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Deep Belief Networks (DBNs) have recently shown impressive performance on a broad
range of classification problems. Their generative properties allow better understanding of
the performance, and provide a simpler solution for sensor fusion tasks. However, because
of their inherent need for feedback and parallel update of large numbers of units, DBNs are
expensive to implement on serial computers. This paper proposes a method based on the
Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto
an efficient event-driven spiking neural network suitable for hardware implementation.
The method is demonstrated in simulation and by a real-time implementation of a 3-layer
network with 2694 neurons used for visual classification of MNIST handwritten digits
with input from a 128 x 128 Dynamic Vision Sensor (DVS) silicon retina, and sensory-
fusion using additional input from a 64-channel AER-EAR silicon cochlea. The system
is implemented through the open-source software in the JAER project and runs in real-
time on a laptop computer. It is demonstrated that the system can recognize digits in the
presence of distractions, noise, scaling, translation and rotation, and that the degradation
of recognition performance by using an event-based approach is less than 1%. Recognition
is achieved in an average of 5.8 ms after the onset of the presentation of a digit. By cue
integration from both silicon retina and cochlea outputs we show that the system can be
biased to select the correct digit from otherwise ambiguous input.

Keywords: deep belief networks, spiking neural network, silicon retina, sensory fusion, silicon cochlea, deep

learning, generative model

1. INTRODUCTION

Deep Learning architectures, which subsume convolutional net-
works (LeCun et al., 1998), deep autoencoders (Hinton and
Salakhutdinov, 2006), and in particular DBNs (Bengio et al,
2006; Hinton et al., 2006; Hinton and Salakhutdinov, 2006) have
excelled among machine learning approaches in pushing the
state-of-the-art in virtually all relevant benchmark tasks to new
levels. In this article we focus on DBNs, which are constructed as
hierarchies of recurrently connected simpler probabilistic graph-
ical models, so called Restricted Boltzmann Machines (RBMs).
Every RBM consists of two layers of neurons, a hidden and a vis-
ible layer, which are fully and symmetrically connected between
layers, but not connected within layers (see Figurel). Using
unsupervised learning, each RBM is trained to encode in its
weight matrix a probability distribution that predicts the activ-
ity of the visible layer from the activity of the hidden layer. By
stacking such models, and letting each layer predict the activ-
ity of the layer below, higher RBMs learn increasingly abstract
representations of sensory inputs, which matches well with rep-
resentations learned by neurons in higher brain regions e.g., of
the visual cortical hierarchy (Gross et al., 1972; Desimone et al.,
1984). The success of Deep Learning rests on the unsupervised
layer-by-layer pre-training with the Contrastive Divergence (CD)
algorithm (Hinton et al., 2006; Hinton and Salakhutdinov, 2006),
on which supervised learning and inference can be efficiently
performed (Bengio et al., 2006; Erhan et al., 2010). This avoids
typical problems of training large neural networks with error

backpropagation, where overfitting and premature convergence
pose problems (Hochreiter et al., 2001; Bengio et al., 2006). The
data required for pre-training does not have to be labeled, and can
thus make use of giant databases of images, text, sounds, videos,
etc. that are now available as collections from the Internet. An
additional attractive feature is that the performance of deep net-
works typically improves with network size, and there is new hope
of achieving brain-like artificial intelligence simply by scaling up
the computational resources.

With the steady increase in computing power, DBNs are
becoming increasingly important for an increasing number of
commercial big data applications. Using gigantic computational
resources industry leaders like Google or Microsoft have started
to invest heavily in this technology, which has thus been recently
named one of the Breakthrough Technologies of 2013 (MIT
Technology Review, 2013), and has led to what has been called
the “second reNNaissance of neural networks” (Ciresan et al.,
2010). This is the result of the success stories of Deep Learning
approaches for computer vision (Larochelle et al., 2007; Lee et al.,
2009; Ciresan et al., 2010; Le et al., 2012), voice recognition
(Dahl et al., 2012; Hinton et al., 2012; Mohamed et al., 2012),
or machine transcription and translation (Seide et al., 2011; MIT
Technology Review, 2013). Despite this potential, the sheer num-
ber of neurons and connections in deep neural networks requires
massive computing power, time, and energy, and thus makes
their use in real-time applications e.g., on mobile devices or
autonomous robots infeasible. Instead of speculating on Moore’s
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FIGURE 1 | Boltzmann and Restricted Boltzmann Machines. A
Boltzmann machine is fully connected within and between layers, whereas
in a RBM, the lateral connections in the visible and hidden layers are
removed. As a result, the random variables encoded by hidden units are
conditionally independent given the states of the visible units, and vice
versa.

O

law to achieve progress through faster and cheaper computing
resources in the future, we argue that fast and energy efficient
inference in DBN:ss is already possible now, and is an ideal use case
for neuromorphic circuits (Indiveri et al., 2011), which emulate
neural circuits and event-based, asynchronous communication
architectures in silicon. This is motivated by the fact that in the
brain, having many neurons and connections is not a factor that
constrains the processing time, since all units operate in paral-
lel, and only the arrival of spike events triggers processing, so
the neural circuits can adapt the processing speed to the rate at
which input spikes occur. This scheme would allow the system
to remain silent, consuming little power, in potentially long silent
periods, and still allow fast recognition when bursts of input activ-
ity arrive, a scenario that is realistic for natural organisms. These
advantages have been recently realized for event-based convolu-
tional networks using convolution chips (Camunas Mesa et al.,
2010; Farabet et al., 2012), but a principled way of building DBN's
models out of spiking neurons, in which both feed-forward and
feed-back processing are implemented has been lacking.

This paper presents the first proof-of-concept of how to trans-
form a DBN model trained offline into the event-based domain.
This allows exploiting the aforementioned advantages in terms
of processing efficiency, and provides a novel and computation-
ally powerful model for performing recognition, sampling from
the model distribution, and fusion of different sensory modali-
ties. Although our current implementation is in software, and not
on neuromorphic VLSI, inference with small DBN’s runs in real
time on a standard laptop, and thus provides the first necessary
step toward the goal of building neuromorphic hardware systems
that efficiently implement deep, self-configuring architectures. In
particular, the novel framework allows us to apply state-of-the-art
computer vision and machine learning techniques directly to data
coming from neuromorphic sensors that naturally produce event
outputs, like silicon retinas (Lichtsteiner et al., 2008) and cochleas
(Liu et al., 2010).

Our main contribution is a novel method for adapting conven-
tional CD training algorithms for DBNs with spiking neurons,
using an approximation of the firing rate of a Leaky Integrate-
and-Fire (LIF) spiking neuron (Siegert, 1951; Jug et al., 2012).
After training with a time-stepped model, the learned parameters

are transferred to a functionally equivalent spiking neural net-
work, in which event-driven real-time inference is performed. In
this article we explicitly perform learning of the network offline,
rather than with spike-based learning rules, but note that there is
a high potential for future event-driven DBNs that could exploit
spike-timing based learning for recognizing dynamical inputs.
We evaluate the spiking DBNs by demonstrating that networks
constructed in this way are able to robustly and efficiently clas-
sify handwritten digits from the MNIST benchmark task (LeCun
et al., 1998), given either simulated spike-train inputs encoding
static images of digits, or live inputs from neuromorphic vision
sensors. In addition we present an event-based DBN architec-
ture that can associate visual and auditory inputs, and combine
multiple uncertain cues from different sensory modalities in a
near-optimal way. The same architecture that is used for inference
of classes can also be used in a generative mode, in which samples
from the learned probability distribution are generated through
feed-back connections.

The aspect of combining feed-back and feed-forward streams
of information is an important deviation from traditional purely
feed-forward hierarchical models of information processing in
the brain (Van Essen and Maunsell, 1983; Riesenhuber and
Poggio, 1999), and DBNs provide a first step toward linking
state-of-the-art machine learning techniques and modern mod-
els of Bayesian inference and predictive coding in the brain (Rao
and Ballard, 1999; Hochstein and Ahissar, 2002; Friston, 2010;
Markov and Kennedy, 2013). The importance of recurrent local
and feed-back connections in the cortex seems obvious from the
anatomy (da Costa and Martin, 2009; Douglas and Martin, 2011;
Markov et al., 2012), and in vivo experiments (Lamme et al., 1998;
Kosslyn et al., 1999; Bullier, 2001; Murray et al., 2002), but the
precise role of feed-back processing is still debated (Lamme et al.,
1998; Bullier, 2001; Kersten and Yuille, 2003). One hypothesized
role is in multisensory integration, and as generative Bayesian
models, DBNs are very well suited to perform such tasks, e.g.,
by combining visual and auditory cues for improved recognition
(Hinton et al., 2006). We will thus discuss the potential impact of
DBNs as abstract functional models for cortical computation and
learning.

