.

BrdU ADMINISTRATION
Immediately at the end of the running period, all mice were
injected intraperitoneally with the DNA replication marker,
Bromodeoxyuridine (BrdU, Sigma-Aldrich, Buchs, Switzerland),
at doses of 100 mg/kg in saline, 3 times at 2-h intervals. Two hours
after the last injection, mice were sacrificed and the number of
BrdU cell was counted to assess cell proliferation (Mandyam et al.,
2007; Taupin, 2007; Yang et al., 2011; Gao and Chen, 2013).

TISSUE COLLECTION AND PREPARATION
At the end of the experiment, mice received a lethal dose of pento-
barbital (10 mL/kg, Sigma-Aldrich, Buchs, Switzerland) and were
perfusion-fixed with 50 ml of 0.9% saline followed by 100 mL of
4% paraformaldehyde (Sigma-Aldrich, Switzerland) dissolved in
phosphate buffer saline (PBS 0.1M, pH 7.4). Brains were then
collected, postfixed overnight at 4◦C, cryoprotected 24 h in 30%
sucrose and rapidly frozen. Coronal frozen sections of a thick-
ness of 40 μm were cut with a microtome-cryostat (Leica MC
3050S) and slices were kept in cryoprotectant (30% ethylene gly-
col and 25% glycerin in 1X PBS) at –20◦C until processed for
immunostaining.

IMMUNOHISTOCHEMISTRY
Immunochemistry was performed on 1-in-6 series of section.
Sections were washed 3 times in PBS 0.1 M. BrdU detection
required formic acid pretreatment (formamide 50% in 2X SSC
buffer; 2X SSC is 0.3 M NaCl and 0.03 M sodium citrate, pH 7.0)

at 65◦C for 2 h followed by DNA denaturation for 30 min in
2 M HCl for 30 min at 37◦C and rinsed in 0.1 M borate buffer
pH 8.5 for 10 min. Then, slices were incubated in blocking solu-
tion containing 0.3% Triton-X100 and 15% normal serum nor-
mal goat serum (Gibco, 16210-064) or normal donkey serum
(Sigma Aldrich, D-9663), depending on the secondary anti-
body in PBS 0.1 M. Slices were then incubated 40 h at 4◦C with
the following primary antibodies: mouse monoclonal anti-BrdU
(1:250, Chemicon International, Dietikon, Switzerland), rab-
bit anti-Ki-67 (1:200, Abcam, ab15580), goat anti-DCX (1:500,
Santa Cruz biotechnology, sc-8066), rabbit anti-GFAP (1:500,
Invitrogen, 180063), rabbit anti-Tbr2 (1:200, Abcam, ab23345),
goat anti-Iba1 (1:200, Abcam, ab5076), mouse anti-MHC-II
(1:200 Abcam, ab23990). The sections were then incubated for 2 h
in either of the following secondary antibodies: goat anti-mouse
Alexa-594 (1:250, Invitrogen), goat anti-rabbit Alexa-594 (1:250,
Invitrogen), donkey anti-goat Alexa-555 (1:250, Invitrogen). 4,6
diamidino-2-phenylindole (Dapi) was used to reveal nuclei.

CELL CULTURE
Adult NPCs expressing the red fluorescent protein (RFP) are a
kind gift from the laboratory of Fred Gage (Salk Institute, San
Diego, USA). They were isolated from the DG of adult Fisher 344
rats and cultured as previously described (Palmer et al., 1997).
Microglia and astrocyte primary culture were purified from post-
natal day 3 rats. Cerebral cortices, including the hippocampus,
were mechanically triturated for homogenization and seeded
onto poly-D-lysine coated 75 cm2 flasks in Dulbecco’s Modified
Eagle Medium (DMEM) glutamax (Invitrogen, USA), 10% nor-
mal calf serum with penicillin/streptomycin (Invitrogen, USA).
Cells were grown for 5–7 days in a humidified 5% CO2 incu-
bator at 37◦C. At confluence, flasks were shaken at 250 rpm on
an orbital shaker for 2 h to separate microglia from astrocytes.
Detached microglia were seeded in poly-D-lysine coated 6-well
microplates in culture medium supplemented with 30% astro-
cyte conditioned medium, to enhance the survival of microglia
(personal communication from Dr. Romain Gosselin, University
of Lausanne). Different numbers of microglia or astrocytes were
plated on coated 12 mm coverslips in a 24-well culture plate
(20,000, 40,000, 60,000 cells per well). Three hours later, a fixed
number of RFP-expressing NPCs (20,000 cells per well) were
plated on the same culture wells, at a (NPCs/Glia) ratio of 1/0,
1/1, 1/2, 1/3. Three wells per condition were used. Ninety-six
hours after plating, cells were fixed with 4% paraformaldehyde
for 20 min, briefly washed and immunostained for Iba1 or GFAP
and mounted.

