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A brain-machine interface (BMI) is an interface technology that uses neurophysiological
signals from the brain to control external machines. Recent invasive BMI technologies
have succeeded in the asynchronous control of robot arms for a useful series of actions,
such as reaching and grasping. In this study, we developed non-invasive BMI technologies
aiming to make such useful movements using the subject’s own hands by preparing a
BMI-based occupational therapy assist suit (BOTAS). We prepared a pre-recorded series
of useful actions—a grasping-a-ball movement and a carrying-the-ball movement—and
added asynchronous control using steady-state visual evoked potential (SSVEP) signals.
A SSVEP signal was used to trigger the grasping-a-ball movement and another SSVEP
signal was used to trigger the carrying-the-ball movement. A support vector machine was
used to classify EEG signals recorded from the visual cortex (Oz) in real time. Untrained,
able-bodied participants (n = 12) operated the system successfully. Classification accuracy
and time required for SSVEP detection were ∼88% and 3 s, respectively. We further
recruited three patients with upper cervical spinal cord injuries (SCIs); they also succeeded
in operating the system without training. These data suggest that our BOTAS system is
potentially useful in terms of rehabilitation of patients with upper limb disabilities.
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INTRODUCTION
Recent advances in robot technologies have facilitated devel-
opment of new devices to assist the movements involved in
rehabilitation training for people with motor dysfunction. The
proposed devices use various methods to assist upper limb move-
ments: HEXORR was designed to assist all digits of the hand
(Schabowsky et al., 2010), MIT-MANUS can support movements
of the elbow and shoulder (Finley et al., 2005) or wrist (Krebs
et al., 2007) during planar reaching tasks. Pneu-WREX can supply
active forces generated by a pneumatic actuator to support move-
ments of the arm in three-dimensional space (Wolbrecht et al.,
2008), and ARMin II has high degrees of freedom (DOFs) for the
shoulder, elbow, and wrist to perform coordinated movements
associated with activities of daily living (Staubli et al., 2009). Some
studies have used robot-assisted rehabilitation in stroke patients
(Hesse et al., 2008; Marchal-Crespo and Reinkensmeyer, 2009;
Masiero et al., 2011). Goal-directed movement has been suggested
to be of value in rehabilitation training (Ma and Trombly, 2002;
Pillastrini et al., 2008). The use of robot-assisted rehabilitation
in persons with physical disabilities would be enhanced if the
system supported goal-directed actions involving multiple body
parts; for example, the whole arm, including the fingers. Devices
with such movements would be useful in occupational therapy
(OT) training. In general, rehabilitation training often requires
that the assistive robots exhibit high DOFs to support various
goal-directed movements of the upper limbs. However, robot sys-
tems developed to date do not sufficiently support the delicate
movements of the whole arm, especially the fingers.

These devices can be controlled by physiological signals. For
example, electromyography has been used to assist in reach-
ing movements with MIT-MANUS (Dipietro et al., 2005) and
elbow movements (Song et al., 2008). Furthermore, these devices
can be combined with a brain-machine interface (BMI)/brain-
computer interface (BCI), an interface technology that uses
neurophysiological signals from the brain to control exter-
nal machines or computers (Wolpaw et al., 2002; Birbaumer
and Cohen, 2007; Kansaku, 2011). Recent invasive BMI tech-
nologies have succeeded in the asynchronous control of robot
arms for useful series of actions, such as reaching and grasp-
ing (Hochberg et al., 2012). Several studies have applied non-
invasive BMI technologies to control assistive robots according
to user intention (Muller-Putz and Pfurtscheller, 2008; Horki
et al., 2010, 2011; Pfurtscheller et al., 2010b; Ortner et al.,
2011). These robot-assisted therapies, which use either inva-
sive or non-invasive BMI systems, are an attractive approach to
recovery of motor dysfunction in neurorehabilitation (Marchal-
Crespo and Reinkensmeyer, 2009; Pignolo, 2009). A BMI-based
assistive robot can construct an artificial neurological closed-
loop between the brain and end effectors, such as the hands or
legs; this closed-loop enhances the plastic changes in the brain
during rehabilitation training (Lebedev and Nicolelis, 2006).
Recent studies have shown that neural activity may change
after invasive (Collinger et al., 2013) or non-invasive BMI
(Pichiorri et al., 2011) training. Together, the data suggest that
goal-directed actions using BMI technology are potentially of
value.
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Proposed BMI systems have used electroencephalogram (EEG)
signals, elicited by motor imagery, such as event-related de-
synchronization (ERD) (Allison et al., 2010; Gomez-Rodriguez
et al., 2011; Horki et al., 2011) or by visual stimuli, such as P300
(Farwell and Donchin, 1988; Wolpaw et al., 2002) or steady-
state visual evoked potential (SSVEP) (Zhu et al., 2010). Because
non-invasive BMI systems do not require surgery to implant elec-
trode(s), as in invasive BMI, these technologies can also be applied
to many patients, safely and easily. Furthermore, because control
of the external devices of SSVEP- and P300-based BMI systems
requires less training than do motor imagery ERD-based systems,
such BMIs using visual stimuli are beneficial for people with dis-
abilities in that they can be used immediately. Moreover, SSVEP
signals may be detected using a single electrode of a BMI system
(Luo and Sullivan, 2010), and SSVEP is thus potentially valuable
for use in practical BMIs.

