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Progesterone (P4) regulates a wide range of neural functions and likely acts through
multiple receptors. Over the past 30 years, most studies investigating neural effects
of P4 focused on genomic and non-genomic actions of the classical progestin receptor
(PGR). More recently the focus has widened to include two groups of non-classical P4
signaling molecules. Members of the Class II progestin and adipoQ receptor (PAQR) family
are called membrane progestin receptors (mPRs) and include: mPRα (PAQR7), mPRβ

(PAQR8), mPRγ (PAQR5), mPRδ (PAQR6), and mPRε (PAQR9). Members of the b5-like
heme/steroid-binding protein family include progesterone receptor membrane component
1 (PGRMC1), PGRMC2, neudesin, and neuferricin. Results of our recent mapping studies
show that members of the PGRMC1/S2R family, but not mPRs, are quite abundant
in forebrain structures important for neuroendocrine regulation and other non-genomic
effects of P4. Herein we describe the structures, neuroanatomical localization, and
signaling mechanisms of these molecules. We also discuss possible roles for Pgrmc1/S2R
in gonadotropin release, feminine sexual behaviors, fluid balance and neuroprotection, as
well as catamenial epilepsy.
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INTRODUCTION
It is now clear that actions of progesterone (P4) in the nervous sys-
tem go beyond its well-studied roles in regulating gonadotropin-
releasing hormone (GnRH) release and feminine sexual behaviors
(Chabbert-Buffeta et al., 2000; Mani and Blaustein, 2012). P4 also
modulates such diverse processes as neuroprotection and neuro-
plasticity (Nilsen and Brinton, 2003; Peterson et al., 2012; Baudry
et al., 2013; Sanchez et al., 2013), mood (Watson et al., 2012), neu-
rogenesis (Bali et al., 2012) and neuroinflammation (Giatti et al.,
2012). Therefore, it is not surprising that, in addition to the clas-
sical progestin receptor (PR), P4 exerts effects through multiple
non-classical receptors.

Two groups of putative non-classical signaling molecules have
emerged as likely mediators of P4 actions in the nervous sys-
tem. One group consists of membrane P4 receptors (mPRs) that
belong to the progestin and adipoQ receptor (PAQR) family.
Five of these molecules, mPRα, mPRβ, mPRγ, mPRδ, and mPRε,
are found in the brain (Thomas and Pang, 2012; Pang et al.,
2013). These receptors contain seven trans-membrane domains
and are thought to be unique G protein-coupled receptors that
act through cAMP (Thomas and Pang, 2012). Of these recep-
tors, mPRα, mPRβ, and mPRγ decrease cellular accumulation of
cAMP, while mPRδ and mPRε increase accumulation (Karteris
et al., 2006; Pang et al., 2013). There is evidence that mPRs are not
always found in the plasma membrane or coupled to G proteins

(Ashley et al., 2006; Krietsch et al., 2006; Smith et al., 2008).
Thus, it has been suggested that they may function as alkaline
ceramidases, enzymes that deacylate ceramides to produce lipid
second messengers (Villa et al., 2009; Moussatche and Lyons,
2012). However, there is yet little data from mammalian cells to
support this idea.

Members of a second group of molecules are structurally
similar in that each contains a highly conserved cytochrome
b5-heme/steroid binding domain (Kimura et al., 2012). This
group includes progesterone receptor membrane component 1
[PGRMC1; also known as known 25Dx (Selmin et al., 1996)],
PGRMC2, neudesin and neuferricin (Kimura et al., 2012). Each
of these molecules is found in neural tissue (Krebs et al., 2000;
Kimura et al., 2005, 2006, 2010; Intlekofer and Petersen, 2011),
but only PGRMC1 has been reported to bind P4 (Meyer et al.,
1996; Peluso et al., 2008, 2009). Recently, it has been suggested
that PGRMC1 is the same molecule as the sigma-2 receptor (Xu
et al., 2011). If this hypothesis is verified, it will expand our
knowledge of how PGRMC1 might function in the nervous sys-
tem because the sigma-2 receptor was primarily studied therein.