CELL NUMBER QUANTIFICATION
All images were acquired using a confocal microscope (Zeiss
LSM 710 Quasar Carl Zeiss, Oberkochen, Germany). The total
number of immunoreactive cells was estimated throughout the
entire granule cell layer using stereological sampling, as previ-
ously described (Thuret et al., 2009), between –1.3 to –2.9 mm
from the Bregma. For each animal, a 1-in-6 series of sections
was stained with the nucleus marker DAPI and used to mea-
sure the volume of the granule cell layer. The granule cell area
was traced using Axiovision (Zeiss, Germany) software and the
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granule cell volume was determined by multiplying the traced
granule cell layer area by the thickness of the corresponding sec-
tion and the distance between the sections sampled (240 μm). For
all mice analyzed in this study, no difference of volume was found
between groups [One-Way ANOVA, F(3, 15) = 0.29, p = 0.82],
(data not shown). All cells were counted blind with regard to
the mouse status. The number of labeled cells was counted for
each section, in the entire thickness of the granular cell layer
of the DG with a 40x objective. RGL cells and cells expressing
BrdU, Ki-67, DCX or Tbr2 were counted in an area contain-
ing the granule cell layer and the subgranular zone, whereas
cells expressing Iba1, MHC-II and GFAP (Figures 2A,D,F) were
counted in an area including the sub-granular cell layer, the gran-
ule cell layer, the molecular layer and the hilus. Cells expressing
Iba1 (Figure 2B) were also counted in the primary somatosensory
cortex (S1).

For in vitro cell quantification, images were acquired using
confocal microscopy. The numbers of RFP-expressing NPCs,
Iba1-expressing microglia and GFAP-expressing astrocytes were
counted in 4 selected fields, systematically placed in the same
positions relative to the coverslips’ edges. The total number of
cells per selected field was divided by the total area of the selected
fields to obtain an average cell density per well that was then
multiplied by the total surface area of the coverslip to obtain an
estimate of the total number of cells per coverslip. This num-
ber of cells was then compared to the number of cells that were
plated in the wells to obtain a percentage of increase in NPCs
number.

STATISTICAL ANALYSIS
Hypothesis testing was two-tailed. All analyses were performed
using JMP10 software. First, Shapiro-Wilk tests were performed
on each dataset to test for distribution normality. The distribution
was normal for all data. To test for possible interaction between
the 2 groups (Aging and Running) a Two-Way ANOVA was per-
formed. When an interaction was found, a One-Way ANOVA test
was performed, if no interaction was found, we analyzed each
variable independently using a Two-Way ANOVA. All analyses
were followed by a post-hoc Tukey HSD test. In order to test lin-
ear correlation, Spearman correlation test was performed. Results
are expressed by the Spearman correlation coefficient (ρ) and the
p-value. Data is presented as mean ± standard error of the mean
(SEM).