The structure of this article is as follows: The mathematical
framework and the algorithms used for training and converting
conventional DBNs into spiking neural networks are presented in
Section 2. Section 3 shows the application of the framework to
simulated spike train inputs and real visual and auditory inputs
from neuromorphic sensors. Implications of this new framework
are discussed in Section 4.

2. MATERIALS AND METHODS

2.1. DEEP BELIEF NETWORKS

A DBN (Bengio et al., 2006; Hinton et al., 2006) is a multi-
layered probabilistic generative model. The individual layers con-
sist of simpler undirected graphical models, so called Restricted
Boltzmann Machines (RBMs), typically with stochastic binary
units. A RBM has a bottom layer of “visible” units, and a top
layer of “hidden” units, which are fully and bidirectionally con-
nected with symmetric weights. The difference between standard
Boltzmann machines and RBMs is that in the restricted model
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units within the same layer are not connected (see Figurel),
which makes inference and learning within this graphical model
tractable. The visible layers of RBMs at the bottom of a DBN are
clamped to the actual inputs when data is presented. When RBMs
are stacked to form a DBN, the hidden layer of the lower RBM
becomes the visible layer of the next higher RBM. Through this
process, higher level RBMs can be trained to encode more and
more abstract features of the input distribution.

In a binary RBM the units stochastically take on states 0 or
1, depending on their inputs from the other layer. Denoting the
states of visible units with v;, the states of hidden units with hj, the
weights connecting these units with w;;, and the biases of visible

and hidden units with bgv) and b](»h) respectively, a RBM encodes

a joint probability distribution p(v, h|0), defined via the energy
function

E(V, h; (-)) = — Z Z Wijvihj — Z hz(»v)vi - Z h](»h)h', (1)
i i i

i

where 8 = (w, b®, b®). The encoded joint probability can then
be written as

exp(—E(v, h; §))

. 2
Sy > exp(—E(Y. I ) @

p(v.h|8) =

From equations (1) and (2) the following stochastic update rules
for the states of units were derived (Hinton and Sejnowski, 1986),
such that on average every update results in a lower energy state,
and ultimately settles into an equilibrium:

pi=1h0) = o [ Y wih+ 5" 3)
j

phij=1lv,0) =0 (Z wivi + b;h)> ’ @

where 6(x) = 1/ (1 + exp(—x)) is the sigmoid function, and the
units will switch to state 0 otherwise. When left to run freely,
the network will generate samples over all possible states (v, h)
according to the joint probability distribution in (2). This holds
for any arbitrary initial state of the network, given that the net-
work has enough time to become approximately independent of
the initial conditions.

2.1.1. Training a RBM

During learning, the visible units are clamped to the actual inputs,
which are seen as samples from the “data distribution.” The task
for learning is to adapt the parameters 6 such that the marginal
distribution p(v|8) = Y} p(v, h|0) becomes maximally similar to
the true observed data distribution p*(v), i.e., the log-likelihood
of generating the observed data needs to be maximized. Hinton
et al. (2006) have shown that this gradient ascent on the log-
likelihood w.r.t. the weights w;; can be efficiently approximated by
a Gibbs-sampling procedure, which alternates between stochasti-
cally updating the hidden and visible units respectively. For the

RBM this leads to the learning rule

Awi = 1 (Vi) gaea = (ViMi)moaa) (5)

where (.)data denotes an average over samples with visible units
clamped to actual inputs, (.)model denotes an average over samples
when the network is allowed to sample all units freely, and 7 is the
learning rate.

Using a sampling approximation normally requires creating
enough samples such that the network can settle into an equi-
librium. However, for a RBM the CD algorithm (Hinton et al,,
2006) has been developed, which uses only a single sample for
the data and model distribution, and performs very well in prac-
tice. CD first samples new values for all hidden units in parallel,
conditioned on the current input, which gives a complete sample
(Vdata, Ndata) for the data distribution. It then generates a sample
for the visible layer, conditioned on the hidden states hgaa sam-
pled in the first step, and then samples the hidden layer again,
conditioned on this new activity in the visible layer. This gener-
ates a sample (Viodel, hmodel) from the model distribution. The
weight update can then be computed as

Awjj =1 (Vi,datahj,data - Vi,modelhj,model) . (6)

2.1.2. Persistent CD and transient weights

Since the form of sampling induced by CD strongly biases
the samples from the model distribution toward the most
recently seen data, one can alternatively use so-called Persistent
Contrastive Divergence (Tieleman, 2008). In this approach, the
model distribution is initialized arbitrarily, and at every iteration
of the training process further samples are created by sampling
conditioned on the most recently sampled hidden states, which
are maintained between data points.

There is a delicate balance between sampling and learning in
Persistent CD: Although fast learning is generally desirable, too
fast learning can result in too fast changes of the encoded joint
probability distribution, which can cause the equilibrium distri-
bution to change too fast for the Markov chain of model states
to ever settle in. Nevertheless, high learning rates have turned
out to be beneficial in practice, since they increase the mixing
rates of the persistent Markov chains (Tieleman and Hinton,
2009). Following the suggestions in Tieleman and Hinton (2009)
we used so called “fast weights,” which are added to the regular
weights of the network, and decay exponentially with each train-
ing step. When sampling from the model distribution, the fast
weights are updated with the rule:

AW{]?SK = _a<vihj>m0del : (7)
We will later show that such transient weight changes can be
interpreted as short-term plasticity in a spiking neural network
implementation.

2.1.3. Constructing DBNs by stacking RBMs

As discussed previously, DBNs can be constructed by stacking
RBMs and interpreting the hidden layer of the lower RBM as
the visible layer of the next layer. It has been shown that adding
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hidden layers and applying the previously discussed unsuper-
vised learning methods for RBMs is guaranteed to increase the
lower bound on the log-likelihood of the training data (Hinton
et al., 2006). Higher layers will tend to encode more abstract fea-
tures, which are typically very informative for classification tasks.
The top-layer of the DBN can then be trained with supervised
learning methods, and the whole multi-layer network can be opti-
mized for the task through error backpropagation (Hinton and
Salakhutdinov, 2006; Hinton et al., 2006).

DBNSs can also be used for associating different sets of inputs,
e.g., from different sensory modalities. In this case one can build
pre-processing hierarchies for both inputs independently, and
then treat the top layers of these hierarchies as a common visi-
ble layer for a new association layer on top of them (Hinton et al.,
2006). DBNs are therefore not necessarily single hierarchies, but
can also exhibit tree-like architectures.

2.2. DISCRETE-TIME AND EVENT-DRIVEN NEURON MODELS
Traditional RBMs are, like most machine-learning models, sim-
ulated in time-stepped mode, where every neuron in a layer gets
updated at every time step, and the size of this time step At is
fixed throughout the simulation. While training is typically eas-
ier to achieve with continuous and time-stepped neuron models,
the event-driven model has the potential to run faster and more
precisely. This is because the states of LIF neurons in the event-
based network are only updated upon the arrival of input spikes,
and only at these times the neurons decide whether to fire or not.
Temporal precision is limited only by the numerical representa-
tion of time in the system (as opposed to the duration of the
time-step parameter). A drawback is that not all neuron models,
e.g., smooth conductance-based models, can be easily converted
into event-driven models.

In the standard formulation (Hinton et al., 2006), units within
RBMs are binary, and states are sampled according to the sig-
moidal activation probabilities from Equations (3) and (4). We
call such neuron models sigmoid-binary units. In Nair and
Hinton (2010) it was shown that an equivalent threshold-linear
model can be formulated, in which zero-mean Gaussian noise
N (0, 62) with variance o2 is added to the activation functions:

hj = max (0, Z wiivi + th + N0, 03,)) ) (8)
i

and similarly for the sampling of visible units.