SSVEP can be observed mainly from the visual cortex when
a person is focusing visual attention on a flickering stimulus
and can be modulated at a frequency higher than 6 Hz (Regan,
1989; Pastor et al., 2003). This is the same fundamental fre-
quency as that of the flickering stimulus, as well as its harmon-
ics. Several studies have applied SSVEP-based BMI to operating
tools for living environments (Cheng et al., 2002; Wang et al.,
2006), a mouse cursor (Trejo et al., 2006; Diez et al., 2011;
Volosyak, 2011; Wilson and Palaniappan, 2011), and a wheelchair
(Muller et al., 2010; Bastos et al., 2011). BMI systems using
SSVEP signals have the advantage that there is no need to con-
trol the timing of stimulus presentation. Thus, BMI users can
control the external device asynchronously, depending on their
intentions.

In this study, we developed non-invasive BMI technolo-
gies to facilitate useful movements through the subject’s own
hands by preparing a BMI-based occupational therapy assist suit
(BOTAS). BOTAS has high DOFs to assist whole upper limb
movements, including those of the fingers, and can conduct

various types of movement, such as goal-directed movements,
during OT. We prepared pre-recorded series of useful actions,
a grasping-a-ball movement and a carrying-the-ball movement,
and added asynchronous control using SSVEP signals. A SSVEP
signal was used to trigger the grasping-a-ball movement and
another SSVEP signal was used to trigger the carrying-the-ball
movement. Participants were asked to fixate on LED flickers
when they sought to start pre-recorded movements. We describe
such sequential movements as a “BOTAS-assisted trial” in this
study. A support vector machine (SVM) was used to classify
the EEG signals recorded from the visual cortex (Oz) in real
time. By doing so, we showed that able-bodied participants
and patients with upper cervical spinal cord injuries (SCIs),
with no previous training, could operate the BOTAS system
successfully.

MATERIALS AND METHODS
A BOTAS SYSTEM BASED ON SSVEP
Figure 1 shows a schematic of our BMI system for BOTAS con-
trol. The BOTAS system consisted of a PC, EEG electrodes, EEG
cap, amplifier, visual devices, and the assist suit robot. Recently,
some studies of hybrid BMIs have appeared (Pfurtscheller et al.,
2010a). One work employed a combined ERD-plus-SSVEP sys-
tem (Allison et al., 2010; Horki et al., 2011) and another a
P300-plus-SSVEP system (Panicker et al., 2011). In our system,
BOTAS can also be controlled using a hybrid BMI system with
SSVEP and P300 (blue arrow procedure in Figure 1) (Sakurada
et al., 2011). Our group previously used the so-called P300 speller
(Farwell and Donchin, 1988) in a BMI system (Ikegami et al.,
2011; Takano et al., 2011); we also included the P300 proce-
dure in the BOTAS system. A monitor displays a flicker matrix
and each flickering icon indicates a BOTAS motion that was
recorded beforehand. BOTAS users can select a motion using
the P300 procedure and can control the initiation of the selected
motion using the SSVEP procedure. A hybrid system would be

FIGURE 1 | System overview. The red arrow indicates the flow of
the SSVEP-based BCI system and the blue arrow indicates the
flow of a combined BCI system based on both P300 and SSVEP.

In this study, we focused on use of the SSVEP-based BCI
system to control upper limb movements asynchronously by means
of BOTAS.
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particularly useful when the BOTAS user has to choose a motion
from many options (i.e., motions that were recorded before-
hand). In this study, to discuss use of asynchronous control
systems for a specific task, we focused on the SSVEP-based BMI
system.

We prepared visual flicker devices in which green and blue
LEDs were arranged in a checkerboard pattern and each color
LED flickered alternately at the same frequency. The flicker-
ing stimuli afforded by the LEDs induced SSVEP around the
visual cortex. Buffered EEG signals (3 s), recorded from PO7, Oz,
and PO8 sent classification process information every 0.1 s. We
conducted fast Fourier transformation (FFT) and canonical cor-
relation analysis (CCA) of the buffered EEG signals (Bin et al.,
2009). Results of the FFT and CCA were used for classification
by SVM. Finally, the PC (i.e., the BOTAS controller) sent con-
trol commands to BOTAS according to the classification result.
Because each LED flicker was assigned to an upper limb motion
that was recorded beforehand, BOTAS wearers could select and
initiate a motion to assist their own movement at any time. In the
next section, we provide further details of each component of the
BOTAS system.

