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The feedback-related negativity (FRN) is a mid-frontal event-related potential (ERP)
recorded in various cognitive tasks and associated with the onset of sensory feedback
signaling decision outcome. Some properties of the FRN are still debated, notably its
sensitivity to positive and negative reward prediction error (RPE)—i.e., the discrepancy
between the expectation and the actual occurrence of a particular feedback,—and its
role in triggering the post-feedback adjustment. In the present study we tested whether
the FRN is modulated by both positive and negative RPE. We also tested whether an
instruction cue indicating the need for behavioral adjustment elicited the FRN. We asked
12 human subjects to perform a problem-solving task where they had to search by trial
and error which of five visual targets, presented on a screen, was associated with a
correct feedback. After exploration and discovery of the correct target, subjects could
repeat their correct choice until the onset of a visual signal to change (SC) indicative
of a new search. Analyses showed that the FRN was modulated by both negative and
positive prediction error (RPE). Finally, we found that the SC elicited an FRN-like potential
on the frontal midline electrodes that was not modulated by the probability of that event.
Collectively, these results suggest the FRN may reflect a mechanism that evaluates any
event (outcome, instruction cue) signaling the need to engage adaptive actions.
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INTRODUCTION
The evaluation and utilization of outcomes are crucial for the
exploration and exploitation of resources available in the envi-
ronment. The feedback-related negativity (FRN), a mid-frontal
event-related potential that is elicited in various cognitive tasks
at the onset of sensory feedback signaling an outcome, is widely
used to study error and reward-related processes [for review see
San Martin (2012); Walsh and Anderson (2012)]. Functional MRI
(fMRI) studies and electroencephalography (EEG) source recon-
structions notably implicate the anterior part of the cingulate
cortex as a potential source for the FRN (Ullsperger and Von
Cramon, 2001; Gehring and Willoughby, 2002; Holroyd et al.,
2004; Amiez et al., 2012, 2013). The aforementioned region is
likely to correspond to the anterior midcingulate cortex (aMCC)
and might extend to the perigenual ACC (pACC) according
to Vogt’s subdivisions of the cingulate cortex (Vogt, 2009a,b).
Here we refer to the cingulate region that encodes feedback
as aMCC.

Several models have been proposed to explain the role of
the aMCC in outcome processing (Holroyd and Coles, 2002;
Alexander and Brown, 2011; Khamassi et al., 2013). The initial,
and still influential, Holroyd and Coles Reinforcement Learning-
ERN model proposed that through the direct meso-cortical