RESULTS
EFFECT OF AGING AND RUNNING ON CELL PROLIFERATION AND
IMMATURE NEURONS
We tested the effect of running and aging on GFAP-GFP mice
(Nolte et al., 2001), which are commonly-used mice models
for the examination of adult neurogenesis and enable the iden-
tification of stem cells (Huttmann et al., 2003; Ehninger and
Kempermann, 2008). Sixteen GFAP-GFP mice were divided in 4
experimental groups: young adult mice (8 weeks of age; 8 W) and
older mice (8 months of age; 8 M), that were previously housed
individually in standard cages in presence (R) or absence (NR)
of a running wheel for 2 weeks (4 mice per group). At the end

of the 2 weeks period, all mice received 3 intraperitoneal injec-
tions of BrdU (100 mg/kg) at 2 h intervals and were sacrificed 2 h
after the last BrdU injection (Figure 1A). Brains were sectioned
and immunostained for BrdU and markers for adult neurogenesis
and microglia. We first assessed cell proliferation in the gran-
ule cell layer of the DG. A Two-Way ANOVA test revealed that
there is interaction between aging and running for Ki-67 marker
[F(1, 12) = 5.74; p < 0.05]. The density of Ki-67-expressing cells
was significantly decreased by aging [Figures 1B,C, One-Way
ANOVA F(3, 15) = 22.65; p < 0.001. Post-hoc Tukey HSD test: NR
8 W vs. NR 8Ṁ p < 0.05] and increased by running [One-Way
ANOVA F(3, 15) = 22.65; p < 0.001. Post-hoc Tukey HSD test NR
8 W vs. R 8 W p < 0.001, NR 8 M vs. R 8 M p = 0.24].

Similarly, there is interaction between aging and running
for BrdU marker [Two-Way ANOVA F(1, 12) = 17.6; p < 0.01].
The density of BrdU-expressing cells was significantly decreased
with aging [Figures 1D,E, One-Way ANOVA F(3, 15) = 62.19;
p < 0.001. Post-hoc Tukey HSD test: NR 8 W vs. NR 8 M,
p < 0.05] and increased by running [One-Way ANOVA F(3, 15) =
62.19; p < 0.001. Post-hoc Tukey HSD test: NR 8 W vs. R 8 W
p < 0.001, NR 8 M vs. R 8 M p < 0.01]. Thus, cell proliferation
was increased by voluntary running and reduced by aging.

In the DG, proliferative cells are divided in 2 main cell
populations: the type 1, radial glia-like (RGL) stem cells and
the type 2, TAPs. RGL cells were identified by the expres-
sion of GFP, their nucleus located in the subgranular zone
and a radial process extending through the granule cell layer
and branching into the molecular layer (Huttmann et al.,
2003; Mignone et al., 2004; Kriegstein and Alvarez-Buylla, 2009;
Beckervordersandforth et al., 2010). They expressed the self-
renewal factor Sox2 (data not shown). For RGL, Two-Way
ANOVA test showed that there is interaction between aging and
running [F(1, 12) = 5.3; p < 0.05]. The density of RGL cells was
significantly decreased by aging (Figures 1F,G, One-Way ANOVA
F(3, 15) = 35.81; p < 0.001. Post-hoc Tukey HSD test: NR 8 W vs.
NR 8 M p < 0.05] and increased by running [One-Way ANOVA
F(3, 15) = 35.81; p < 0.001. Post-hoc Tukey HSD test: NR 8 W
vs. R 8 W p < 0.001, NR 8 M vs. R 8 M p < 0.01]. TAPs were
identified by immunostaining against Tbr2 (Hodge et al., 2008).
Similarly, there is interaction between aging and running for Tbr2
marker [Two-Way ANOVA F(1,12)= 5.2 p < 0.05]. The density of
Tbr2-expressing cells was decreased by aging [Figures 1H,I, One-
Way ANOVA F(3, 15) = 27.32; p < 0.001. Post-hoc Tukey HSD
test: NR 8 W vs. NR 8 M p < 0.05] and increased by running
[One-Way ANOVA F(3, 15) = 27.32; p < 0.001. Post-hoc Tukey
HSD test NR 8 W vs. R 8 W p < 0.001, NR 8 M vs. R 8 M p = 0.2].
Thus, running increased and aging decreased the density of stem
and progenitor cells.