BOTAS specifications
BOTAS has six DOFs in each robot-arm to assist with var-
ious upper limb movements (Figure 2A): one DOF in each
shoulder joint (θ1: extension—flexion), one in each elbow joint
(θ4: extension—flexion), one in each wrist joint (θ5: adduction—
abduction), and three DOFs in the finger joints of each hand
(θ7–θ9: extension—flexion for thumb, index and middle, and
annular and little). DC servomotors were used to drive these
joints, except the wrist joint, which was achieved with Bowden
cables. The adduction-abduction movements of the wrist joint
were driven directly by a DC servomotor. Additionally, the angles
of the shoulder’s adduction-abduction (θ2), internal-external
rotation (θ3) and the wrist’s extension-flexion (θ6) were adjusted
and fixed according to the posture required in the various

FIGURE 2 | DOFs in the BOTAS hardware. (A) Joints of the shoulder,
elbow, wrist, and fingers were driven by actuators according to control
commands (θ1, θ4, θ5, θ7, θ8,and θ9). (B) According to participant physical
size or task requirement, the angles in the shoulder joint (θ2 and θ3) and the
wrist joint (θ6) and the link length of the upper arm, forearm, and fingers
(L1–L5) can be adjusted.

tasks (Figure 2B). The system comprises nine DOFs, in total, in
each robot arm. Therefore, not only the movements made in
the present study (i.e., grasping and reaching movements; see
Performance Evaluation of the BOTAS System) but also other
movements may be assisted because BOTAS is associated with
multiple DOFs, as described above. The link lengths of the BOTAS
upper arm, forearm, and fingers are also adjustable (L1–L5).
When a participant wears the BOTAS, she/he rests her/his elbows
on small boards attached to the left and right elbow joints, and
her/his forearms, wrists, palms, and fingers are fastened using
Velcro fasteners.

To ensure the safety of the wearer, BOTAS can move only
within the space defined by the range of motion (ROM), which
is measured individually. We checked the ROM of the shoul-
der, elbow, wrist, and fingers before starting the tasks. Maximum
angular velocities were 1.57 rad/s for fingers and 1.05 rad/s for the
other joints. When BOTAS assists a grasping or pinching move-
ment, the maximum support power for the finger is 11 N. If
a wearer receives overload from BOTAS during movement, the
Bowden cables that drive the BOTAS joints cut automatically.
Additionally, the BOTAS system can be stopped at any time by
pressing an emergency button. Operators (e.g., an experimental-
ist or a therapist) were asked to press the emergency button when
necessary.

BOTAS can be driven and controlled by two methods. In the
first, a specified joint is controlled by commands that require it
to move in an arbitrary angle. This is effective if the wearer wants
to control her/his posture freely, assisted by BOTAS. In the other
method, the BOTAS system runs a recorded motion, which is
registered in system memory beforehand. The maximum num-
ber of recorded motions is eight. This replaying and repeating a
recorded motion is useful when a wearer is required to perform
a repetitive movement or task, such as in rehabilitation training.
In our tasks, we used the latter method to control BOTAS and to
assist the movements of the wearer.

We registered the grasping and reaching motions in the BOTAS
system before participants performed any task. To generate time-
series data of the BOTAS reaching motion, we selected appropri-
ate movement duration and start and end positions of the BOTAS
hand in a plane, including the BOTAS upper arm and forearm. On
the basis of these motion parameters, profiles of the end-effector
(BOTAS hand) position were calculated based on the minimum
jerk model (Flash and Hogan, 1985) or the minimum torque-
change model (Uno et al., 1989). Because the latter model requires
individual parameters, such as mass, inertia moment, length, and
center of gravity of the arm, we used the minimum jerk model in
this study.

BOTAS hand positions
(
x(t), y(t)

)
were calculated by mini-

mizing the following criterion function:

J =
∫ T

0

[(
d3x

dt3

)2

+
(

d3y

dt3

)2
]

dt (1)

where T denotes the movement duration. In the calculation,
the positions were constrained so that the velocities and accel-
erations at the start and end positions would be zero and the
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positions would not exceed the ROM of each wearer. In cases
where the wearer had sufficiently wide ROM, the calculated hand-
positions were along the straight line connecting the initial and
end positions, as has been shown before for some rehabilita-
tion robots using the minimum-jerk model (Krebs et al., 2003;
Amirabdollahian et al., 2007; Wolbrecht et al., 2008). On the other
hand, in a case where the user has a narrow ROM, because, for
example, of paralysis, and the positions along the straight line
violated the ROM constraints, the calculation instead automati-
cally generated positions along a curved line that did not exceed
the ROM.