dopaminergic pathway a negative prediction error-signal dis-
inhibits aMCC neurons, which thereby produce the cortical
error signal (Holroyd and Coles, 2002). Some aspects of this
theory have been challenged. In particular whether the aMCC
outcome related response is specific or even relates to error
processing (Williams et al., 2004; Cohen et al., 2007; Oliveira
et al., 2007; Sallet et al., 2007; Quilodran et al., 2008; Kennerley
and Wallis, 2009; Vezoli and Procyk, 2009; Hayden and Platt,
2010; San Martin et al., 2010; Amiez et al., 2012; Walsh
and Anderson, 2012) and whether or not a reward predic-
tion error (RPE) is encoded in the aMCC (Holroyd et al.,
2003; Ito et al., 2003; Yasuda et al., 2004; Amiez et al., 2005,
2012; Haruno and Kawato, 2006; Bellebaum and Daum, 2008;
Quilodran et al., 2008; Bellebaum et al., 2010; Cavanagh et al.,
2010, 2012; Rutledge et al., 2010; Sailer et al., 2010; Chase
et al., 2011; Hayden et al., 2011a; Kennerley et al., 2011;
Pfabigan et al., 2011; Talmi et al., 2013). Recent interpreta-
tions suggest that the aMCC feedback-related activity is not
only involved in processing negative outcomes, but instead
reflects a mechanism that evaluates outcomes and the associ-
ated need to engage different adaptive actions (Cohen et al.,
2011; Amiez et al., 2012; Karlsson et al., 2012; Rushworth et al.,
2012).
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As mentioned above the sensitivity of the FRN to both posi-
tive and negative RPE is still debated [for review see San Martin
(2012)]. The first goal of our experiment is therefore, to address
this question of sensitivity of the FRN to RPE. To contrast with
most of the previous experimental designs developed to study
FRN properties, we did not use a two choice task in which subjects
were asked to learn, or to guess, the correct answer. We adapted
a multiple choice task that we previously used in our studies in
humans and monkeys (Quilodran et al., 2008; Amiez et al., 2012).
The task (problem-solving task: PST) is a 5 choice task with two
distinct alternating periods: an exploration period during which
the subject searches by trial and error for the correct response, and
an exploitation period during which the subjects were allowed to
repeat the rewarded response. A visual signal, called “signal to
change” (SC) indicated (1) the end of the exploitation period,
and (2) that a new problem had to be solved. Two critical task
features are: (i) each feedback signaling an error has an impact on
the decision to be made in the next trial, thus, there is a clear link
between trials, (ii) because the trial and error process eliminates
solutions one by one, the probability of finding the correct target,
and thus, the expectation, increases naturally during the search
process. The design of our task ensured that participants would
not only focus on the correct choice but also monitor incorrect
choices in order to solve a problem without making perseverative
error. Indeed our fMRI version of the task showed increased activ-
ity at the time of the feedback, not only in the cingulate cortex
but also in the frontopolar cortex (Amiez et al., 2012), a region
involved in encoding information about alternative courses of
action (Rushworth et al., 2012). We based our experiment on the
idea that the properties of a signal devoted to reinforcement learn-
ing should be optimally expressed and modulated in a situation
in which learning occurs, and in which subjects are involved in
active adaptation. We thus, hypothesized that the FRN could be
modulated by both positive and negative prediction errors within
a single experimental context, if it necessitates the monitoring of
both correct and incorrect choices. Moreover the use of the PST
would enable direct comparison of the results with those of our
previous studies in humans and monkeys (Quilodran et al., 2008;
Amiez et al., 2012).

Finally it has been shown that aMCC cells encode behavioral
transitions between exploration and exploitation (Procyk et al.,
2000; Amiez et al., 2005; Quilodran et al., 2008). In the PST,
the transition between exploitation and a new exploration period
is indicated by a visual stimuli and aMCC cells code for these
events (Amiez et al., 2005). It has also been shown that an FRN
could be recorded following a cue that indicates a future out-
come (Holroyd et al., 2011). Thus, we hypothesized that an FRN
could be recorded not only following the occurrence of feedback,
but also following the cue indicating the need to switch from
exploitation to exploration.

MATERIALS AND METHODS
SUBJECTS
The study was approved by the local ethical committee (Lyon-
A) and conducted according to the French law for biomedical
research. Prior to the study, subjects were briefed on the nature of
the experiment and given standardized written task instructions.

Subjects gave their written informed consent. 12 males subjects
were analyzed for this study. Subjects were all right-handed, free
of medication and without any neurological disorder. All sub-
jects had received more than 13 years of education (17.62 ± 1.80),
had normal or corrected-to-normal vision. They were on aver-
age 24.15 ± 2.48 years old. Subjects were comfortably seated at
90 cm in front of a 17-inch video monitor, on which visual tar-
gets were presented using EPrime 1.1 (Psychology Software Tools,
Pittsburgh, PA, USA). Responses were made by moving a cursor
(a white cross) on the screen with a computer mouse.