Finally, we examined the effect of aging and running on
immature neurons identified by immunohistochemistry against
doublecortin (DCX). A Two-Way ANOVA test revealed that
there is no interaction between aging and running for DCX
marker [F(1, 12) = 2.21; p = 0.16]. Although, The density of
DCX-expressing cells decreased with aging [Figures 1J,K, Anova
F(1, 12) = 52.90; p < 0.001. Post-hoc Tukey HSD test: NR 8 W vs.
NR 8 M p < 0.01] and increased with running [F(1, 12) = 29.97;
p < 0.001. Post-hoc Tukey HSD test NR 8 W vs. R 8 W p < 0.001,
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FIGURE 1 | Continued
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FIGURE 1 | Effect of running and aging on cell proliferation in the

dentate gyrus. (A) Experimental timeline. (B) Histogram of the density
(cells/μm2) of Ki-67–expressing cells in the granule cell layer of the
dentate gyrus of 8-week-old animals (8 W) and 8-month-old animals (8 M)
housed with (R), or without (NR) a running wheel. (C) Confocal maximal
projection micrographs of hippocampal sections immunostained for Ki-67.
Inset: Higher magnification confocal micrograph of a Ki-67-expressing cell.
(D) Histogram of the density of BrdU-positive cells in the granule cell
layer of the dentate gyrus. (E) Confocal maximal projection micrographs
of hippocampal sections immunostained for BrdU. (F) Quantification of
the density of RGL cells in the granule cell layer of the dentate gyrus.
(G) Confocal maximal projection micrographs of hippocampal sections.

Inset: Higher magnification confocal micrograph of a RGL cell. (H)

Histogram showing the density of Tbr2-expressing cells in the granule
cell layer of the dentate gyrus. (I) Confocal maximal projection
micrographs of hippocampal sections immunostained for Tbr2. Inset:
Higher magnification confocal micrograph of a Tbr2-expressing cell. (J)

Histogram of the density of DCX-immunolabeled cells in the granule cell
layer of the dentate gyrus. (K) Confocal micrographs of hippocampal
sections immunostained for DCX. Inset: Higher magnification confocal
micrograph of a DCX-immunolabeled group of cells. Blue: Dapi staining.
Animals, n = 4 per group. Scale bars: 100 μm, insets 10 μm, post-hoc
Tukey HSD test ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; NS: p > 0.05. Each
value represents the mean ± SEM.

NR 8 M vs. R 8 M p = 0.06]. Together, these results indicate that
the density of proliferative cells, cell proliferation and the den-
sity of immature neurons decreased with aging and increased with
voluntary running.

EFFECT OF AGING AND RUNNING ON MICROGLIA
Next we examined the effect of aging and running on microglia,
using the immunomarker Iba1. Iba1-expressing cells displayed an
oval cell body and numerous ramified processes (Figures 2A–C).
A Two-Way ANOVA revealed that there is interaction between
aging and running for Iba1 marker [F(1, 12) = 5.65; p < 0.05].
The density of Iba 1-expressing cells in the DG was decreased
by running [Figures 2A–C, One-Way ANOVA F(3, 15) = 75.94;
p < 0.001. Post-hoc Tukey HSD test: NR 8 W vs. R 8 W p < 0.001,
NR 8 M vs. R 8 M p < 0.001] and increased by aging [One-Way
ANOVA F(3, 15) = 75.94; p < 0.001. Post-hoc Tukey HSD test: NR
8 W vs. NR 8 M p < 0.001]. To examine whether the effect of run-
ning and aging on microglia was restricted to the hippocampus,
we measured microglia in the primary somato-sensory cortex of
all mice. Contrary to what we observed in the DG, in the pri-
mary somato-sensory cortex, there was no interaction between
aging and running in the level of Iba1 marker [Two-Way ANOVA
F(1, 12) = 2.1; p = 0.17]. Anova showed that running increased
[Figure 2B, F(1, 12) = 92.47; p < 0.001. Post-hoc Tukey HSD test:
NR 8 W vs. R 8 W p < 0.001, NR 8 M vs. R p < 0.001] whereas
aging decreased the density of microglia in the cortex [F(1, 12) =
52.49; p < 0.001. Post-hoc Tukey HSD test: NR 8 W vs. NR 8 M
p < 0.001].