Time-series data for each BOTAS joint were calculated by solv-
ing the inverse kinematics of the BOTAS arm. The control signals
to the BOTAS joints (Un) were calculated continuously using
these time-series data and BOTAS joints were controlled based on
the PID algorithm, referring to the error (en) between the current
angle (θn) and the desired angle (θdn):

Un = KPen + KI
∫ tc

0 endt + KD
den
dt − Rn,

en = θn − θdn,

Rn =
{

λn + τn(n = 1, 4)

τn(n = 5, 7, 8, 9)

(2)

Here, n denotes the joint number (see Figure 2A) and KP, KI ,
and KD denote the proportional, integral, and differential gains,
respectively, and tc is the current time. Additionally, Rn repre-
sents a correction term that can refer to the cable interference
(λn) and torque interference (τn) when the control signals are
calculated.

Preparation for data acquisition
To detect SSVEP signals, three electrodes were located at Oz,
PO7, and PO8. These electrodes were referenced to C4 and
grounded to AFz. Each electrode position was defined based on
the 10–10 EEG coordinate system. EEG signals were recorded
with an EEG amplifier (g.USBamp, g.tec, Guger Technologies OG,
Austria) at 256 Hz. The EEG signals recorded were filtered with an
eight-order 5–30 Hz bandpass filter.

Visual stimulus devices
To elicit SSVEP, we prepared three LED flickers. The visual stim-
ulus devices have green and blue LEDs, placed in a checkerboard
pattern (eight green LEDs and eight blue LEDs in each device)
and LEDs of each color flicker alternately. Additionally, an acrylic
board was placed above the LEDs. The size of the device was 3
(W) × 3 × (D) 2.5 (H) cm.

PARTICIPANTS
Twelve able-bodied participants [age: mean (SD) = 29.2 (6.2);
four females] and three patients with upper cervical SCIs (P1–P3;
see Table 3) who had not previously participated in this study
were recruited. All able-bodied participants were right-handed.
Our study was approved by the Institutional Review Board at
the National Rehabilitation Center for Persons with Disabilities.
All participants provided written informed consent in accordance
with institutional guidelines.

EXPERIMENTAL PARADIGM
Calibration to permit SVM classification
To classify EEG signals online in BOTAS-assisted trials, we used
SVM featuring a radial basis function kernel. SVM is a classi-
fication technique based on statistical learning theory (Vapnik,
1996).

For calibration, we recorded EEG signals from PO7, Oz, and
PO8 when participants were either fixated or not on the LED
flickers. The LED flicker was placed in front of the participants
at an 80-cm distance. One calibration trial consisted of a fixation
phase with the LEDs flickering for 5 s and a non-fixation phase of
5 s. The target frequencies of LED flickering were 6, 7, and 8 Hz,
and each participant engaged in 10 trials frequency.

EEG signals were buffered every 0.1 s for 3 s in each frame
and FFT and CCA were used to analyze the buffered signals. We
used EEG signals from Oz (only) to construct a feature vector
(FV) in each frame because this electrode yielded the highest
signal-to-noise ratio (Table 1). Each FV was composed using a
combination of values calculated by subtractions of FFT and CCA
outputs at target and non-target frequencies. In detail, FV was
defined as:

FV = [F6 F7 F8 F12 F14 F16 C6 C7 C8 C12 C14 C16]. (3)

Here,

Fi = f (i) − ∑
j �= i f (j), Ci = c(i) − ∑

j �= i c(j),

F2i = f (2i) − ∑
j �= i f (2j), C2i = c(2i) − ∑

j �= i c(2j),

(i, j = 6, 7, 8).

(4)

Here, f (i) and c(i) denote the spectrum powers at i Hz (i.e., the
frequency of LED flickering), calculated using FFT and CCA,
respectively. f (2i) and c(2i) are the values of the second harmon-
ics. On the other hand, f (j), c(j), f (2j), and c(2j) denote those
values at non-target frequencies. To calibrate SVM, we prepared 4
classes: fixation at 6, 7, and 8 Hz and non-fixation, and each fea-
ture vector was assigned, respectively. We prepared 400 samples
for each class.

Performance evaluation of the BOTAS system
For BOTAS-assisted trials, the able-bodied participants sat on an
adjustable-height chair and wore the BOTAS on their left arm.
P1, P2, and P3 sat in their wheelchairs and the position of the
BOTAS arm was adjusted to the patients’ left arm. A LED flicker
was attached to the BOTAS around the wrist joint (Figure 3A)

Table 1 | The P-values obtained upon paired t-testing of the

significance of differences in peak values obtained in the non-fixation

and fixation phases.