BEHAVIORAL TASK (FIGURE 1A)
During the problem solving task subjects were asked to find, by
trial and error, the correct target among 5 potential targets pre-
sented simultaneously. A trial started with the appearance of a
white central fixation point for 1500 ms before the onset of the 5
targets. Targets were 1 cm diameter discs equally distributed on a
5 cm radius circle. Subjects were instructed to fixate the fixation
point during the entire trial. 1000 ms after target onset, the mouse
cursor (i.e., a white cross) appeared over the fixation point. The
subject could then respond by moving the cursor toward one of
the targets. All 5 targets were switched off when the cursor reached
a virtual response field (twice the target size) defined around the
target chosen by the subject. Following a 1500 ms delay the feed-
back stimulus was presented for 800 ms. A 2100 ms inter-trial
interval (ITI) preceded the onset of the next trial. Respectively,
correct and incorrect feedback consisted of a central green or red
square (6.5 ∗ 5.9 cm) displayed at the center of the screen. After
an incorrect choice, the subject had to continue his search for
the correct target. The discovery of the correct target was thus,
indicated by the first green feedback, which ended the search
period. The subject was asked to repeat his choice for 0 to 2
trials. This second period of the task constitutes the repetition
period. During this repetition of correct choice phase the differ-
ent lengths of repetition period (0, 1, or 2 trials long) were equally
represented. The repetition phase ended 800 ms after feedback
offset with a blue ellipse appearing at the center of the screen for
1000 ms. This “signal to change” (SC) cue, indicated the start of
a new problem and thus, the initiation of a new search. Because
the FRN is not sensitive to the physical properties of the elicit-
ing stimuli (Holroyd and Coles, 2002), the feedback stimuli were
not counterbalanced across subjects. Feedback was not associ-
ated with monetary gain or losses. In 31% of trials a meaningless
yellow rectangle appeared for 600 ms, 400 ms after the SC off-
set, or 1500 ms after the feedback offset. Unfortunately however,
too many recordings were contaminated by eye blinks and as a
result we were unable to include the signal associated with the
meaningless yellow rectangle in our analysis.

EEG RECORDINGS AND ANALYSES
The experiment was conducted in an unshielded EEG laboratory
at the Cognitive Science Institute, Lyon, France. Scalp voltages
were collected with a 65-channel Geodesic Sensor Net and ampli-
fied with an AC coupled, 65-channel, high input impedance
amplifier (200MÙ, Net Amps, Electrical Geodesics Inc., Eugene,
OR, USA). Amplified voltages (0.1–200 Hz band pass) were
sampled at 500 Hz. Individual electrodes were adjusted until
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FIGURE 1 | Behavioral task and performance. (A) Schematic
representation of the Problem Solving Task. The goal of the subject was to
find by trial and error which one of 5 stimuli was associated with positive
feedback. Each trial started with the target presentation. During this period
subjects had to chose one stimulus using four computer mouse buttons.
Once a target was selected using a computer mouse, the 5 stimuli were
switched off. A 800 ms delay followed and preceded the appearance of the
feedback. The feedback (a positive feedback was a green square; a negative
feedback was a red square) was displayed on the screen during 800 ms
and its offset was followed by a 2100 ms inter-trial interval (ITI). After an
incorrect choice, subjects continued to search for the correct stimulus
while keeping in memory the previous erroneous choices. Discovering the
correct stimulus (i.e., associated with green square feedback) ended the
search period. The subjects then repeated the correct choice (i.e.,
repetition period, see shaded area). Immediately after the discovery of the
correct target, or after one or two repetition trials, a blue ellipse appeared
on the center of the screen 800 ms after the offset of the correct
feedback. This ellipse presented for 1000 ms indicated that a new problem
would start. (B) Problem types and trials. The problems the subjects were

resolving were of five different types (I, II, III, IV, V). Each problem could
be decomposed into up to 10 types of trial (IC1, IC2, IC3, IC4, C1, C2, C3,
C4, C5, CR). The different trial types were defined based on the obtained
feedback and its position within a sequence of feedback obtained during
the resolution of one of the 5 types of problems. Feedback obtained at
the end of trials were labeled “C” for Correct and “IC” for Incorrect;
numbers following “IC” and “C” indicate the rank of the feedback in the
search period. For example IC3 indicates that this is the third error of the
subject in the search period. C2 indicates a correct feedback obtained after
the second choice in the search period. “C” followed by “R” indicates
correct trials in repetition periods. The dashed line indicates that the fact
that subject is asked to repeat his choice for a variable repetition period of
0 to 2 trials. The vertical blue dashed line represent trials for which SC
occurred after two repetition trials. We only represented those trial types
on this figure. Vertical black dashed lines illustrate the other putative
position of the SC. (C) Reward Prediction Error (RPE) values associated
with each trial type. (D) Reaction Times (RTs) measured for the different
trial ranks i.e., from 1 to 5 trials in the search period, 1 or 2 trials in the
repetition period. All problem types were collapsed for this analysis.