To test whether the expression of the antigen presentation
protein MHC II was also regulated by aging and running, we
immunostained brain slices for MHC II. A Two-Way ANOVA
revealed that there is interaction between aging and running for
MHC II marker [F(1, 12) = 8.08 p < 0.01]. The density of MHC
II-expressing cells was decreased by running [Figures 2D,E, One-
Way ANOVA F(3, 15) = 145.19; p < 0.001. Post-hoc Tukey HSD
test: NR 8 W vs. R 8 W p < 0.001, NR 8 M vs. R 8 M p < 0.001]
and increased by aging [One-Way ANOVA F(3, 15) = 145.19, p <

0.001. Post-hoc Tukey HSD test: NR 8 W vs. NR 8 M p < 0.001].
Finally, we examined whether astroglia was similarly affected by
running or aging by immunostaining against GFAP. The density
of GFAP-expressing astrocytes was constant throughout all condi-
tions [Figures 2F,G; Two-Way ANOVA F(3, 12) = 0.49, p = 0.69],
indicating that the effect of aging and running was specific to
microglia.

CORRELATION BETWEEN MICROGLIA AND ADULT NEUROGENESIS
The opposite effects of running and aging on microglia and adult
neurogenesis suggest that microglia and adult neurogenesis may
be inversely correlated. We therefore plotted, for each mouse,
the number of Iba-expressing microglia and the number of
cells expressing markers for neurogenesis. The number of Iba1-
expressing microglia was inversely correlated with the number
of Ki-67-expressing cells (Figure 3; ρ = −0.92, p < 0.001), RGL
cells (ρ = −0.98, p < 0.001), Tbr2-expressing cells (ρ = −0.85,
p < 0.001), BrdU-immunolabeled cells (ρ = −0.95, p < 0.001),
and DCX-expressing cells (ρ = −0.88, p < 0.001). Similarly, the
number of MCH II-expressing microglia inversely correlated
with the number of Ki-67-expressing cells (Data not shown;
ρ = −0.95, p < 0.001), RGL cells (ρ = −0.92, p < 0.001), Tbr2-
expressing cells (ρ = −0.97, p < 0.001), BrdU-immunolabeled
cells (ρ = −0.94, p < 0.001), and DCX-expressing cells
(ρ = −0.97, p < 0.001). These results indicate that microglia
density was inversely correlated with stem/progenitor cell
proliferation.

To test the possibility that microglia number could directly
affect stem/progenitor cell proliferation, we co-cultured microglia
and NPCs. We plated a constant number of NPCs with an increas-
ing proportion of microglia and 4 days later, we counted the
number of remaining NPCs. The number of NPCs significantly
decreased with the increasing proportion of co-cultured microglia
[Figure 4; One-Way ANOVA F(6, 20) = 82.58, p < 0.001; 1/0 vs.
1/1 post-hoc Student’s t-test p < 0.001, 1/0 vs. 1/2 post-hoc
Student’s t-test p < 0.001, 1/0 vs. 1/3 post-hoc Student’s t-test
p < 0.001]. To test whether this effect was specific to microglia,
we repeated this experiment with increasing proportion of astro-
cytes instead of microglia. In contrast to microglia, astrocytes
did not decrease the number of NPCs in co-cultures [One-Way
ANOVA F(6, 20) = 82.58, p < 0.001; 1/0 vs. 1/2 post-hoc Student’s
t-test p = 0.53, 1/0 vs. 1/3 post-hoc Student’s t-test p = 0.13].
Thus, increasing microglia density inhibited NPCs growth and/or
survival in vitro and resulted in a corresponding decrease in NPCs
number.

DISCUSSION
In this study, we exploited the physiological variations of adult
neurogenesis induced by voluntary running and aging to examine
the correlation between microglia and adult hippocampal neuro-
genesis in absence of inflammatory stimulus. In line with previous
studies, we found that aging decreased cell proliferation and the
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FIGURE 2 | Effect of running and aging on the density of microglia.