LOCALIZATION OF P4 SIGNALING MOLECULES IN SPECIFIC
NUCLEI OF THE BRAIN
Although mPRs and PGRMC1-related molecules are found in
the brain, most early studies did not compare the distributions
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of these molecules using techniques that provide detailed neu-
roanatomical information. Such information gives important
clues to the functions regulated by the various receptors.
Therefore, we used in situ hybridization (ISH) to map genes
encoding PR, mPRα, mPRβ and PGRMC1, as well as its bind-
ing partners PGRMC2 and SERPINE 1 mRNA binding protein 1
(SERBP1), throughout the rat forebrain (Intlekofer and Petersen,
2011).

Somewhat surprisingly, neither mPRα nor mPRβ is expressed
specifically in neuroendocrine or other nuclei that mediate P4

functions (Intlekofer and Petersen, 2011). Moreover, except for
very high mPRβ mRNA levels in the nucleus of the oculomotor
cranial nerve, mPRα and mPRβ expression is generally homoge-
neous and relatively low throughout the forebrain. In contrast,
mRNAs encoding PGRMC1, PGRMC2 and SERBP1 are found
in discrete neuroendocrine nuclei and in hippocampal, corti-
cal and cerebellar regions that control functions modulated by
P4 (Intlekofer and Petersen, 2011). More recently, we mapped
expression of mPRδ and mPRε mRNAs in the rat forebrain and
found no specific signal for either of these mRNAs (Moura-
Conlon and Petersen, unpublished data).

Neuferricin is a recently discovered extracellular heme-binding
protein that facilitates neurogenesis in cultured progenitor cells
(Kimura et al., 2010). In preliminary in situ hybridization stud-
ies, we failed to detect neuferricin mRNA in the rat forebrain. In
contrast, the distribution pattern of neudesin gene expression is
strikingly similar to that of pr in the rat forebrain, particularly in
regions containing the anteroventral periventricular, arcuate, and
the ventromedial nuclei [compare Figure 1 and (Simerly et al.,
1996; Shughrue et al., 1997)]. This 171-amino acid secreted pro-
tein is expressed in neural, but not glial cells (Kimura et al., 2005).
Similarly, it promotes differentiation of neurons and inhibits dif-
ferentiation of astrocytes (Kimura et al., 2006). Neudesin exerts
these effects through protein kinase and phosphatidylinositol-3
kinase pathways (Kimura et al., 2006), and its cytochrome b5-like

FIGURE 1 | X-ray film autoradiograms showing results of in situ

hybridization studies. Twelve-micron coronal frozen sections were
hybridized to 33P-dATP end-labeled antisense deoxynucleotide probes for
neudesin (Panels A and B), mPRε (Panel C), mPRδ (Panel D) or neuferricin
(Panel E). Hybridization was as described previously (Intlekofer and
Petersen, 2011) and sections were placed against Kodak BioMax MR film
(Rochester, NY) for 2 weeks.

heme/steroid-binding domain is also required (Kimura et al.,
2008). The role of neudesin in the regulation of adult neural
functions is unclear, but the striking similarity of the neudesin
and PR mRNA distribution patterns (Figure 1) suggests the pos-
sibility that neudesin may act in concert with PR to regulate
neuroendocrine functions.

Our neuroanatomical findings indicate that pgrmc1 is the most
abundant putative membrane P4 receptor gene expressed in neu-
roendocrine regions; therefore, this review focuses on possible
roles of PGRMC1 in regulating some of these functions. For a
more detailed review of all the putative non-classical P4 signaling
molecules, see (Petersen et al., 2013).