the measured impedance stayed <50 k�. The experiment was
divided in three sessions (150 ± 10 trials per session). Between
each session, impedance was checked and readjusted when neces-
sary. The use of a relatively high impedance threshold prevented
us from doing a time-frequency analysis.

EEG analyses were performed with in-house scripts and pro-
cessing pipelines (Matlab 7.0, The MathWorks Inc. Natick, MA,
USA). These routines searched for abrupt changes in signal volt-
age, indicative of artifacts. Trials contaminated by eye movements,
eye blinks or abnormal changes in electrode voltage (>100 μV)
were removed prior to any analysis. On average the artifact
rejection procedure eliminated 10% of trials per subject.

The signal was re-referenced using the right mastoid electrode.
ERP were calculated by averaging signals recorded between −200
to +1000 ms from feedback or SC onset. A baseline correction
was applied by subtracting the average value of the 200 ms period
that preceded the display of the feedback or the SC. Our analyses

were confined to the 800 ms following the presentation of the
feedback or the SC.

Based on previous published studies (Yeung and Sanfey, 2004;
San Martin et al., 2010; Pfabigan et al., 2011; Cavanagh et al.,
2012; Ferdinand et al., 2012), we focus our report on data
obtained from a frontal electrode (FCz) for our analysis on the
FRN, and from a parietal electrode (PCz) for our analysis on
the P300. The FRN was quantified by the difference between
the most negative peak arising between 200 and 350 ms after
feedback onset and the average voltage of the immediately pre-
ceding and following positive peaks (Yeung and Sanfey, 2004).
We considered the P170 as the most positive peak in the time
period 150–250 ms after feedback onset and the P300 as the
most positive peak in the time period 250–600 ms after feedback
onset. All measurements were taken on the averaged ERP wave-
forms. FRN and P300 latencies were assessed at the time of their
peaks.
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To address the question of ERPs’ sensitivity to feedback expec-
tation, we separated feedback depending on their valence (correct
or incorrect) and rank position in a problem. Feedback was
labeled “C” for Correct and “IC” for Incorrect; numbers fol-
lowing “IC” and “C” indicate the rank of the feedback in a
search period. For instance IC3 indicates that this is the third
trial and also the third error of the subject in a search period.
“C” followed by “R” indicates a correct feedback in the repe-
tition period. Examples of possible lists of trials in a problem
are shown in Figure 1B. Due to the experimental design some
types of feedback were infrequent. C1, C2, C3, C4, and C5
ERPs were based—after removing artifacts- on an average of
19.47 ± 0.57 trials. The different incorrect feedback ERPs tended
to be based on more trials with the exception of IC4 ERPs
(IC4 = 18.86 ± 0.77; IC3 = 38.77 ± 1.4; IC2 = 55.15 ± 2.63;
IC1 = 72.67 ± 3.45).

Negative and positive prediction errors (RPE) were calculated
during the search period for each type of incorrect (IC1, IC2, IC3,
IC4) and correct trial (C1, C2, C3, C4, C5) in the following way:

RPE = [robt] − [
rexp · pcor

]

where robt is the obtained outcome, rexp is the expected outcome
(=1) and pcor is the probability to be correct.