(A) Histogram showing the density (cells/μm2) of Iba1-expressing cells
in the dentate gyrus (including hilus, granule cell layer and molecular
layer). (B) Histogram of the density of Iba1-expressing cells in the
cortex. (C) Confocal maximal projection micrographs of hippocampal
sections immunostained for Iba1. Inset: Higher magnification confocal
micrograph of an Iba1-immunolabeled cell. (D) Histogram of the
density of MHC II-expressing cells in the dentate gyrus.
(E) Confocal maximal projection micrographs of hippocampal sections

immunostained for MHC II. Inset: Higher magnification confocal
micrograph of a MHC II-immunolabeled cell. (F) Histogram of the
density of GFAP-expressing astrocytes in the dentate gyrus of mice
for each experimental condition. (G) Confocal maximal projection
micrographs of hippocampal sections immunostained for GFAP. Inset:
Higher magnification confocal micrograph of a GFAP-immunolabeled
cell. Blue: Dapi staining. Animals: n = 4 per group. Scale bars:
100 μm, insets 10 μm. post-hoc Tukey HSD test: N.S.: p > 0.05;
∗∗∗p < 0.001. Each value represents the mean ± SEM.

number of immature neurons whereas voluntary running had
inverse effects (Kuhn et al., 1996; van Praag et al., 1999, 2005;
Encinas et al., 2011; Kempermann, 2011). In addition, we found
that the decrease in RGL cells observed with aging (Encinas et al.,
2011), was reversed by voluntary running, suggesting that run-
ning may induce the symmetrical division of RGL cells and restore
their population. Strikingly, in both conditions, the amount of
microglia but not of astroglia was strongly inversely correlated
with all measured parameters of neurogenesis. Similarly, in vitro,
co-cultures of NPCs with an increasing proportion of microglia

but not of astroglia reduced the number of NPCs after 4 days.
Together, these results indicate that, in physiological conditions,
microglia and neurogenesis are inversely correlated and suggest
that microglia may inhibit adult neurogenesis by directly acting
on stem/progenitor cells.

These observations are in line with previous experiments
showing that, in inflammatory conditions induced by epilepsy,
ischemia or LPS injection, microglia undergo dramatic changes in
their morphological and cytokine expression pattern and inhibit
adult neurogenesis (Monje et al., 2002; Ekdahl et al., 2003; Liu
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FIGURE 3 | Correlation between cell proliferation and Iba1-expressing

microglia. (A–E) Plots showing the density of Ki-67-expressing cells (A),
BrdU-labeled cells (B), RGL cells (C), Tbr2-expressing cells (D) and
DCX-expressing cells (E), as a function of the density of Iba1-expressing
cells, in the dentate gyrus. Each point represents the density of cells for
one animal. Spearman’s correlation test was used to study the correlation,
ρ: coefficient of Spearman; p: value of significance.

et al., 2007; Kohman et al., 2012). Similarly, aging is associated
with a reduced neurogenesis, mild, chronic inflammation and
increased microglia proliferation that can be attenuated by vol-
untary running (Kohman et al., 2012). In these experimental
paradigms, inflammatory microglia is believed to directly inhibit
neurogenesis, since anti-inflammatory treatments restore neuro-
genesis (Ekdahl et al., 2003; Monje et al., 2003; Liu et al., 2007;
Kohman and Rhodes, 2013) and the exercise-induced increase
and the age-dependent decline in neurogenesis are mediated by
microglia in vitro (Vukovic et al., 2012).

However, in our study, we did not induce inflammation and
in absence of activation, microglia has been reported to pro-
mote neurogenesis: In adult rats, the increased neurogenesis
induced by environmental enrichment was accompanied by an
increase in microglia number, whereas immunodeficient mice
had impaired neurogenesis (Ziv et al., 2006). Similarly, voluntary
running was shown to increase neurogenesis (van Praag et al.,
1999) and microglia proliferation (Ehninger and Kempermann,
2008; Encinas et al., 2011), without inducing changes in the total
number of microglia cells or in their activation state (Encinas
et al., 2011). In vitro too, microglia was shown to promote
the proliferation of co-cultured NPCs, an effect believed to be
mediated by released factors, since the pro-neurogenic effect
was mimicked by microglia-conditioned medium (Morgan et al.,
2004; Aarum et al., 2003; Walton et al., 2006; Nakanishi et al.,