Electrode 6 Hz 7 Hz 8 Hz 12 Hz 14 Hz 16 Hz

PO7 0.55 0.74 0.15 0.38 0.13 0.12

Oz 0.07+ 0.01* 0.07+ 0.09+ 0.08+ 0.008**

PO8 0.17 0.78 0.14 0.43 0.06+ 0.12

+p < 0.1, *p < 0.05, **p < 0.01.
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FIGURE 3 | The sequence used in BOTAS-assisted trials. (A) To trigger the
grasping movement, participants were asked to fixate on the LED flicker on
their wrist. (B) Then, the participants started to fixate on the LED flicker

attached to the poll and started the BOTAS-assisted reaching movement,
toward the upper or lower target. The ball was released over the goal
position.

and two further LED flickers were attached to a pole placed
80 cm from a participant. The distance between these two LED
flickers was 16 cm (Figure 3B). We assigned the grasping move-
ment to the LED flicker attached to the BOTAS wrist joint. The
LED flickers attached to the pole were assigned reaching move-
ments in the up or down directions. In BOTAS-assisted trials, the
left arms of participants were moved passively by BOTAS. One
trial consisted of a grasping movement, a reaching movement
in the upper or lower direction, and a release movement (hand
unclenching). Every trial featured six phases (A–F), as described
below.

Phase A: Waiting for the task to start in the initial posture.
Phase B: A participant started to fixate on the LED flicker on

the wrist joint when a beep sound was presented as a start signal
(Figure 3A).

Phase C: When SVM classified the EEG signal into a specified
frequency, a BOTAS-assisted grasping movement was started. The
experimenter passed a ball to the participant.

Phase D: After the grasping movement, a beep sound was again
presented, and the participant began to fixate on the upper or
lower target LED flicker on the pole, to trigger a reaching move-
ment. The reaching target in odd-numbered trials was the upper
LED flicker and that in even-numbered trials was the lower LED
flicker.

Phase E: When SVM classified the EEG signal into a speci-
fied frequency, a BOTAS-assisted reaching movement was started.
Then, the ball was released at the goal position by means of
BOTAS-assisted finger movements (Figure 3B).

Phase F: Return to the start position.
Each participant was asked to fixate on a LED flicker for 10 s in

Phases B and D. All participants repeated the trial (Phases A–F).
All participants performed the trial 30 times, except for patient P1
who performed the trial 20 times. The frequencies of LED flick-
ering were randomly changed every 10 trials; for example, 6 Hz
(wrist), 7 Hz (upper target), and 8 Hz (lower target) in the first 10
trials; 8 Hz (wrist), 6 Hz (upper target), and 7 Hz (lower target)
in the next 10 trials; 7 Hz (wrist), 8 Hz (upper target), and 7 Hz
(lower target) in the last 10 trials. Repetitive trials allowed us to
explore the robustness of our BOTAS system under asynchronous
control. In other words, the dependence of performance on visual
stimulus (i.e., location and flickering frequency of a LED flicker)
was evaluated.

SVM conducted online classification of the recorded EEG sig-
nals (3-s buffered data) every 0.1 s. The SVM classification result
was used to determine the LED flicker upon which the participant
fixated. After a participant started to fixate on one of the LED
flickers during phases B and D, the BOTAS system was sent a con-
trol command according to the SVM classification result. In other
words, participants could control initiation of a pre-recorded
BOTAS motion when gazing at a target LED.

RESULTS
ABLE-BODIED PARTICIPANTS
FFT spectrum power
Figure 4A shows typical frequency spectrum results, calculated by
averaging EEG signals obtained during calibration (able-bodied
participants A1 and A2). In particular, when the participants fix-
ated on the LED flicker at 6 Hz, the EEG power recorded from
Oz was increased at 6 and 12 Hz. These changes in the frequency
spectrum indicated that the LED flicker could elicit SSVEP. The
spectrum of A1 indicates that frequency power became strong
at the second harmonic of the LED flicker upon which A1
fixated (i.e., 12 Hz). On the other hand, the frequency power
increased not only at the second harmonic, but also at the same
frequency as the LED flicker (i.e., 6 Hz) in A2. Because the
responses in SSVEP could vary among individuals, the feature
vector, shown in (3), included the results of frequency anal-
yses for not only the LED frequencies, but also their second
harmonics.