The formula was based on the following assumptions:

1. The subject is always aiming for a positive outcome.
2. The value of the obtained outcome is “0” or “1” for negative

and positive outcomes, respectively.
3. The probabilities of being correct for the different trials of a

search period were calculated based on the number of alterna-
tives. The more options available, the lower the probability of
discovering the correct target. For instance, for the first trial, 5
alternatives are available, so the probability of being correct is
p = 1/5 = 0.2; for the second trial, the probability is p = 0.25
(4 alternatives), for the third trial, p = 0.33 (3 alternatives); for
the fourth trial, p = 0.5 (2 alternatives); and for the fifth trial
p = 1 (1 alternative). The RPE values related to each trial are
represented in Figure 1C.

Statistical analyses were carried out with a significance thresh-
old of p = 0.05 using Matlab scripts (Matlab 7.0, The MathWorks
Inc. Natick, MA, USA) and SPSS software (IBM Corp. Armonk,
NY, USA). Sphericity was tested prior to running a repeated mea-
sures ANOVA using a Maughly’s test of sphericity. If sphericity
was violated then a Greenhouse-Geisser correction was applied
and corrected values were reported (corrected F and p values as
well as epsilon value used to adjust the degrees of freedom are
reported).

RESULTS
BEHAVIORAL RESULTS
Each participant resolved approximately 110 problems (113.6 ±
1.4 problems). Subjects identified the correct target in an aver-
age of 2.97 ± 0.03 choices. They made very few perseverative
errors (2.4 ± 0.6) across the entire session implying that the sub-
jects had understood the task instructions. For the subsequent

Reaction Time (RTs) and EEG data analyses, only correctly solved
problems (i.e., problems in which the subjects did not make per-
severative errors) were included. For the RTs analysis, trials of
correctly solved problems were sorted according to their ranks
(Search1 to 5, and Repetition trial 1 and 2), not according to
the feedbacks obtained at the end of each trial (see Figure 1B).
In other words, subject’s reaction times IC1 and C1 trials (Search
1) were pooled because both trials correspond to the 1st choice
of a search period. Similarly, IC2 and C2 trials (Search 2), IC3
and C3 (Search 3) trials, IC4 and C4 (Search 4) were pooled.
Finally, C5 (Search 5), 1st trial of the repetition period (Repeat
1) and the 2nd trial of the repetition period (Repeat 2) were kept
separately. The subjects’ results revealed that RTs were longer at
the beginning of search periods [ANOVA, F(6, 66) = 5.49, p =
0.0001; see Figure 1D]. The decrease in RTs over the search
period could be related to an increased expectation in obtain-
ing the correct feedback. Similar phenomenon has been observed
in our previous study in humans using a similar paradigm
(Amiez et al., 2012).

ELECTROPHYSIOLOGICAL RESULTS
We focused our analysis on two ERPs: the FRN and the P300.
Based on published studies (Yeung and Sanfey, 2004; San Martin
et al., 2010; Pfabigan et al., 2011; Cavanagh et al., 2012; Ferdinand
et al., 2012), we focused our analyses on electrodes of interest,
FCz, and PCz (Figure 2), to study the sensitivity of the FRN and
the P300 to feedback valence and feedback expectation. Finally
we investigated whether or not FRN could be elicited after cue
indicative of behavioral shift.

MODULATIONS DURING TRIAL AND ERROR
Separating the 10 different types of feedbacks (IC1, IC2, IC3,
IC4, C1, C2, C3, C4, C5, CR) revealed a strong effect of the
RPE on the amplitude of the FRN (Figure 3). We found that
the FRN amplitude was modulated by the RPE (see Materials
and Methods) [repeated measures ANOVA, F(9, 99) = 5.43, ε =
0.368, p = 0.003]. The higher the RPE value, the higher the
amplitude of the FRN. During search periods the expectation
of success (correct feedback) increases with the number of tri-
als performed. In other words the certainty to find the correct
response increases with the number of errors made. A com-
plementary linear regression analysis revealed a modulation of
FRN amplitude for both positive [R2 = 0.217, F = 19.484, p <