FIGURE 4 | Effect of microglia on progenitor cells in vitro. (A) Histogram
of the change in NPCs number when cultured with microglia or astrocytes
(% from the number of plated cells). N = 3 culture wells per group. (B)

Confocal maximal projection micrographs of NPCs-microglia co-cultures. (C)

Confocal maximal projection micrographs of NPCs-astrocytes co-cultures.
N.S.: p > 0.05, ∗∗∗p < 0.001. Each value represents the mean ± SEM.

2007). Thus, it is surprising that in our study, we observed an
inverse correlation between microglia number and neurogene-
sis, in absence of inflammatory stimulus, in particular in running
and non-running young mice. This discrepancy may partly result
from differences in housing conditions, diet or animal strain.
Indeed, while our study examined transgenic mice in the FVB/N
background, the Ziv study used adult male rats (Ziv et al., 2006)
and the Olah study used adult male C57Bl/6 mice (Olah et al.,
2009). FVB/N mice are known to have reduced cell proliferation
in the adult DG, as compared to C57Bl/6 mice (Schauwecker,
2006) and may therefore respond differently to microglia regu-
lation, or have increased basal inflammatory state. However, the
absence of inflammatory stimulus in our in vivo experiments as
well as the morphological aspect of microglia suggestive of a rest-
ing state, indicate no overt inflammation in GFAP-GFP mice.
Furthermore, the observation that microglia reduced the num-
ber of NPCs in vitro supports the idea of a direct inhibition
of progenitor cell proliferation by microglia. Finally, in a recent
study, we found that doxycycline treatment decreased microglia
cell number and increased neurogenesis and cell proliferation
in C57Bl/6 mice (Sultan et al., 2013), suggesting that environ-
mental factors and housing conditions may interfere with the
effect of microglia on adult neurogenesis, rather than mouse
strain.

However, correlation does not imply causality and the sig-
naling between microglia and neurogenesis in the adult healthy
brain remains unclear. Although activated microglia can directly
inhibit neurogenesis by releasing a number of pro-inflammatory
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cytokines (Monje et al., 2003; Nakanishi et al., 2007), external
factors such as voluntary running may act on neurogenesis inde-
pendently from microglia. For example, the exercise-induced
increase in neurogenesis depends on peripheral VEGF (Fabel
et al., 2003) that acts directly on NPCs of the hippocampus
(Fournier et al., 2012). Running can also affect microglia by
reducing the expression of pro-inflammatory cytokines such as
TNF-α, and increasing the expression of the anti-inflammatory
cytokines such as IL-1ra (Pervaiz and Hoffman-Goetz, 2011)
or the chemokine CX3CL1, that induces a neuroprotective
microglia phenotype and promotes neurogenesis (Vukovic et al.,
2012). Inversely, gene expression analysis in the hippocam-
pus showed that running induced the transcription of genes
involved in inflammation, including genes related to MHC I (β2-
microglobulin, H2-D1) and elements of the complement system
(C4A, C3, C1q) or in the inflammatory response (COX-2, CX3C),
suggesting that running may increase inflammation (Tong et al.,
2001; Kohman et al., 2011).

Depending on its activation state, microglia may have opposite
effects on adult neurogenesis and it is likely that in the same brain,
pro-neurogenic and anti-neurogenic microglia co-exist, with a
different response to external stimulus, such as voluntary run-
ning and housing conditions. The combined action of external
factors and microglia state may then result in unexpected effects

on adult neurogenesis. Clearly, further experiments will be nec-
essary to elucidate the regulation of neurogenesis by microglia
and the role played by environmental factors such as stress and
activity on both microglia and neurogenesis. This knowledge is
crucial for the understanding of the regulation of adult neuroge-
nesis by the neurogenic niche as well as for the therapeutic use
of neural stem cells in inflammatory context such as lesions or
neurodegenerative disorders.
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