STRUCTURES OF PGRMC1 AND PGRMC2
PGRMC1 has been partially purified from liver membranes
(Meyer et al., 1996), spontaneously immortalized rat granu-
losa cells (Peluso et al., 2008), and human granulosa/luteal cells
(Peluso et al., 2009). Results of studies using these preparations
suggests that PGRMC1 binds P4 with high affinity [kd estimates of
10, 11, and 35 nM (Meyer et al., 1996; Peluso et al., 2008, 2009)].
However, the idea that PGRMC1 alone binds P4 is not univer-
sally accepted (Rohe et al., 2009). For example, Min et al. found
that GST-tagged rat inner zone antigen [found to be identical to
PGRMC1; see (Cahill, 2007)] expressed in E. coli did not bind P4

in pull-down assays (Min et al., 2005).
It is possible that there are other P4-binding proteins in the

partially purified preparations wherein binding has been detected
(Meyer et al., 1996; Peluso et al., 2008, 2009), but studies in rat
granulosa cells suggest that PGRMC1 accounts for the specific
P4 binding. Peluso and colleagues showed that partially purified
GFP-PGRMC1 fusion protein binds P4 with nM affinity and dele-
tions in various parts of the PGRMC1 molecule reduce P4 binding
(Peluso et al., 2008). SERBP1 (also called plasminogen activa-
tor inhibitor 1 RNA binding protein; PAIRBP1) is important
for PGRMC1 functions (Peluso et al., 2013), but the P4 bind-
ing site on PGRMC1 and the site for SERBP1 interaction differ
(Peluso et al., 2008). In addition, depletion of SERBP1 increases,
rather than decreases, P4 binding in spontaneously immortalized
granulosa cells (Peluso et al., 2013). Finally, perhaps the most
compelling evidence that PGRMC1 binds P4 comes from work
showing that knockdown of PGRMC1 by 60% reduces P4 binding
by the same percentage (Peluso et al., 2008).

Few studies have examined binding of steroids other than P4

to PGRMC1. Early work characterizing PGRMC1showed that P4,
but not dexamethasone, aldosterone or β-estradiol bind specifi-
cally to partially purified PGRMC1 in microsomal or solubilized
membrane fractions from porcine liver (Meyer et al., 1996). In
the same studies, it was found that corticosterone and testos-
terone bind with affinities ∼25% that of P4, and cortisol with a
relative affinity of 4%. Thus, PGRMC1 appears to preferentially
bind P4.

PGRMC1 is relatively small [194 amino acids (Falkenstein
et al., 1996)] with a molecular weight estimated between 25
and 28kDa (Meyer et al., 1996; Selmin et al., 1996; Raza et al.,
2001; Peluso et al., 2009). However, higher molecular weight
molecules can also be detected and likely represent dimers
(Meyer et al., 1996), multimers (Losel et al., 2005), or molecules
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modified post-translationally through sumoylation or other pro-
cesses (Peluso et al., 2012). PGRMC1 contains an N-terminal
extracellular domain, a transmembrane domain, and a cytoplas-
mic region with a heme-binding domain (Peluso et al., 2006;
Cahill, 2007).

Consistent with evidence that PGRMC1 and sigma-2 recep-
tors are the same protein (Xu et al., 2011), the two molecules have
similar steroid hormone-binding profiles with high affinity for P4

(Meyer et al., 1996; Peluso et al., 2008). Moreover, sigma-2 ligand
binding colocalizes with PGRMC1 expression in the endoplasmic
reticulum (ER) and mitochondria (Xu et al., 2011). In addition,
changes in PGRMC1levels correlate with changes in sigma-2 lig-
and binding (Xu et al., 2011). Finally, sigma-2 receptors regulate
intracellular calcium levels (Vilner and Bowen, 2000) and apopto-
sis (Vilner and Bowen, 1993; Vilner et al., 1995), as does PGRMC1
(Viero et al., 2006; Peluso et al., 2008; Bashour and Wray, 2012;
Lai et al., 2012).

PGRMC2 is structurally similar to PGRMC1 (Cahill, 2007;
Wendler and Wehling, 2013), except in the N-terminus and trans-
membrane domain. This finding may explain why PGRMC2 does
not bind P4 (Peluso, Pers. Commun.), because the P4 binding
site of PGRMC1 is in the transmembrane domain [26]. In con-
trast, PGRMC1 and PGRMC2 both bind the same members of a
group of heme-containing molecules, the cytochrome P450 pro-
teins (Albrecht et al., 2012), suggesting that the heme-binding
sites function similarly in PGRMC1 and PGRMC2. It is notable
that PGRMC2 expression widely overlaps that of PGRMC1 in
brain nuclei (Intlekofer and Petersen, 2011). However, the role of
PGRMC2 in P4 signaling in the nervous system or in other tissues
remains unclear.