0.0001] and negative RPE values [R2 = 0.087, F = 4.383, p =
0.041]. At the fourth choice, if the correct target had not been
previously discovered, the subjects were facing a two choice
option. Therefore, at this stage only, the probability of the cor-
rect and the incorrect feedback are identical (see Figure 1).
We used this condition in order to assess the sensitivity of
FRN to feedback valence. The comparison between the cor-
rect and the incorrect feedback obtained at this search period
revealed no difference in the FRN between correct and incor-
rect feedback (paired t-test, t = 1.4163, p = 0.1844). On the
following fifth trial subjects only remaining option is the cor-
rect target (if the correct target had not been discovered pre-
viously). Despite being a feedback from the search period, the
amplitude of the FRN for the C5 feedback was not different
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FIGURE 2 | ERPs elicited by all correct, all incorrect feedback, and SC at

midline electrodes Fz, FCz, Cz, PCz, and Pz. The dashed line frames
indicate the electrode of interest, FCz and PCz. Arrows indicate the peak of
the three potentials (P170, FRN, and P300) that were considered in our
analysis.

from the amplitude of a CR feedback (paired t-test, t = −0.4991,
p = 0.6275).

The FRN and P300 ERP components overlap in time. We
therefore, performed an analysis of P300 modulation in order
to verify that the observed FRN results were not in fact induced
by the modulation of the P300. We hypothesized that the differ-
ence in sensitivity to outcome properties between P300 and FRN
would suggest that FRN results were not induced by an overlap
with the P300. The analysis revealed that the P300 amplitude also
varied with the feedback types (IC1, IC2, IC3, IC4, C1, C2, C3,
C4, C5, CR), i.e., with RPE values [repeated measures ANOVA,
F(9, 99) = 9.24, p < 0.001; Figure 4]. However, in contrast to the
FRN, a linear regression analysis revealed that this effect relied
on positive RPE values (R2 = 0.267, F = 25.589, p < 0.0001) and
not negative RPE values (R2 = 0.002, F = 0.009, p = 0.762). In
contrast with the results obtained for the FRN, the P300 was
modulated by feedback valence (correct and incorrect feedback:
paired t-test, t = 4.0365, p = 0.002). The amplitude of the P300
for C5 feedback was different from the amplitude for CR feedback
(paired t-test, t = 7.4630, p < 0.001).

FIGURE 3 | Waveforms recorded at FCz at the presentation of the

feedback and FRN modulation. (A,B) Average waveforms elicited by the
different correct and incorrect feedbacks. The panel (A) illustrates the
signals recorded for the different positive feedbacks (C1, C2, C3, C4, C5,
CR). Similarly the panel (B) illustrates the signals recorded for the different
negative feedbacks (IC1, IC2, IC3, IC4). The gray box is indicating the time
windows of interest in which we measured the amplitude of FRN (+200 to
+350 ms post feedback). (C) Modulation of FRN amplitude according to
RPE quantified at FCz. Red and green symbols represent RPE values
associated with negative and positive feedbacks, respectively. Feedback
types corresponding to the different RPE values are indicated above the
horizontal axis.

FRN IS ELICITED BY CUE INDICATIVE OF BEHAVIORAL SHIFT
The SC informed the subject that the repetition phase was over
and another search was about to start. This signal elicited an ERP
similar to the FRN (Figures 2, 5A). A Two-Way repeated measures
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FIGURE 4 | ERPs recorded at PCz at the presentation of the feedback

and P300 modulation. (A,B) Average ERPs elicited by the different correct
and incorrect feedbacks. The panel (A) illustrates the signals recorded for
the different positive feedbacks (C1, C2, C3, C4, C5, CR). Similarly the panel
(B) illustrates the signals recorded for the different negative feedbacks (IC1,
IC2, IC3, IC4). The gray box is indicating the time windows of interest in
which we measured the amplitude of P300 (+200 to +350 ms post
feedback). (C) Modulation of P300 amplitude according to RPE quantified at
PCz. Red and green symbols represent RPE values associated with
negative and positive feedbacks, respectively. Feedback types
corresponding to the different RPE values are indicated above the horizontal
axis.