A threshold-linear function can also be used to approximate
the expected firing rates of simplified spiking neurons under
constant current stimulation, such as the LIF neuron (Gerstner
and Kistler, 2002), which is one of the simplest, yet biolog-
ically relatively plausible models for spiking neurons. In this
model each incoming event adds to the membrane potential V,
according to the strength w;; of the synapse along which the
event occurred. Incoming spikes within an absolute refractory
period t, after an output spike are ignored. Spikes are gener-
ated deterministically whenever the membrane potential crosses
the firing threshold V7, otherwise the membrane potential decays
exponentially with time constant t. Simple versions of LIF neu-
rons can be simulated in an event-based way, since membrane

potentials only need to be updated upon the arrival of input
spikes, and spikes can only be created at the times of such input
events. For a LIF neuron representing h;, which receives a con-
stant input current s; = ), w;;v; corresponding to the weighted
sum of inputs from connected visible units, the expected firing
rate p;(s;) is:

pj(5j) = { (1 = vlog (1 - %))_1 if52 Vi ()
0

otherwise

The above equation holds when the neuron is injected with a
constant input, but under realistic conditions the neuron receives
a continuous stream of input spike trains, each arriving to first
approximation as samples from a Poisson process with some
underlying firing rate. For this case, a more accurate prediction
of the average firing rate can be obtained using Siegert neurons
(Siegert, 1951; Jug et al., 2012). Siegert neurons have transfer
functions that are mathematically equivalent to the input-rate
output-rate transfer functions of LIF neurons with Poisson-
process inputs. In order to compute the Siegert transformation
for a neuron receiving excitatory and inhibitory inputs with rates
(Pe, p;) and weights (W,, w;) respectively, we first have to compute
the auxiliary variables

hQ =T (Wefe +Wif) 0 =3 (W2pe + W)

T = Vst + 1Q I' =0q
k= \/tyn/t y =1¢(1/2)]

where Ty, is the synaptic time constant (for our purposes con-
sidered to be zero), and ¢ is the Riemann zeta function. Then the
average firing rate p,,r of the neuron with resting potential Vs
and reset potential Vi can be computed as (Jug et al., 2012):

T T
Pour = <tref + F\/;
Vi + kyl' -7 2 -7
/ exp [7@[ 3 ) ] . |:1 + erf(—u )] du)
Vieser +kyT’ 2r F\/E

A RBM trained using Siegert units can thus be easily converted
into an equivalent network of spiking LIF neurons: By normaliz-
ing the firing rate in Equation (10) relative to the maximum firing
rate 1/tyf, pour can be converted into activation probabilities as
required to sample RBM units in Equations (3, 4) during standard
CD learning with continuous units. After learning, the parame-
ters and weights are retained, but instead of sampling every time

step, the units generate Poisson spike trains with rates computed
by the Siegert formula Equation (10).

(10)

-1

2.3. TRAINING THE NETWORK

2.3.1. Task

The network was trained on a visual classification task on the
MNIST benchmark dataset for machine learning (LeCun et al.,
1998). This set consists of a collection of 28 x 28 gray-scale
images of handwritten digits, of which 60,000 form a training set,
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and 10,000 an independent test set. In order to make the network
more robust, we modified the training set by adding small ran-
dom translations (£15%), rotations (+3°) and scalings (£10%).
The modified training set contains 120,000 images.

2.32. Network Architecture

For the visual classification task we trained a DBN with one input
layer of 784 visual input units (corresponding to the pixels of
28 x 28 input images), a 500-unit “Visual Abstraction Layer,” a
500-unit “Association Layer,” and a 10-unit “Label Layer,” with
units corresponding to the 10 digit-classes. The architecture of
the network is shown in Figure 2. Since our goal in this arti-
cle is to demonstrate a proof-of-concept for spiking DBNS, the
785-500-500-10 network we used is substantially smaller than the
784-500-500-2000-10 network used previously for the MNIST
task (Hinton et al., 2006), or the state-of-the-art network in
Ciresan et al. (2010).

2.3.3. Training

Each RBM in Figure 2 was first trained in a time-stepped mode
with Siegert neurons as individual units, for which we fixed the
parameters for resting and reset potential, membrane time con-
stants, and refractory period. Since the output rates of Siegert
neurons are not constrained to the interval [0, 1] like in Sigmoid-
Binary units, the outputs were normalized, such that the maxi-
mum possible firing rate (given by 1/f,) had a value of 1. As
training algorithm for RBMs we applied persistent Contrastive
Divergence learning (Hinton et al., 2006) and the fast weights
heuristics described in Section 2.1.2. We also applied a modi-
fication to the training process proposed by Goh et al. (2010)
to encourage sparse and selective receptive fields in the hidden
layer.

Learning proceeded in a bottom-up fashion, starting by
training the weights between the Visual Input and the Visual
Abstraction Layers. Next, the weights of the Associative Layer
were trained, using input from the previously trained Visual
Abstraction Layer and the supervised information in the Label
Layer as the joint visible layer of the RBM. For each layer we
trained for 50 iterations over the complete training set.

Associative Layer

(500 Units)
W\/A_As/ \VLB—AS
Visual Abstraction Layer Label Layer
(500 Units) (10 Units)
WyvI-vA

Visual Input Layer
(784 Units)

FIGURE 2 | Architecture of the DBN for handwritten digit recognition.
The connections between layers represent the weights of a RBM.

2.4. SIMULATION OF AN EVENT-DRIVEN DBN

We created simulators for arbitrary event-driven DBNs in Matlab
and Java. The simulation can be either run in Recognition mode,
where input is applied at the bottom layer, and the label has to be
inferred through bottom-up processing, or in Generation mode,
where the activity of the label layer is fixed, and the network
samples activity in the Visual Input Layer through top-down con-
nections, according to the learned generative model. Bottom-up
and top-down processing can also be activated simultaneously.

In Recognition mode, the DBN is shown a number of test
images, which are transformed into spike trains that activate
the Visual Input Layer. A Poisson spike train is created for each
pixel with a rate proportional to the pixel intensity, and all fir-
ing rates are scaled such that the total input rate summed over all
28 x 28 pixels is constant (between 300 and 3000 spikes per sec-
ond). The goal is to compute the correct classification in the Label
Layer. For every input image, the input activations are sampled as
Poisson spike trains with rates proportional to the pixel intensi-
ties. Classification can be done in one of two ways: first, we can
turn on only bottom-up connections from the Visual Input Layer
toward the Label Layer, and observe which of the neurons in the
Label Layer spikes the most within a fixed time interval. The sec-
ond variant is to use only bottom-up connections between Visual
Input and Visual Abstraction Layer, but activate all recurrent con-
nections in the other RBMs. Information about previous inputs
is stored both within the membrane potentials and the recurrent
spiking activity within the network. Recognition is thus achieved
through a modulation of the persistent network activity by input
spike trains. In the absence of input, the network will continue to
be active and drift randomly through the space of possible states
according to the encoded generative model.

This principle is exploited in the Generation mode, where units
within the Label Layer are stimulated, and activation propagates
recurrently through the top-level RBM, and top-down to the
Visual Input Layer. Thus, analyzing these samples from the gen-
erative model provides a way to visualize what the network has
learned so far. If the DBN is activated in this way, it might settle
into a particular state, but could become stuck there, if this state
corresponds to a local minimum of the Energy landscape accord-
ing to (1). This can be avoided by using a short-term depressing
STDP kernel in Generation mode, which temporarily reduces
the weights of synapses where pre- and post-synaptic neurons
are active within the same short time window (see Figure 3).
These short-term modifications vanish over time, and the weights
return to their original values. This modification is inspired by
the idea of using auxiliary “fast-weights” for learning (Tieleman
and Hinton, 2009), which transiently raise the energy of any state
that the network is currently in, thereby slightly pushing it out
of that state. The effect is that the network, instead of settling
into an energy well and remaining there, constantly explores the
whole space of low-energy states. This is a useful feature for search
and associative memory tasks, where the network represents a
cost function through the encoded energy landscape, and the task
is to converge to a maximally likely state starting from an arbi-
trary initial state, e.g., an incomplete or ambiguous input. We
demonstrate this in Section 3.4 in the context of multi-sensory
integration.
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Aw
tpre-tpost

FIGURE 3 | Short-term plasticity kernel for Generation mode. The
“fast-weight” STDP kernel temporarily depresses all synapses in which the
pre- and post-synaptic neurons were active shortly after each other,
depending on the spike timing difference tyre — thost. As a result, the
network is constantly being pushed out of its present state.

2.5. REAL-TIME IMPLEMENTATION

2.5.1. Neuromorphic visual input

We developed a real-time variant of the event-driven DBN which
receives inputs from neuromorphic sensors. Visual input was
obtained from the DVS (Lichtsteiner et al., 2008), an event-
generating image sensor consisting of 128 x 128 pixels, which
asynchronously outputs streams of address events in response to
local relative light-intensity changes. The events are tagged with
the address of the creating pixel, a time-stamp, and an ON or
OFF polarity tag, which indicates whether the event was created
in response to an increase or decrease of light intensity over that
pixel. Events are transmitted via a USB port to a computer, and
processed in the open-source JAER software framework written in
Java (Delbruck, 2013). The networks were first trained in Matlab,
and then transferred into the jAER software, where they could run
in real-time in response to event stream inputs. We did not use
the polarity information for our purposes, and down-sampled the
128 x 128 pixels to a resolution of 28 x 28, which matched the
resolution of the images in the MNIST training set. These events
were fed into the Visual Input Layer (see Figure 2) while the DVS
was moved by hand across several hand-drawn images.

2.5.2. Multi-sensory fusion
We also created a task in which visual stimuli from a silicon retina
and auditory stimuli from a silicon cochlea (see Section 2.5.3)
were associated with each other in real-time. During training the
presentation of a pure tone was always paired with the presenta-
tion of an image of a handwritten digit. Table 1 shows the tones
and frequencies that were used, and the visual-auditory pairing
scheme. The network thus had to learn to associate the two sen-
sory domains, e.g., by resolving ambiguity in one sensory stream
through information from the other stream.