Figures 4B,C show the peak values of FFT powers (means)
at the various frequencies of the LED flicker (6, 7, and 8 Hz)
and their second harmonics (12, 14, and 16 Hz) during the
non-fixation (white bars) and fixation (black bars) phases of cali-
bration. Mean values were calculated from the specific frequency
band (target frequency ± 0.125 Hz). Peak values during the non-
fixation phase represented the noise level in each channel (white
bars in Figures 4B,C). When the participants fixated on the LED
flicker, FFT powers increased, compared with those during the
non-fixation phase, especially in Oz. Here, we compared the peak
values of the non-fixation and fixation phases to select an elec-
trode with the highest signal-noise ratio (SNR). P-values from
paired t-tests comparing peak values in the non-fixation and fix-
ation phases (PO7/Oz/PO8) are listed in Table 1. A small p-value
is indicative of a high SNR. Statistical testing revealed that Oz
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FIGURE 4 | SSVEP power during calibration. (A) Particular frequency
spectra of EEG signals from Oz while fixating on the LED flicker at 6 Hz.
Solid and dotted lines indicate the A1 and A2 results, respectively. The A1
spectrum revealed an increased frequency power at 12 Hz (i.e., a harmonic
of 6 Hz), but A2 showed increases at both 6 and 12 Hz. (B,C) Mean spectral
power of each electrode. Left, center, and right pair bars indicate the peak
values of PO7, Oz, and PO8, respectively. Compared with the peak values
during the non-fixation phase (white bars), those during the fixation phase
(black bars), especially Oz, showed strengthening. Error bars indicate SE
across participants. +p < 0.1, ∗p < 0.05, ∗∗p < 0.01.

was the principal SSVEP signal source (i.e., exhibiting a high
SNR), relative to PO7 and PO8. In our efforts to construct a user-
friendly BMI system, we sought to use as few electrodes as possi-
ble. Therefore, we used the EEG signal from Oz (only) to calibrate
SVM and to perform online classification in BOTAS-assisted
trials.

Classification accuracy
To evaluate the performance of the SSVEP-BMI system, we cal-
culated the classification accuracy of EEG signals in BOTAS-
assisted trials. Depending on the first classification into frequency
classes (6, 7, or 8 Hz) during the fixation phase (phases B or D),
we determined whether the classification in each trial was cor-
rect. If SVM first classified the EEG signal into any class other
than the target frequency class-for example, despite a partic-
ipant fixating on the LED flicker at 6 Hz, SVM classified the
EEG signals into the 7 or 8 Hz class-the trial was defined as
false.

The classification based on SVM was 80–90% accurate, on
average, under all LED settings used (Figure 5). Only one par-
ticipant (A10) yielded a poor classification accuracy (less than
70%, on average, across all LED settings) but most partici-
pants (8 of 12) exhibited good performance, with 90–100%
classification accuracy (Table 2). To clarify the dependence
of LED frequency and location on SVM performance, we
performed Two-Way ANOVA (frequency of LED flickering
× position of LED flickers). No significant main effect or
interaction was apparent [frequency: F(2, 22) = 0.49, p = 0.62;
position: F(2, 22) = 0.95, p = 0.40; interaction: F(4, 44) = 1.36,
p = 0.26].

FIGURE 5 | Classification accuracy in BOTAS-assisted trials based on

EEG signals from Oz. Accuracy was not dependent on the frequency or
location of the LED flickers. Error bars indicate SE across participants.

Delay in SSVEP detection
Figure 6A shows the mean delay in SVM classification after par-
ticipants fixated on any LED flicker in phases B or D. These delays
indicate the time from LED fixation to driving of BOTAS. The
results in Figure 6A are evaluation of only correct trials. The
proportion of correct trials with respect to all trials was 88.5%.
Using the LED setting associated with the shortest delay (fre-
quency of LED flickering: 8 Hz, position of the LED flicker: lower
target), SVM required about 2 s to classify the EEG correctly. At
other LED settings, SSVEP also functioned correctly in less than
3 s. To clarify the dependence of LED frequency and location
on SVM performance, repeated Two-Way ANOVA (frequency
of LED flickering × position of the LED flickers) was used to
analyze the delays (Figure 6A). ANOVA indicated that only the
position of the LED flickers was significant [frequency: F(2, 22) =
0.23; p = 0.79; position: F(2, 22) = 4.35, p < 0.05; interaction:
F(4, 44) = 0.45, p = 0.77]. Additional analysis revealed a signif-
icant difference between the wrist and lower target LEDs (p <

0.05, Bonferroni test).
When participants fixated on any LED flicker during phases

B or D, the detection rate increased with time (Figure 6B). The
solid line indicates the detection rate in correct trials and the dot-
ted line in all trials, included false trials. At 2 s after fixating, the
detection rate increased sharply and the SVM classification for the
grasping or reaching movement was success, 90.1% of correct tri-
als and 85.8% of all trials within 5 s. Individual delays are shown
in Table 2.