POSSIBLE ROLES FOR PGRMC1 IN REGULATING RAPID
NEUROENDOCRINE RESPONSES
GONADOTROPIN RELEASE
Most studies examining PGRMC1 functions have focused on
non-neural reproductive tissues such as the ovary (Kowalik and
Kotwica, 2008; Peluso, 2011) and uterus (Zhang et al., 2008).
Results of our neuroanatomical studies suggest that PGRMC1
and its partners also regulate the neural structures that control
reproductive functions. The region in which mRNAs encoding
PGRMC1, PGRMC2 and SERBP1 are highest is the anteroven-
tral periventricular nucleus (AVPV), a group of cells in which E2

acts to induce luteinizing hormone (LH) surge release and ovu-
lation in rodents (Petersen et al., 2003). E2 triggers the LH surge
mechanism, at least in part, by upregulating PR expression in the
AVPV (Chappell and Levine, 2000) and by increasing synthesis of
neurosteroids in the region (Micevych and Sinchak, 2008, 2011).
The surge is then rapidly amplified by rising levels of circulat-
ing P4 (Levine, 1997). Based on the high levels of expression in
the AVPV, it is possible that PGRMC1 may mediate one or both
of these rapid effects of P4. Unfortunately, this idea is difficult to
test because the LH surge does not occur in the absence of PR
(Chappell et al., 1997, 1999).

One possible way in which PGRMC1 might enhance LH
surge release is by increasing neurosteroid synthesis in the AVPV.
Local steroid production in the AVPV is important for the LH
surge (Micevych and Sinchak, 2011) and PGRMC1 enhances the

activity of cytochrome P450 (Cyp) enzymes involved in steroid
synthesis (Hughes et al., 2007; Rohe et al., 2009; Ahmed et al.,
2012). For example, through its heme-binding site, PGRMC1
binds to and enhances the activity of Cyp51, an enzyme necessary
for the conversion of lanosterol to cholesterol (Craven et al., 2007;
Hughes et al., 2007). This is a key finding because cholesterol does
not appear to be synthesized in the brain (Bjorkhem and Meaney,
2004). Similarly, PGRMC1 activates Cyp19 aromatase, an enzyme
necessary for E2 synthesis (Ahmed et al., 2012), a hormone that
acts in the AVPV to induce the LH surge (Petersen et al., 2003).
It has not yet been determined whether PGRMC1 regulates the
activity of other heme-dependent Cyp enzymes involved in P4

synthesis or its metabolism to other neuroactive progestins such
as allopregnanolone. However, it seems likely considering that
PGRMC1 regulates nearly all Cyp enzymes tested to date (Ahmed
et al., 2012). Thus, PGRMC1 may indirectly amplify the preovu-
latory LH surge by enhancing activity of enzymes involved in
neurosteroid synthesis and metabolism.

It is also possible that PGRMC1 mediates rapid inhibitory
effects of P4 on LH release. Both PGRMC1 and SERBP1 are
detected in nearly all GnRH neurons of embryonic explants,
(Bashour and Wray, 2012). Similarly, PGRMC1 is found in
immortalized GnRH neurons, GT1-7 cells (Krebs et al., 2000). As
in non-neural cells (Peluso et al., 2002), P4 rapidly inhibits fluc-
tuations in intracellular calcium levels in GnRH neurons through
mechanisms that do not involve GABAA receptors (Bashour
and Wray, 2012) as have been described previously in embry-
onic sensory neurons (Viero et al., 2006). Rather, a putative
PGRMC1 antagonist blocks the inhibitory effect of P4 and,
consistent with evidence that PGRMC1 signals through PKG
(Peluso and Pappalardo, 2004; Peluso et al., 2007), PKG inhibitors
block P4 inhibition of calcium flux in explant GnRH neurons
(Bashour and Wray, 2012). Thus, PGRMC1 may be important
for turning off the LH surge or limiting it to one day of the
cycle.