The DBN architecture for sensory fusion is described in detail
in Section 3.4 and shown in Figure 8.

2.5.3. Neuromorphic Auditory Input

Auditory input was received from the AER-EAR2 (Liu et al.,
2010) neuromorphic auditory sensor, which was built to mimic
the biological cochlea. The device transforms input sounds into
streams of spikes in 64 channels responsive to different frequency
ranges. We found that since spikes of the silicon cochlea tend

Table 1 | Paired tones and digits in multi-sensory fusion task.

Tone Ag Ba C5 D5 E5 F5 Gs# A5 Bs Cs

Freq.(Hz) 440.0 493.9 523.3 5873 659.3 698.5 830.6 880.0 9878 1046.5
Digit 0 1 2 3 4 5 6 7 8 9

During training pure tones with given frequencies (upper rows) were paired with
an associated digit (bottom row).

to be phase-locked to the sound waveform to which they are
responding, the distribution of Inter-spike Intervals (ISIs) was
a more precise indicator of the frequency of pure input tones
than the distributions of channels from which the spikes origi-
nated. We preprocessed the auditory spikes with an event-based
IST histogramming method wherein 100 ISI bins were distributed
logarithmically between 0.833 and 2.85 ms (350-1200 Hz), and
for each bin an input LIF unit was assigned which was stimu-
lated every time an ISI occurred on any channel that was within
the unit’s designated frequency-range. The output events of these
units were then routed to the Auditory Input Layer (see Section
3.4 and Figure 8).

As stimuli we chose the pure tones from Table1 from the
A-minor harmonic scale, ranging from A4 (440Hz) to Cé6
(1046.5Hz), which were played for 1s each into the silicon
cochlea. We recorded the spike response of neurons in the
Auditory Input Layer, which fired whenever enough input events
from AER-EAR? in their ISI range were received. For training in
the time-stepped domain we constructed data vectors for audi-
tory data by computing the average firing rates of Auditory Input
Layer neurons over time bins of 100 ms, evaluated every 30 ms.

3. RESULTS

This section presents the classification performance, shows the
generative mode of operation, and presents sensor fusion exper-
iments. For the results in sections 3.1 and 3.2 we use simulated
spike-train input (see Section 2.4). Inputs from neuromorphic
sensors (Section 2.5) are directly used in the results of sections
3.3and 3.4.

3.1. CLASSIFICATION PERFORMANCE

Three variants of DBNs were trained, using the architecture
shown in Figure 2 for the MNIST visual classification task: the
first two variants are time-stepped models using sigmoid-binary
or Siegert neurons respectively (see Section 2.2), the third is an
event-driven DBN using LIF neurons that were converted from
Siegert neurons used during training. The networks were all
trained in time-stepped mode for 50 iterations over the modified
120,000 example MNIST dataset using a variant of Contrastive
Divergence learning (see Section 2.3). Figure 4 shows the features
learned by a subset of the neurons in the RBM for the Visual
Abstraction Layer. One can see that this first layer has learned
through unsupervised learning to extract useful features for the
discrimination of handwritten digits, in this case parts of digits.
The classification performance shown in Table 2 was evaluated
on images from the MNIST test set, using simulated Poisson
spike trains with a total rate of 300 spikes per second for the
whole image as input for event-based models. The size of our
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Receptive fields of Visual Abstraction Layer Neurons
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FIGURE 4 | Analysis of weights learned in the DBN. Visualization of the
weights learned by a subset of neurons in the Visual Abstraction Layer for
28 x 28 images in the MINIST task. Each image shows the vector of
weights feeding into one neuron.

Table 2 | Classification performance on the MNIST test set for two
time-stepped and one event-based LIF neuron model.

Neuron model Domain % correct
Sigmoid-Binary time-step 9748
Siegert time-step 95.2

LIF event-based 94.09

Inputs for the event-based model were simulated Poisson spike trains (see
Section 2.4).

DBN is substantially smaller than in current state-of-the-art deep
network approaches for MNIST, e.g., (Ciresan et al., 2010), but
Table 2 shows that the performance is in a very good range (above
94%). More importantly for this proof-of-concept study, the per-
formance loss when switching to spiking neuron models is small
(on the order of 1%), and can possibly be further improved when
going to larger network sizes.

3.2. GENERATION MODE

In Generation mode the network does not receive external input
at the bottom layers. Instead one of the top layers (in our case
the Label Layer in Figure2) is stimulated, and activity spreads
in top-down direction through the network. This provides a way
to visualize what has been learned in the probabilistic generative
model encoded in the bi-directional weights.

Since the network is event-driven, and neurons fire only upon
the arrival of input spikes, an initial stimulus in at least one of the
layers is needed to push the network from a silent state into one
of self-sustaining activity, provided that the neuron parameters
and recurrent connectivity allow this. We performed empirical
exhaustive parameter search over firing thresholds Vy, and mem-
brane time constants t in a fully trained network of LIF neurons
and measured the mean firing rate within the network after 1 s of
100 Hz stimulation of one Label Layer unit, and 5 s without exter-
nal stimulation. This allowed us to identify parameter regimes
that allow self-sustained activity of about 20 Hz average activity
in Generation mode (T = 800 ms, Vieser = 0, Vi, = 0.005).

To visualize the activity of the DBN in Generation mode we
modified the architecture in Figure 2 that was used for training

Associative Layer
(500 Units)

Top
WVA-,:S/' ‘\V;B-AS BN
Visual Abstraction Layer Label Layer
(500 Units) (10 Units)
/ Wy/I-VA Bottom
RBM
Visual Input Layer Visual Input Layer
Bottom-Up (784 Units) Top-Down (784 Units)

FIGURE 5 | DBN architecture for recognition and generation. The Visual
Input Layer was split into a bottom-up and a top-down part, used for
projecting inputs in Recognition mode, or visualizing top-down activity in
Generation mode.

on the MNIST dataset. In the new architecture shown in Figure 5
the lowest layer is split up after training into two Visual Input
Layers, one projecting only bottom-up from inputs to the Visual
Abstraction Layer, and another copy that is purely driven by
top-down connections. The weight matrices for bottom-up and
top-down connections are identical. Thus, the top layers of the
network form the recurrent model that encodes the data distri-
bution, whereas the bottom part either projects inputs through
bottom-up connections in Recognition mode, or visualizes the
activity of the top layers through top-down connections in
Generation mode. If both bottom-up and top-down connections
are activated at the same time, the top-down Visual Input Layer
visualizes a processed image of what the network ‘believes’ it is
seeing in the bottom-up Visual Input Layer. This process per-
forms probabilistic inference by which evidence from the current
input is combined with the prior distribution over likely MNIST
images encoded in the DBN weights, and a posterior estimate of
the most likely input is generated.

Figure 6A illustrates the generation of samples from the
encoded probabilistic model after activating a unit in the
Label Layer. This induces spiking activity in the intermediate
Associative and Visual Abstraction Layer, and ultimately stim-
ulates units in the top-down Visual Input Layer, which can be
visualized. Figure 6A shows the response of the network when the
label unit corresponding to the class “4” is stimulated. The snap-
shot shows the induced activity in the lower layers, and one can
clearly see that the response in the Visual Input Layer resembles
closely the handwritten digits in the MNIST set that were used
for training. By using short-term depressing synapses as described
in Section 2.1.2 and in Figure 3 the network not just samples
one single example of a “4,” but iterates through different vari-
ations that are compatible with the variance over inputs in the
learned generative model. This can be best seen in Video 1 of the
supplementary material.

Figure 6B shows the spiking activity in the different layers of
the network in generation mode, both during a forced stimula-
tion, and in a free self-sustained mode. The network is initially
stimulated for 2's by forcing firing of neurons in the Label Layer
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Visual
Abstraction

FIGURE 6 | Generation mode of the event-driven DBN. (A) Screen
capture of the network while generating samples of input activations
corresponding to class “4." The neuron corresponding to label “4" was
stimulated in the Label Layer (left), and activity propagated through the
whole network. The snapshot shows a single example of activity in the
Visual Input Layer (right) that is sampled from the generative model
encoded in the weights of the DBN. Through short-term depressing

B Visual Input Layer

Neuron Index

Label Layer

0 2 4 6 8 10 12
time(s)

synapses (see Figure 3) the network starts to drift through the space of
all potential compatible input activations. (B) Raster plot of the DBN in
Generation mode. The Label Layer (bottom) is initially stimulated for 2 s
(shaded region) to fire in sequence for digits 1, 2, and 3. Afterwards, the
network freely samples from the encoded generative model. Although
activity in the Label Layer jumps between digits, activity in the Visual Input
Layer transitions smoothly.

corresponding to digit classes “1,” “2,” and “3” (shaded region).
One can see that through the recurrent connectivity activity
spreads throughout the layers of the network. After 2 s the input to
the Label Layer is turned off, and the network is allowed to freely
generate samples from the encoded probability distribution. We
can see that in the Label Layer the network jumps between
different digits, whereas in the other layers, more smooth tran-
sitions are found. Switches between visually similar digits (e.g.,
4 and 9) occurred more often on average than between very
different digits (e.g., 0 and 1).