PATIENTS WITH UPPER CERVICAL SCI
Patients in this study did not have spasticity in the left arm; how-
ever, their arm joints showed narrower ROMs compared with the
able-bodied participants. When patients participated in this task,
we defined the task space based on the limited ROM.
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Table 2 | Individual performances across all LED settings in able-bodied participants.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

CA (%) 98.3 98.3 80.0 96.7 90.0 91.7 93.3 98.3 75.0 65.0 96.7 78.3

Delay (s) 3.1 2.8 4.3 2.5 2.5 2.3 2.7 2.6 2.9 4.0 2.5 2.8

CA, Classification accuracy.

FIGURE 6 | Delay in initiation of BOTAS movement. (A) Mean delay
from initiation of fixating on the LED flicker to driving BOTAS. These
results were calculated based on correct trials. The delay was of
slightly longer duration when the LED was attached to the participant’s
wrist. Error bars indicate SE across participants. (B) SSVEP detection
rate after fixation on the LED flicker (i.e., phases B and D). The results
indicated by solid and dotted lines represent data calculated from
correct trials and all trials, respectively. The BOTAS system began to
detect SSVEP 2 s after initiation of fixating on the LED flicker.
Participants successfully initiated grasping or reaching motions within
5 s in more than 85% of all trials.

Table 3 | Performance of patients in BOTAS-assisted trials.

Participant (Age,

Gender, Time since

injury, Injury level)

Classification

accuracy (%)

Mean

delay (s)

Detection

rate within

5 s (%)

P1 (42, M, 16y, C6) 80.0 3.8 77.5

P2 (40, M, 19y, C3) 83.3 3.9 73.5

P3 (51, M, 24y, C6) 80.0 3.7 82.3

Table 3 shows the SVM performances of three patients with
upper cervical SCI. Because Oz impedance in P1 did not decrease
over time, the calibration and BOTAS-assisted trials featured
high impedance. Classification accuracy and mean delay were
slightly lower performance vs. those of the able-bodied par-
ticipants. Accuracies were not less than 80% and delays were
shorter than 4 s. We confirmed that the patients with upper
cervical SCI operated the BOTAS system successfully. They suc-
cessfully grasped the ball and transferred it to the goal position
in a high proportion of trials (P1: 18/20 trials, P2: 29/30 tri-
als, P3: 28/30 trials). No patient reported discomfort during task
performance.

DISCUSSION
We prepared life-size robot arms BOTAS that can assist the
wearer’s goal-directed movements of the upper limb, such as
reaching or grasping. To control the motion of the BOTAS, we
recorded EEG signals. SSVEP was elicited, especially from Oz,
during fixation on a LED flicker. In BOTAS-assisted trials, both
able-bodied participants and patients with upper cervical SCIs
successfully controlled the grasping-a-ball and carrying-the-ball
movements in a high proportion of trials.

ASYNCHRONOUS CONTROL OF GOAL-DIRECTED MOVEMENTS
We developed the SSVEP-based BMI assist suit for the whole arm
and fingers to support goal-directed actions involving multiple
body parts, so that the devices could be used for movements
such as those involved in OT training. Goal-directed activity
has greater success in helping patients with paresis organize
their movements effectively, compared with an exercise with no
goal (Ma and Trombly, 2002; Pillastrini et al., 2008). Previous
studies made use of rehabilitation robots with relatively high
DOFs for shoulder and elbow motions (Sanchez et al., 2006;
Ball et al., 2009; Dolce et al., 2009; Staubli et al., 2009) or
finger motions (Schabowsky et al., 2010). However, providing
a useful series of actions, such as reaching and grasping, was
not easy using these robots. In this study, both able-bodied
participants and patients with upper cervical SCIs successfully
performed the grasping-a-ball and carrying-the-ball movements,
which require not only shoulder and elbow motions but also
wrist and finger motions, thus representing a purposeful and
goal-directed movement. The effectiveness of movements used
in rehabilitation training must be studied further, but our
BOTAS system is suggested to be potentially useful for reha-
bilitation of patients with upper limb disabilities. In terms of
clinical evaluation, it would be wise to evaluate user satisfac-
tion (e.g., by applying the Quebec instrument evaluating sat-
isfaction with assistive technology; QUEST 2.0) (Zickler et al.,
2011).