PGRMC1 is also interesting in the context of sexual dif-
ferentiation of brain nuclei, particularly of preoptic area and
hypothalamic nuclei that develop through sex-specific and E2-
regulated apoptosis. Sexual differentiation of the AVPV occurs
during the perinatal period when the developing testes, but not
ovaries, are active. In the male AVPV, testosterone is aromatized to
E2 and this hormone triggers apoptosis (Arai et al., 1996; Forger,
2009; Tsukahara, 2009) and defeminization of LH release mech-
anisms. Importantly, PGRMC1 prevents apoptosis in non-neural
tissue (Peluso et al., 2009) and we recently found that PGRMC1
mRNA levels are lower in the neonatal AVPV of males than
females (Figure 2). Moreover, the arylhydrocarbon receptor lig-
and, 2,3,7,8-tetrachlorodibenzo-p-dioxin, increases pgrmc1 gene
expression (Selmin et al., 1996) and developmental exposure to
TCDD blocks defeminization of LH release (Mably et al., 1992).
Thus, indirect evidence suggests that PGRMC1 may prevent cell
death in the developing AVPV.

FEMININE SEXUAL BEHAVIORS
In addition to its effects on GnRH and LH release, P4 also
rapidly enhances female mating behaviors through actions in
brain regions that contain PGRMC1. Most of these brain regions
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FIGURE 2 | Results of quantitative real-time polymerase chain reaction

analyses measuring PGRMC1 mRNA in microdissections of postnatal

day 2 female and male anteroventral periventricular nuclei.
∗∗∗Significantly different from female; p < 0.0001.

also contain dopamine (DA) receptors and PGRMC1/sigma-
2R agonists increase DA release (Garcés-Ramírez et al., 2011).
For example PGRMC1/sigma-2R mRNA levels are high in the
medial preoptic area (Krebs et al., 2000; Intlekofer and Petersen,
2011), a region in which P4 increases DA release (Matuszewich
et al., 2000). DA, in turn, acts through DA D2 receptors in the
medial preoptic area to enhance feminine precopulatory behav-
iors (Graham and Pfaus, 2010). In addition, DA input into the
medial preoptic area comes primarily from the zona incerta
(Wagner et al., 1995), a region that contains high levels of
PGRMC1, PGRMC2, and SERBP1mRNA. Levels are also high
in the ventromedial hypothalamus (Krebs et al., 2000; Intlekofer
and Petersen, 2011), a brain region in which both P4 (Flanagan-
Cato, 2011) and DA D1 and D5 receptor agonists induce lordosis
(Apostolakis et al., 1996). Finally, expression of PGRMC1 and
binding partners is prominent in the ventral tegmental area
(VTA) wherein P4 regulates the maintenance of lordosis through
actions involving DA D1 and D5 receptors(Sumida et al., 2005).

As is the case with GnRH/LH surge release, PR is required
for the appearance of female mating behaviors, and both classi-
cal and ligand-independent activation of PR play a role (Mani
and Blaustein, 2012). In fact, at least some of the DA-mediated
effects on behavior require PR (Mani et al., 2009; Mani and
Blaustein, 2012); however, that does not preclude the possibil-
ity that PGRMC1 also participates in the process. For exam-
ple, sigma-2 ligands regulate DA transporter activity through a
Ca2+/calmodulin-dependent protein kinase II (CaMKII) trans-
duction system (Weatherspoon and Werling, 1999). Likewise,
P4 effects on female mating behavior involve rapid changes
in CaMKII kinase activity in the ventromedial hypothalamus
(Balasubramanian et al., 2008) through a mechanism upstream
from DA receptor activation (Balasubramanian and Mani, 2009).
Thus, it may be that P4 regulates DA release, reuptake and bind-
ing, as well as downstream signaling through a combination of
classical and non-classical P4 receptors.