3.3. REAL-TIME VISUAL RECOGNITION

For this task the event-driven DBN was connected to a neuro-
morphic vision sensor, the 128 x 128 pixel DVS (Lichtsteiner
et al., 2008). Events indicating local light intensity changes are
used as inputs in the bottom-up Visual Input Layer. The whole
system works in real-time, i.e., while the DVS is recording visual
input, the DBN simultaneously computes the most likely inter-
pretation of the input. By splitting up the connections between
Visual Input and Visual Abstraction Layer into a bottom-up and
a top-down pathway as in Figure 5 we can simultaneously clas-
sify the input in real-time, and also visualize in the top-down
Visual Input Layer the interpretation of the input after recurrent
processing in the DBN.

The real-time system runs as a filter in the JAER software pack-
age (Delbruck, 2013) on a standard laptop, after training the
weights of the DBN offline in Matlab on the MNIST database.
Figure 7 shows snapshots of the activity within the different lay-
ers of the network during operation on various stimuli recorded
in real-time with the DVS. In Figure 7A the DVS was moved over
a hand-drawing of the digit “5” which was not included in the
training set. The left panel shows the input into the Visual Input
Layer. The digit was correctly classified as a “5” in the Label Layer.
On the right we can see the reconstruction of the image, which
closely resembles the actual input. In Figure 7B an ambiguous

Retina Visual Input Visual Visual Input
Input Layer Abstraction Assoc. Label Layer
(Bottom Up) Layer Layer Layer (Top Down)

@
i " L

FIGURE 7 | Screen captures of the real-time spiking DBN in operation
during visual handwritten digit recognition. Each row displays a
snapshot of the activity in the different layers of the network (see Figure 5)
for a different visual input recorded with the DVS (left column). Neurons in
the Label Layer (column 5) are arranged such that the first column
represent classes 0—4 (top to bottom), and the second column classes 5-9.
The rightmost column shows the top-down reconstruction of the Visual
Input Layer. (A) The network recognizes the digit 5. (B) For an ambiguous
input, the network alternates between the two possible interpretations “3"
and “5." The top-down reconstruction shows the current interpretation. (C)
For an unfamiliar input (letter “A”), the network classifies it as the closest
resembling digit class “9,” and reconstructs a mixture between the actual
input and the generative model for class “9.” (D) For an input containing a
distractor, the network still classifies it as the most likely input, and
reconstructs an image without the distractor.

input was presented, which can either be interpreted as a “3” or
a “5” The network iterated between both interpretations, in this
snapshot the reconstruction on the right shows that the network
currently interprets the input as a “3,” adding the missing parts
of the input to match the actual shape of a digit. In Figure 7C
the network is shown an input from an unknown input class,
namely the letter “A.” Since the generative model learned in the
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network knows only digits, it classifies the input as the most sim-
ilar digit, in this case “9,” and reconstructs the input as a mixture
between the actual DVS input and the entrained model of the
digit. In Figure 7D a digit “4” with a distracting stimulus on top
was shown. It was correctly classified and reconstructed in the
top-down Visual Input Layer without the distracting stimulus.

In general, the network recognized reliably all tested classes
of handwritten digits in real-time, even in the presence of strong
distractors, with slightly rotated images, or variations in scale or
translation of the image. It can also do so very quickly: at a typical
low-rate input firing rate of 3000 input spikes per second over the
whole image, the DBN submits its first correct guess of the output
label within an average of 5.8 ms after the onset of the simulated
Poisson spike train input. Firing rates in the intermediate layers
are higher, resulting in 58800 spikes/s in the 500 neuron Visual
Abstraction Layer (see Figure 2), 147600 spikes/s in the 500 neu-
ron Association Layer, and 1800 spikes/s in the 10 neuron Label
Layer.

3.4. REAL-TIME SENSORY FUSION

We trained a DBN to associate visual stimuli from a silicon retina,
and auditory stimuli from a silicon cochlea, in order to clas-
sify them in real-time by integrating both input streams. Table 1
shows the respective association of digit images recorded with the
DVS (Lichtsteiner et al., 2008), and tones of different frequencies
recorded with the AER-EAR2 silicon cochlea (Liu et al., 2010).
We used the DBN architecture shown in Figure 8, in which a
bidirectional connection between the top-level Association Layer
and the Auditory Input Layer is added.

During training a network of Siegert neurons were presented
with input images from the MNIST database and pre-recorded
activations of Auditory Input Layer neurons in response to the
tones in Table1 (see Section 2.5.3). After the training phase,
the DBN was converted into an event-driven DBN as described
previously, which was run in real-time in the jAER software
package.

One key aspect of sensory fusion is the ability to integrate
multiple, possibly noisy or ambiguous cues from different sen-
sory domains to decide on the actual state of the world. We
tested this by providing simultaneous visual and auditory stimuli

Associative Layer
(500 Units)
Visual Abstraction Layer Label Layer Audio Layer
(500 Units) (10 Units) (100 Units)

il

Visual Input Layer
Bottom-Up
(784 Units)

Ny

Visual Input Layer
Top-Down
(784 Units)

FIGURE 8 | DBN architecture of the multi-sensory fusion network. In
addition to the architecture for visual recognition in Figure 5 the Auditory
Input Layer is bidirectionally connected to the top-level Association Layer.
Thus, associations between visual inputs, auditory inputs, and classification
results in the Label Layer can be learned during training, and classification
can be achieved in real-time.

to the DBN, such that the combination of both stimuli would
provide more conclusive evidence of the true label than the sin-
gle modalities. The auditory stimulus was a mixture of A4 and
F5 tones corresponding to “0” and “5” digits, with four times
as many input spikes corresponding to class “0” as to class “5”.
Thus, if given only the audio input, the DBN should identify
a “0” Conversely, the visual input shows an ambiguous input
that is consistent with either a “3” or a “5,” but very unlikely
for a “0”. Figure 9 demonstrates the audio-visual fusion using an
ambiguous visual input and the auditory input favoring class “0.”
However, while each input stream favors an incorrect interpreta-
tion of either “3” or “0,” class “5” is correctly chosen as the most
consistent representation for the combined visual-auditory input
stream.

In Figure 10 we analyzed how this depends on the relative
strength of visual and auditory input streams and the ambigu-
ity of the visual input by (1) changing the relative proportion of
input spikes coming from the audio stream, and (2) interpolating
the visual input between an image showing “3” and another one
showing “5.” We varied the mixture of firing rates of input neu-
rons such that 80% (Figure 10A), 20% (Figure 10B), and 10%
(Figure 10C) of all input spikes came from the auditory stream,
and measured the proportion of output spikes for the three classes
“0,” “3,” and “5”. In panels A and C the classes that are inconsistent
with the dominating auditory respectively visual input are almost
completely suppressed, and class “5” is favored. One can also see
from the difference between Figures 10A,B that an increase of a
few spikes favoring an alternative interpretation can dramatically
adjust the output choice: In this case 10% more of spikes favoring
the interpretation “5” are enough to bias the classification toward
the interpretation consistent with both visual and auditory input
over a wide range of visual ambiguity.

4. DISCUSSION

The great potential of DBNs is widely recognized in the machine
learning community and industry (MIT Technology Review,
2013). However, due to the high computational costs, and the
capability to integrate large amounts of unlabeled data that is

Audio
Input

Label Visual

Recon.

Visual
Input

Ol o]

FIGURE 9 | Cue integration with a multi-sensory spiking DBN. (A)
When presenting only an ambiguous visual input to the DVS, the network
in the absence of auditory input will alternate between recognizing a “3" or
a "5" (see also Figure 7). (B) When presenting only an ambiguous auditory
input to the cochlea, the network in the absence of visual input will
alternate between recognizing a “0” ora “5." (C) By combining the two
inputs (mixing at 50%), the network reliably classifies the two ambiguous
patterns as class “5,” which is the only consistent interpretation.
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FIGURE 10 | Proportion of output spikes for 3 different mixture ratios
of auditory and visual input in a multi-sensory spiking DBN. Red,
green, and blue encode the ratio of 0, 3, and 5 choices (spikes) relative to
the total number of spikes emitted from the Label Layer (averaged over 10
trials). The horizontal axis sweeps the probability that visual input spikes are
chosen from either a 3" digit or an aligned “5" digit. Auditory input
consists of a mixture of “0" and “5" inputs, with four times more spikes
indicating a “0" Over a wide range of mixture values, the network correctly
infers the only consistent interpretation of the multi-modal input, which is
class “5" Inputs that are inconsistent with the dominating sensory domain
(3" in A, “0" in B,C) are mostly suppressed.

freely available on the web, applications so far have strongly con-
centrated on big data problems (Le et al., 2012). Surprisingly little
effort has gone into making this technology available for real-time
applications, although the scenarios in which DBNs excel, e.g.,
visual object recognition, speech recognition, or multi-sensory
fusion, are extremely important tasks in fields like robotics or
mobile computing. An exception is the work of (Hadsell et al,,
2009), who use small and mostly feed-forward deep networks
for long-range vision in an autonomous robot driving off road.
In general, previous attempts to reduce the running time have
mostly attempted to restrict the connectivity of networks (Lee
et al., 2008; Le et al., 2012), e.g., by introducing weight-sharing,
pooling, and restricted receptive fields. In speech processing on
mobile phones, data is first communicated to a central server
where it is processed by a large DBN before the result is sent back
to the mobile device (Acero et al., 2008). Online and on-board
processing would be very important for mobile applications
where such communication infrastructure is not available, e.g.,
for exploration robots in remote areas, underwater, or other plan-
ets, but this requires fast and efficient processing architectures,
that conventional DBNs currently cannot provide.