In rehabilitation training using BMI technologies, an arti-
ficial closed-loop between the brain and the impaired body
part(s) facilitates brain plasticity (Lebedev and Nicolelis, 2006;
Gomez-Rodriguez et al., 2011). Additionally, synchronization
between user intent and the action of the external device is
important in BMI-based rehabilitation training. Recent invasive
BMI technologies have succeeded in the asynchronous con-
trol of robot arms for useful series of actions, such as reach-
ing and grasping (Hochberg et al., 2012). Several studies have
used non-invasive BMI technologies to control assistive robots
according to user intent (Muller-Putz and Pfurtscheller, 2008;
Horki et al., 2010, 2011; Pfurtscheller et al., 2010b; Ortner
et al., 2011). In this study, we prepared a pre-recorded series of
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useful actions-a grasping-a-ball movement and a carrying-
the-ball movement—and provided asynchronous control using
SSVEP signals. A SSVEP signal was used to trigger the grasping-
a-ball movement and another SSVEP signal was used to trigger
the carrying-the-ball movement. Although we did not attempt
to directly decode user intention, participants fixated on LED
flickers when they wished to start movement. Also, the hand
and arm were visible when movements were made; this may
have contributed to closed-loop sensory feedback. Asynchronous
BMI systems using SSVEP may be useful for closed-loop reha-
bilitation approaches that make use of repetitive movement tasks
(Horki et al., 2010; Diez et al., 2011; Ortner et al., 2011). Recent
studies have further suggested that synchronization enabled by
BMI between “motor intention of a wearer” and “motion of
external device” render rehabilitation training effective (Ramos-
Murguialday et al., 2013). In the BOTAS system, a wearer fixates
on a LED flicker when she/he wants to drive motion, and BOTAS
then comes into play. Thus, motor intention and BOTAS motion
are synchronized. Previous studies suggest that our system will
be effective in rehabilitation training, although further work is
needed.

SSVEP FEATURES IN THE BOTAS SYSTEM
To construct a user-friendly BMI system, it is important that
EEG signals are recorded using only a few electrodes (Luo and
Sullivan, 2010). Many BMI systems in previous studies used mul-
tiple electrodes to detect SSVEP (Muller-Putz and Pfurtscheller,
2008; Horki et al., 2011; Ortner et al., 2011). Although use
of multiple electrodes may facilitate detection of EEG signals
and increase classification accuracy (Bin et al., 2009; Grave De
Peralta Menendez et al., 2009; Bakardjian et al., 2010), multi-
ple electrode placement requires considerable time, may burden
users, and may be difficult to apply in rehabilitation train-
ing. Thus, practical BMI systems using small numbers of elec-
trodes are potentially useful and may reduce user discomfort
(Zickler et al., 2011). When recording EEG signals with a few
electrodes, brain areas in which SSVEP is strongly induced
should be focused on exclusively. SSVEP was not strong in
lateral areas (for example, PO7 and PO8). Placement of elec-
trodes in the central area, such as Oz, ought to be effective
for SSVEP-BMIs (Pastor et al., 2003; Bin et al., 2008, 2009).
Indeed, we found that the classification accuracy was over 80%
using the EEG signal from Oz alone, but it would be valuable
to further improve classification accuracy and decrease delay

by optimizing the signal processing software and visual stimuli
(i.e., hardware).

The colors and frequencies of visual stimuli are also impor-
tant parameters for effective elicitation of SSVEP. Takano et al.
(2009) reported that green/blue flicker stimuli improved EEG sig-
nal classification accuracy and the usability of the P300-based
BMI system, compared with white/gray stimuli. This color tuning
should also be effective in SSVEP-based BMIs. Further, SSVEP is
strongly elicited at frequencies below ∼20 Hz (Pastor et al., 2003;
Bakardjian et al., 2010), and low-frequency LED flickers worked
well in this study. Further work on optimization of visual stimuli
is required.

The delay in SSVEP detection was affected by the LED loca-
tion (wrist vs. target position). The delay was longer when the
participants fixated on the LED flicker attached to their wrist,
than in the other locations. Participants were asked to fixate on
a LED flicker placed 80 cm away to yield EEG signal data per-
mitting SVM calibration. Because the distance from the eyes of
participants to the wrist-attached LED was ∼40 cm, variation in
the experimental setting (i.e., the location of LED flickers) will
likely change perceived stimulus intensity or viewing angle, thus
affecting the SSVEP response. On the other hand, the classifica-
tion accuracies of the EEG signals from Oz did not depend on
LED frequency or position. Thus, our BOTAS system exhibited
robustness in terms of EEG classification and allowed the LED
parameters (frequency, location) to be set according to the task or
environment.

In this study, the participants were able to control BOTAS suc-
cessfully using SSVEP. The system could be operated with little
training and BOTAS could be driven asynchronously whenever
the wearer wished to. EEG signals recorded from the visual cor-
tex (Oz) were used in classification. The data indicate that our
BOTAS system is potentially useful in rehabilitation of patients
with upper limb disabilities. Future work, including unit down-
sizing, will allow us to develop an intelligent orthosis useful in
terms of daily life support.
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