ANOVA [Electrodes locations (Fz, FCz, Cz, PCz, Pz) × Feedback
type (All Correct, All Incorrect, SC)] revealed an effect of elec-
trode location on the FRN amplitude [F(4, 44) = 5.295, ε = 0.466,
p = 0.015] and did not reveal an interaction effect [F(8, 88) =
2.221, ε = 0.348, p = 0.11]. The amplitude of the FRN tended to

be maximum at the FCz, Cz electrodes (Figure 5B). The voltage
cartography for the contrast between negative feedback and all
first correct feedback, and between SC and all first correct out-
comes, revealed comparable topography for incorrect feedback
and SC (Figure 5C). Finally Two-Way repeated measures ANOVA
[Electrodes locations (Fz, FCz, Cz, PCz, Pz) × Feedback type (All
Correct, All Incorrect, SC)] revealed a main effect of feedback
type on FRN amplitude [F(2, 22) = 22.413, ε = 0.603, p < 0.001].
This result is difficult to interpret, as the probability of occur-
rence of the different feedbacks was different. Therefore, we did
not discuss this result further.

The fact that SC appeared immediately upon discovery of
the correct target, or after one or two repeats allowed us to
test whether the FRN was modulated by the SC likelihood
(Figure 5D). While the initial number of trials in each repeti-
tion period condition (0, 1, or 2 trials) was identical after artifact
rejection, the analysis was based on a small number of trials per
condition (26.2 ± 8.2). Note that one subject was excluded from
this analysis because the subject made too many eye blinks at the
SC. This analysis revealed no modulation of the likelihood of SC
occurrence ANOVA [F(2, 33) = 0.91, p = 0.4125].

In conclusion, the FRN was modulated by positive and nega-
tive prediction error but was not sensitive to the feedback valence.
Furthermore, an FRN-like response was also evoked by a sig-
nal indicating the need to change response or engage in search.
However, this FRN-like response was not modulated by the prob-
ability of the SC occurrence. Finally we observed a modulation
of the P300 that was distinct from the effect observed for the
FRN. Critically, the P300 was modulated by feedback valence and
positive prediction error only.

DISCUSSION
Despite a relatively small number of subjects and of trials for some
experimental conditions, our analysis show that during trial and
error learning the FRN reflects the evaluation of both incorrect
and correct feedback. We observed a modulation of the FRN by
the level of expectation for successes and errors that we relates to
the necessity of monitoring both correct and incorrect choices in
our 5 choice problem solving task. In addition we also recorded
a FRN-like potential following a SC cue. This latter result sug-
gests that the FRN is elicited after any event relevant to behavioral
adaptation and not only after feedback. However, the FRN elicited
by the SC was not modulated by the likelihood of the SC to occur.

AN FRN IS ELICITED BY BOTH INCORRECT AND CORRECT FEEDBACK
First, our findings confirm the presence of an FRN even after
a correct feedback (Oliveira et al., 2007; San Martin et al.,
2010; Chase et al., 2011; Cohen et al., 2011; Talmi et al.,
2013). Discrepancies with earlier results, suggesting specificity of
FRN/ERN for negative feedback, could be related to the exper-
imental designs. In the present experimental design, in contrast
with some earlier studies, subjects were required to learn from
their obtained outcomes. The requirement to choose between
multiple options, in the context where decision outcomes are
salient, has been shown to impact feedback-related signals for
learning optimal strategies (Holroyd et al., 2009; Sailer et al.,
2010; Chase et al., 2011; Cohen et al., 2011; Peterson et al., 2011;
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FIGURE 5 | FRN and scalp topography at the presentation of the SC

and the feedback. (A) Waveforms elicited by all incorrect feedback, all
correct feedback and by SC at FCz. The gray box is indicating the time
windows of interest in which we measured the amplitude of FRN
(+200 to +350 ms post feedback). (B) Amplitude of the FRN after
correct feedback, incorrect feedback and SC measured at electrode Fz,
FCz, Cz, PCz, and Pz. (C) Scalp topography obtained at the time of
average FRN latency for the different feedbacks (t = 264 ms). Note that