We think that this presents a big opportunity for neuromor-
phic engineering, which has always pursued the goal of provid-
ing fast and energy efficient alternatives to conventional digital
computing architectures for real-time brain-inspired cognitive

systems (Indiveri et al., 2011). Here we have presented a novel
method how to convert a fully trained DBN into a network of
spiking LIF neurons. Even though we have only shown a proof-
of-concept in software, this provides the necessary theoretical
framework for an architecture that can in the future be imple-
mented on neuromorphic VLSI chips, and first experiments in
this direction are promising. The event-driven approach can be
energy efficient, in particular since the required processing power
depends dynamically on the data content, rather than on the con-
stant dimensionality of the processed data. Furthermore, as we
have shown, spiking DBN’s can process data with very low latency,
without having to wait for a full frame of data, which can be
further improved if individual units of the DBN compute in par-
allel, rather than updating each unit in sequence. This advantage
has been recognized for many years for feed-forward convolu-
tional networks, in which almost all operations can be efficiently
parallelized, and has led to the development of custom digital
hardware solutions and spike-based convolution chips (Camuiias
Mesa et al., 2010; Farabet et al., 2012), which through the use
of the Address Event Representation (AER) protocol, can also
directly process events coming from event-based dynamic vision
sensors (Lichtsteiner et al., 2008). For such architectures (P’erez-
Carrasco et al., 2013) have recently developed a similar mapping
methodology between frame-based and event-driven networks
that translates the weights and other parameters of a fully trained
frame-based feed-forward network into the event-based domain,
and then optimizes them with simulated annealing. In compari-
son, this offers increased flexibility to change neuronal parameters
after training, whereas our method uses the accurate Siegert-
approximation of spike rates already during the training of a
bi-directional network, and does not require an additional opti-
mization phase. The advantages of spike-based versus digital
frame-based visual processing in terms of processing speed and
scalability have been compared in Farabet et al. (2012), where it
was also suggested that spike-based systems are more suitable for
systems that employ both feed-forward and feed-back processing.

Although our model is event-based, the Siegert model (Siegert,
1951) does not make use of the precise timing of spikes. The
basic theoretical framework of DBNs is not suitable for inputs
that vary in time, and thus requires modifications to the net-
work architecture (Taylor et al., 2007), or a transformation of
inherently time-dependent inputs (Dahl et al., 2012). Learning
with STDP-like rules in spiking DBNs provides an intriguing
future possibility for a direct handling of dynamic inputs. In
our current network, the short-time memory of previously seen
inputs carried in the membrane potential of LIF neurons allows
us to process inputs from asynchronous neuromorphic sensors,
in which complete frames are never available (Lichtsteiner et al.,
2008; Liu et al., 2010). We can therefore for the first time apply
the state-of-the-art machine learning technique of DBNs directly
to inputs from event-based sensors, without any need to convert
input signals, and can classify the input while also completing the
input signals using feed-back connections.

Feed-back connections are rarely used in models of biolog-
ically inspired vision, e.g.,, HMAX (Riesenhuber and Poggio,
1999), but as we show e.g., in Figure 7, feed-back and recurrency
are essential for implementing general probabilistic inference,
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e.g., to infer missing, ambiguous, or noisy values in the input.
Only in recent years have models become available that directly
link spiking activity in recurrent neural networks to inference and
learning in probabilistic graphical models. Nessler et al. (2013)
have shown that learning via STDP in cortical microcircuits can
lead to the emergence of Bayesian computation for the detec-
tion of hidden causes of inputs. They interpret spikes as samples
from a posterior distribution over hidden variables, which is
also the essential idea for neural sampling approaches (Biising
et al., 2011), in which spiking neurons implement inference in
a Boltzmann machine via Markov Chain Monte Carlo sampling.
Using clock-like waves of inhibition, Merolla et al. (2010) showed
an alternative implementation of single Boltzmann machines
with spiking neurons.

In biology, the precise role of feed-back processing is still
debated, but the deficiencies of purely feed-forward architectures
for processing the kind of clutter, occlusions, and noise inher-
ent to natural scenes point at least to a role in modulation by
attention signals, and in the integration of multiple cues, possi-
bly from different modalities as well as memory and high-level
cognitive areas (Lamme et al., 1998; Bullier, 2001; Kersten and
Yuille, 2003). A proposal from Hochstein and Ahissar (2002) even
suggests a reverse hierarchy for conscious vision, whereby fast
feed-forward perception is used for a quick estimate of the gist
of the scene, and for activating top-down signals that focus atten-
tion on low-level features necessary to resolve the details of the
task. Such a model can explain the fast pop-out effect of image
parts that violate model expectations, and also provides a model
for fast learning without changes in the early sensory process-
ing stages. This is consistent with a variety of theories that the
brain encodes Bayesian generative models of its natural environ-
ment (Kersten and Yuille, 2003; Knill and Pouget, 2004). The
hierarchical organization of sensory cortices would then natu-
rally correspond to a hierarchy of prior distributions from higher
to lower areas that can be optimally adapted to statistics of the
real world in order to minimize surprise (Friston, 2010). Rao
and Ballard (1999) suggested that inference in such hierarchical
generative models could be efficiently performed through pre-
dictive coding. In this framework, feed-back connections would
signal a prediction from higher to lower layers, whereas feed-
forward connections would encode the error between prediction
and actual input. In Rao and Ballard (1999) it was shown that
such a model can account for several phenomena concerning
the non-linear interaction of center and surround of receptive
fields, and fMRI data support the theory by reporting reduced V1
activity when recognition-related activity in higher areas increases
(Murray et al., 2002).

The framework of Bayesian generative models also provides a
principled way of associating and integrating potentially uncer-
tain cues from different sources, e.g., across sensory modalities
(Knill and Pouget, 2004). It is well known that humans use
all available cues for solving tasks, e.g., by using visual cues to
improve their understanding of speech (Kayser and Logothetis,
2007; Stein and Stanford, 2008). Although traditional mod-
els have assumed that multi-sensory integration occurs only at
higher association areas like superior colliculus (Felleman and
Van Essen, 1991), feed-back connections from higher to lower

areas or between sensory streams are likely to be involved in sen-
sory fusion tasks. Recent studies have revealed the existence of
anatomical connections that would enable cross-modal interac-
tions also at lower levels (Falchier et al., 2002; Markov et al., 2012),
and functional studies have provided some (but not conclusive)
evidence of co-activations of early sensory areas by stimulation
of different modalities [see (Kayser and Logothetis, 2007) for a
review]. Integration might also be required within the same sen-
sory modality, since e.g., the visual pathway splits up into at least
two separate major ventral and dorsal streams.

All these arguments indicate that the traditional concept
of sensory processing in the cortex as a feed-forward hierar-
chy of feature detectors with increasing levels of abstraction
in higher layers (Gross et al., 1972; Van Essen and Maunsell,
1983; Desimone et al., 1984) needs to be reassessed (Markov
and Kennedy, 2013). A closer look at the anatomy of intra- and
inter-areal cortical connectivity reveals an abundance of feed-
back and recurrent connections. Every brain area receives inputs
from a large number of cortical and subcortical sources (Douglas
and Martin, 2011; Markov et al., 2012), and feed-forward con-
nections actually make up only a relatively small fraction of
inputs to neurons along the hypothesized pathways (da Costa and
Martin, 2009). Many studies have demonstrated feed-back effects,
in which the activation or deactivation of a higher area alters
activity in lower sensory areas (Lamme et al., 1998; Bullier, 2001;
Murray et al., 2002), e.g., activation of V1 through a high-level
cognitive process like visual imagery (Kosslyn et al., 1999).