PGRMC1 may also affect DA signaling and female reproduc-
tive behaviors by altering NMDA-type glutamate receptor func-
tions. As described above, the VTA is a site in which P4 facilitates
female sexual behaviors (Debold and Malsbury, 1989). Therefore,
it is intriguing that sigma-2 receptor agonists, which presumably

bind PGRMC1 (Xu et al., 2011), potentiate NMDA-induced activ-
ity of DA neurons in the VTA (Gronier and Debonnel, 1999).
Considering that DA signaling, but not PR action, in the VTA
is required for lordosis (Frye and Vongher, 1999; Sumida et al.,
2005), these findings support the idea that PGRMC1 plays a role.
However, this is likely to be a complicated story because NMDA
signaling in the VTA suppresses lordosis quotients under some
circumstances (Frye et al., 2008). Thus, if PGRMC1 is part of the
signaling mechanism that controls lordosis, it may be involved in
turning off the behavior. Alternatively, it may be that responses
to glutamate depend on the particular subregion of the VTA
affected.

OTHER POTENTIAL NEURAL FUNCTIONS OF PGRMC1
Results of our neuroanatomical studies suggest that PGRMC1
may also mediate effects of P4 on non-reproductive functions.
Two of the regions in which PGRMC1 was first detected are the
supraoptic and paraventricular nuclei (Krebs et al., 2000; Meffre
et al., 2005). These regions contain among the highest levels of
PGRMC1, PGRMC2, and SERBP1 mRNA in the rat forebrain
(Intlekofer and Petersen, 2011). PGRMC1is also expressed in cir-
cumventricular organs, ependymal cells and meninges, and colo-
calizes with vasopressin in paraventricular and supraoptic nuclei;
therefore, it has been proposed that PGRMC1 might be involved
in water homeostasis in the brain (Meffre et al., 2005). Support for
this idea comes from evidence that PGRMC1 expression increases
in neurons and appears in astrocytes after traumatic brain injury
that results in edema (Meffre et al., 2005). This finding has impor-
tant clinical implications because P4 is now in clinical trials to
evaluate its effectiveness on decreasing brain damage in stroke
and traumatic brain injury (Stein, 2011). It remains to be deter-
mined whether P4 acts, at least in part, through PGRMC1 to exert
its neuroprotective effects by controlling edema in the brain.

Finally, the piriform cortex is a part of the limbic system
and both PGRMC1 and SERBP1 mRNA levels are very high in
this region, while PR and mPR mRNAs are quite low or absent
(Intlekofer and Petersen, 2011). This is not a well-studied brain
structure from a neuroendocrine perspective, but the piriform
cortex is central to the development and propagation of kin-
dled seizures (Wahnschaffe et al., 1993; Loscher et al., 1995).
Although no changes in kindled seizure threshold are observed
during the estrous cycle of rats (Wahnschaffe and Loscher, 1992),
many women with epilepsy experience seizures clustered around
the time of the menstrual cycle when P4 levels are low (termed
catamenial epilepsy) (Duncan et al., 1993; Herzog et al., 2004;
Gilad et al., 2008; Reddy, 2009). P4 can significantly reduce
the frequency of seizures in women with this disease (Reddy,
2009; Motta et al., 2013). Further studies are required to deter-
mine whether PGRMC1 plays a role in catamenial epilepsy and
whether PGRMC1/sigma-2 ligands would be effective in treating
the disease without the side effects of progestins.

SUMMARY
A large body of literature catalogues the many neural actions
of PR accomplished through gene regulation or rapid regula-
tion of intracellular signaling. In contrast, there is relatively little
work on the role of PGRMC1 or other non-classical P4 signaling
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molecules in the brain. Based on our neuroanatomical findings
that PGRMC1, PGRMC2, and SERBP1 are found in brain regions
wherein P4 exerts rapid effects, it seems likely that these molecules
are involved in diverse functions. These functions include the
control of GnRH/LH release, feminine mating behaviors, fluid
balance, and neuroprotection and seizure activity. The extensive

overlap in patterns and levels of expression suggest that PGRMC1
and PR signaling pathways regulate the same cellular functions,
but probably through different mechanisms. Considering the
importance of these functions in physiology and disease, further
study of PGRMC1, PGRMC2, and SERBP1 in the nervous system
is warranted.
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