DBN models can play an important role in capturing many
of those effects, and the event-based framework presented in
this article provides a model in which the dynamics and short-
term memory properties of spiking neurons can be exploited for
dealing with realistic input sequences, in our case coming from
bio-inspired sensors. There are still plenty of open research ques-
tions, in particular concerning the integration of spike-timing
based learning in the DBN framework, and the exploitation of
spike-timing for dealing with sequences of inputs. This will likely
require an adaptation of the simple RBM model used as the
building block of DBNs, and will have to include recurrent lat-
eral connections. Similar mechanisms for the processing of input
sequences have been proposed in the framework of Hierarchical
Temporal Memory (Hawkins and Blakeslee, 2004), which opens
up new directions for combining machine learning approaches
with cortical modeling.

ACKNOWLEDGMENTS

This project was partially supported by the FP7 SeeBetter
(FP7-1CT-2009-6), Swiss National Foundation EARS
(200021_126844), and the Samsung Advanced Institute
of Technology. Michael Pfeiffer has been supported by a
Forschungskredit grant of the University of Zurich. The funders
had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at:  http://www.frontiersin.org/journal/10.3389/fnins.
2013.00178/abstract

www.frontiersin.org

October 2013 | Volume 7 | Article 178 | 11


http://www.frontiersin.org/journal/10.3389/fnins.2013.00178/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2013.00178/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O'Connor et al.

Spiking deep belief networks

REFERENCES

Acero, A., Bernstein, N., Chambers, R.,
Ju, Y.-C., Li, X,, Odell, J., et al.
(2008). “Live search for mobile: web
services by voice on the cellphone,”
in IEEE International Conference
on Acoustics, Speech and Signal
Processing (ICASSP), (IEEE), (Las
Vegas, NV), 5256-5259.

Bengio, Y., Lamblin, P, Popovici,
D., and Larochelle, H. (2006).
“Greedy layer-wise training of deep
networks,” in Advances in Neural
Information Processing Systems 19.
Vancouver: MIT Press.

Bullier, J. (2001). Integrated model of
visual processing. Brain Res. Rev.
36, 96-107. doi: 10.1016/S0165-
0173(01)00085-6

Biising, L., Bill, J., Nessler, B., and
Maass, W. (2011). Neural dynamics
as sampling: a model for stochastic
computation in recurrent networks
of spiking neurons. PLoS Comput.
Biol. 7:€1002211. doi: 10.1371/
journal.pcbi. 1002211

Camunas Mesa, L., Pérez-Carrasco,
J.,  Zamarrefio  Ramos, C,
Serrano-Gotarredona, T., and
Linares-Barranco, B. (2010). “On
scalable spiking ConvNet hard-
ware for cortex-like visual sensory
processing systems,” in Processing
of IEEE International Symposium
on Circuits and Systems (ISCAS),
(Paris), 249-252.

Ciresan, D. C., Meier, U., Gambardella,
L. M., and Schmidhuber, J. (2010).
Deep, big, simple neural nets for
handwritten  digit recognition.
Neural Comput. 22, 3207-3220. doi:
10.1162/NECO_a_00052

da Costa, N. M., and Martin, K. A. C.
(2009). The proportion of synapses
formed by the axons of the lateral
geniculate nucleus in layer 4 of area
17 of the cat. J. Comp. Neurol. 516,
264-276. doi: 10.1002/cne.22133

Dahl, G. E., Yu, D., Deng, L., and Acero,
A. (2012). Context-dependent pre-
trained deep neural networks for
large-vocabulary speech recogni-
tion. IEEE Trans. Audio Speech Lang.
Process. 20, 30-42. doi: 10.1109/
TASL.2011.2134090

Delbruck, T. (2013). jJAER Open Source
Project. Available online at: http://
sourceforge.net/apps/trac/jaer/wiki.

Desimone, R., Albright, T. D., Gross,
C. G., and Bruce, C. (1984).
Stimulus-selective  properties  of
inferior temporal neurons in the
macaque. J. Neurosci. 4, 2051-2062.
doi: 10.1007/s12021-011-9106-1

Douglas, R. J., and Martin, K.
A. C. (2011). What’s black and
white about the grey matter?
Neuroinformatics 9, 167-179. doi:
10.1007/s12021-011-9106-1

Erhan, D., Bengio, Y., Courville, A,
Manzagol, P, Vincent, P, and
Bengio, S. (2010). Why does unsu-
pervised pre-training help deep
learning? J. Mach. Learn. Res. 11,
625-660.

Falchier, A., Clavagnier, S., Barone,
P, and Kennedy, H. (2002).
Anatomical evidence of multimodal
integration in primate striate cortex.
J. Neurosci. 22, 5749-5759.

Farabet, C., Paz, R., Pérez-Carrasco, J.,
Zamarreno, C., Linares-Barranco,
A., LeCun, Y., et al. (2012).
Comparison  between  frame-
constrained  fix-pixel-value and
frame-free  spiking-dynamic-pixel
ConvNets for visual processing.
Front. Neurosci. 6:32. doi: 10.3389/
fnins.2012.00032

Felleman, D. J., and Van Essen, D. C.
(1991). Distributed hierarchical
processing in the primate cerebral
cortex. Cereb. Cortex 1, 1-47. doi:
10.1093/cercor/1.1.1

Friston, K. (2010). The free-energy
principle: a unified brain theory?
Nat. Rev. Neurosci. 11, 127-138. doi:
10.1038/nrn2787

Gerstner, W., and Kistler, W.

(2002). Spiking Neuron Models.
Single  Neurons, Populations,
Plasticity. Cambridge: Cambridge
University Press. doi: 10.1017/
CB0O9780511815706

Goh, H., Thome, N., and Cord,
M. (2010). “Biasing restricted

Boltzmann machines to manipulate
latent selectivity and sparsity,” in
NIPS workshop on deep learning
and unsupervised feature learning,
(Whistler, BC).

Gross, C. G., Roche-Miranda, G. E,,
and Bender, D. B. (1972). Visual
properties of neurons in the infer-
otemporal cortex of the macaque. J.
Neurophysiol. 35, 96-111.

Hadsell, R., Sermanet, P., Ben, J., Erkan,
A., Scoffier, M., Kavukcuoglu, K.,
et al. (2009). Learning long-range
vision for autonomous off-road
driving. J. Field Robot. 26, 120-144.
doi: 10.1002/r0b.20276

Hawkins, J., and Blakeslee, S. (2004).
On intelligence. New York, NY:
Times Books.

Hinton, G., Deng, L., Yu, D., Dahl,
G. E., Mohamed, A., Jaitly, N., et al.
(2012). Deep neural networks for
acoustic modeling in speech recog-
nition: the shared views of four
research groups. IEEE Signal Process.
Mag. 29, 82-97. doi: 10.1109/MSP.
2012.2205597

Hinton, G., Osindero, S., and Teh, Y. W.
(2006). A fast learning algorithm for
deep belief nets. Neural Comput. 18,
1527-1554. doi: 10.1162/neco.2006.
18.7.1527

Hinton, G. E., and Salakhutdinov,
R. R. (2006). Reducing the
dimensionality of data with neural
networks. Science 313, 504-507.
doi: 10.1126/science.1127647

Hinton, G. E., and Sejnowski, T. J.
(1986). Learning and Relearning in
Boltzmann Machines. Cambridge,
MA: MIT Press 1, 282-317.

Hochreiter, S., Bengio, Y., Frasconi, P.,
Schmidhuber, J., and Elvezia, C.
(2001). “Gradient flow in recur-
rent nets: the difficulty of learn-
ing long-term dependencies,” in A
Field Guide to Dynamical Recurrent
Neural Networks. eds S. C. Kremer
and J. F. Kolen (New York, NY: IEEE
Press), 237-244.

Hochstein, S., and Ahissar, M. (2002).
View from the top: hierarchies and
reverse hierarchies review. Neuron
36, 791-804. doi: 10.1016/S0896-
6273(02)01091-7

Indiveri, G., Linares-Barranco, B.,
Hamilton, T., van Schaik, A,
Etienne-Cummings, R., Delbruck,
T., et al. (2011). Neuromorphic sili-
con neuron circuits. Front. Neurosci.
5:73. doi: 10.3389/fnins.2011.00073

Jug, E, Cook, M., and Steger, A.
(2012). “Recurrent competitive net-
works can learn locally excita-
tory topologies,” in International
Joint Conference on Neural Networks
(IJCNN), (Brisbane), 1-8.

Kayser, C., and Logothetis, N. K.
(2007). Do early sensory cortices
integrate cross-modal information?
Brain Struct. Funct. 212, 121-132.
doi: 10.1007/s00429-007-0154-0

Kersten, D., and Yuille, A. (2003).
Bayesian models of object percep-
tion. Curr. Opin. Neurobiol. 13,
150-158. doi: 10.1016/S0959-43838
(03)00042-4

Knill, D. C., and Pouget, A. (2004). The
Bayesian brain: the role of uncer-
tainty in neural coding and compu-
tation. Trends Neurosci. 27,712-719.
doi: 10.1016/j.tins.2004.10.007

Kosslyn, S. M., Pascual-Leone, A,
Felician, O., Camposano, .,
Keenan, J. P, Thompson, W. L,
et al. (1999). The role of Area 17
in visual imagery: Convergent evi-
dence from PET and rTMS. Science
284, 167-170. doi: 10.1126/science.
284.5411.167

Lamme, V. A. E, Supér, H., and
Spekreijse, H. (1998). Feedforward,
horizontal, and feedback process-
ing in the visual cortex. Curr. Opin.
Neurobiol. 8, 529-535. doi: 10.1016/
S0959-4388(98)80042-1

Larochelle, H., Erhan, D., Courville,
A., Bergstra, J., and Bengio, Y.
(2007). “An empirical evaluation
of deep architectures on problems
with many factors of variation,”

in Proceedings of ICML, 473-480.
ACM.

Le, Q. V,, Ranzato, M. A., Monga, R.,
Devin, M., Chen, K., Corrado, G.,
et al. (2012). “Building high-level
features using large scale unsuper-
vised learning,” in Proceedings of
ICML, (Edinburgh).

LeCun, Y. L., Bottou, L., Bengio, Y.,
and Haffner, P. (1998). Gradient-
based learning applied to docu-
ment recognition. Proc. IEEE 86,
2278-2324. doi: 10.1109/5.726791

Lee, H., Ekanadham, C., and Ng,
A. (2008). “Sparse deep belief
net model for visual area V2,” in
Advances in Neural Information
Processing  Systems, Vol 20,
(Vancouver), 873-880.

Lee, H., Grosse, R., Ranganath, R., and
Ng, A. Y. (2009). “Convolutional
deep belief networks for scalable
unsupervised learning of hierarchi-
cal representations,” in Proceedings
of ICML, (Montreal), 609-616. doi:
10.1145/1553374.1553453

Lichtsteiner, P, Posch, C., and

Delbruck, T. (2008). A 128x
128 120 db 15 ps latency asyn-
chronous temporal contrast vision
sensor. IEEE ]. Solid-State Circ. 43,
566-576. doi: 10.1109/JSSC.2007.
914337
u, S., Van Schaik, A., Minch, B,
and Delbruck, T. (2010). “Event-
based 64-channel binaural silicon
cochlea with Q enhancement mech-
anisms,” in Proceedings of IEEE
International Symposium on Circuits
and  Systems (ISCAS), (Paris),
2027-2030.

Markov, N., and Kennedy, H. (2013).
The importance of being hierar-
chical. Curr. Opin. Neurobiol. 23,
187-194. doi: 10.1016/j.conb.2012.
12.008

Markov, N. T., Ercsey-Ravasz, M. M.,
Ribeiro Gomes, A. R., Lamy, C,
Magrou, L., Vezoli, J., et al. (2012).
A weighted and directed interareal
connectivity matrix for macaque
cerebral cortex. Cereb. Cortex 1-20.
doi: 10.1093/cercor/bhs270

Merolla, P, Ursell, T, and Arthur,
J. (2010). The Thermodynamic
Temperature  of a  Rhythmic
Spiking Network. Arxiv preprint
arXiv:1009.5473.

MIT Technology Review (2013). 10
breakthrough technologies 2013:
Deep learning. Available online at:
http://www.technologyreview.com/
featuredstory/513696/deep-learning/

Mohamed, A.-R.,, Dahl, G. E., and
Hinton, G. (2012). Acoustic model-
ing using deep belief networks. IEEE
Trans. Audio Speech Lang. Process.
20, 14-22. doi: 10.1109/TASL.2011.
2109382

Li

Frontiers in Neuroscience | Neuromorphic Engineering

October 2013 | Volume 7 | Article 178 | 12


http://sourceforge.net/apps/trac/jaer/wiki
http://sourceforge.net/apps/trac/jaer/wiki
http://www.technologyreview.com/featuredstory/513696/deep-learning/
http://www.technologyreview.com/featuredstory/513696/deep-learning/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O'Connor et al.

Spiking deep belief networks

Murray, S. O., Kersten, D., Olshausen,
B. A., Schrater, P., and Woods, D. L.
(2002). Shape perception reduces
activity in human primary visual
cortex. Proc. Natl. Acad. Sci. U.S.A.
99, 15164-15169. doi: 10.1073/pnas.
192579399

Nair, V,, and Hinton, G.
“Rectified linear
Restricted Boltzmann Machines,”
in Proceedings of ICML, (Haifa),
807-814.

(2010).

units improve

Nessler, B., Pfeiffer, M., Buesing,
L, and Maass, W. (2013).
Bayesian ~computation emerges

in generic cortical microcircuits
through  spike-timing-dependent
plasticity. PLoS  Comput.  Biol.
9:¢1003037. doi: 10.1371/journal.
pcbi.1003037

Pérez-Carrasco, J., Zhao, B., Serrano,
C., Acha, B., Serrano-Gotarredona,
T., Chen, S, et al. (2013). Mapping
from frame-driven to frame-free

event-driven vision systems by
low-rate rate-coding and coin-
cidence processing. application

to feed forward ConvNets. IEEE

Trans. Pattern Anal. Mach. Intell. 35,
2706-2719. doi: 10.1109/TPAMI.
2013.71

Rao, R. P. N., and Ballard, D. H. (1999).
Predictive coding in the visual
cortex: a functional interpretation
of some extra-classical receptive-
field effects. Nat. Neurosci. 2,
79-87. doi: 10.1038/4580

Riesenhuber, M., and Poggio, T. (1999).
Hierarchical models of object recog-
nition in cortex. Nat. Neurosci. 2,
1019-1025. doi: 10.1038/14819

Seide, F, Li, G., and Yu, D. (2011).
“Conversational speech transcrip-
tion using context-dependent deep
neural networks,” in Proceedings
of Interspeech, (Florence),
437-440.

Siegert, A. J. E (1951). On the first pas-
sage time probability problem. Phys.
Rev. 81:617. doi: 10.1103/PhysRev.
81.617

Stein, B. E., and Stanford, T. R. (2008).
Multisensory integration: current
issues from the perspective of the
single neuron. Nat. Rev. Neurosci. 9,
255-266. doi: 10.1038/nrn2331

Taylor, G., Hinton, G., and Roweis, S.
(2007). “Modeling human motion
using binary latent variables,” in
Advances in Neural Information

Processing ~ Systems, (Vancouver),
1345-1352.
Tieleman, T. (2008). “Training

restricted  Boltzmann  machines
using approximations to the like-
lihood gradient,” in Proceedings
of ICML, (Helsinki: ACM),
1064-1071.

Tieleman, T., and Hinton, G. (2009).
“Using fast weights to improve per-
sistent contrastive divergence,” in
Proceedings of ICML, (Montreal:
ACM), 1033-1040.

Van Essen, D. C., and Maunsell, J. H. R.
(1983). Hierarchical organization
and functional in the
visual cortex. Trends Neurosci. 6,
370-375. doi: 10.1016/0166-2236
(83)90167-4

streams

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships

that could be construed as a potential
conflict of interest.

Received: 12 June 2013; accepted: 17
September 2013; published online: 08
October 2013.

Citation: O’Connor B, Neil D, Liu SC,
Delbruck T and Pfeiffer M (2013) Real-
time classification and sensor fusion
with a spiking deep belief network.

Front. Neurosci. 7:178. doi: 10.3389/
fnins.2013.00178
This  article  was  submitted  to

Neuromorphic Engineering, a section of
the journal Frontiers in Neuroscience.
Copyright © 2013 O’Connor, Neil, Liu,
Delbruck and Pfeiffer. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permit-
ted, provided the original author(s) or
licensor are credited and that the origi-
nal publication in this journal is cited, in
accordance with accepted academic prac-
tice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

www.frontiersin.org

October 2013 | Volume 7 | Article 178 | 13


http://dx.doi.org/10.3389/fnins.2013.00178
http://dx.doi.org/10.3389/fnins.2013.00178
http://dx.doi.org/10.3389/fnins.2013.00178
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

	Real-time classification and sensor fusion with a spiking deep belief network
	Introduction
	Materials and Methods
	Deep Belief Networks
	Training a RBM
	Persistent CD and transient weights
	Constructing DBNs by stacking RBMs

	Discrete-Time and Event-Driven Neuron Models
	Training the Network
	Task
	Network Architecture
	Training

	Simulation of an Event-Driven DBN
	Real-Time Implementation
	Neuromorphic visual input
	Multi-sensory fusion
	Neuromorphic Auditory Input


	Results
	Classification Performance
	Generation Mode
	Real-Time Visual Recognition
	Real-Time Sensory Fusion

	Discussion
	Acknowledgments
	Supplementary Material
	References