the FRN latencies for all correct and incorrect feedbacks were on
average 268 ms and 260 ms, respectively. (D) Average ERPs elicited by
the different SC. The figure illustrates the signals recorded for SC
elicited after the correct feedback that end the search period (SC0),
after the 1st correct feedback of the repetition period (SC1), and after
the 2nd correct feedback of the repetition period (SC2). The gray box is
indicating the time windows of interest in which we measured the
amplitude of FRN (+200 to +350 ms post SC).

Van Der Helden and Boksem, 2012; Walsh and Anderson, 2012).
The FRN recorded following positive feedback could be related
to the reward related properties of the aMCC. Indeed some dor-
sal cingulate neurons are active when the expected reward is not
obtained (Shima and Tanji, 1998; Ito et al., 2003; Amiez et al.,
2005; Nakamura et al., 2005; Sallet et al., 2007; Quilodran et al.,
2008; Seo and Lee, 2009), but this region also contains cells that
are related to the obtained reward (Williams et al., 2004; Amiez
et al., 2006; Matsumoto et al., 2007; Sallet et al., 2007; Quilodran
et al., 2008; Kennerley and Wallis, 2009). Finally, our results are
in line with our recent fMRI data which show an increased mid-
cingulate BOLD signal after positive and negative feedback in the
search period of the PST (Amiez et al., 2012).

FRN IS CODING FOR BOTH POSITIVE AND NEGATIVE REWARD
PREDICTION ERROR
In reinforcement learning the key event for successful behavioral
adaption is the reward. Indeed, the RPE a parameter that seems
to be critical in adaptive systems (Glimcher, 2011) is based on
the calculation of discrepancy between expectation of a positive

outcome and actual outcome (i.e., the reward). It is therefore,
perhaps not surprising that the main signal that emerges from
the reinforcement learning apparatus is coding for unexpected
positive feedback. Importantly the ERN and FRN in humans
seem sensitive to several pathological conditions and are altered
by pharmacological treatments, in particular those involving the
dopaminergic transmission (Falkenstein et al., 2001; Johansen
and Fields, 2004; Zirnheld et al., 2004; Beste et al., 2006; De
Bruijn et al., 2006; Vezoli and Procyk, 2009). Previous stud-
ies have attempted to determine the relationship between dorsal
cingulate activity and the RPE. Contradicting conclusions have
been reached from both electrophysiological works in mon-
keys (Ito et al., 2003; Amiez et al., 2005; Matsumoto et al.,
2007; Quilodran et al., 2008; Vezoli and Procyk, 2009; Hayden
et al., 2011a; Kennerley et al., 2011) and humans (Holroyd
et al., 2003; Yasuda et al., 2004; Bellebaum and Daum, 2008;
Bellebaum et al., 2010; Cavanagh et al., 2010; Chase et al., 2011;
Pfabigan et al., 2011; San Martin, 2012; Talmi et al., 2013)
regarding whether and how aMCC signals are modulated by
the RPE.
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Our data reveal that the FRN is modulated by both positive and
negative RPE, an effect predicted by the Alexander and Brown’s
model (Alexander and Brown, 2011), which suggests that the
medial prefrontal cortex encodes discrepancies between expected
and obtained outcomes regardless of the valence. Furthermore,
the lack of FRN modulation between C4 and IC4 feedback con-
firms that FRN is more sensitive to outcome probability than to
outcome valence as also suggested by the Alexander and Brown’s
model and as observed by Ferdinand et al. (2012). In sharp
contrast, the P300 showed a modulation by positive RPEs only.
Altogether the different effects we observed for the FRN and P300
suggest that the FRN modulation by both positive and negative
RPE were not driven by the overlap between the two ERPs. It
would be advantageous to conduct a follow-up experiment with
increased power by utilizing more subjects, additional trials per
condition and a lower impedance threshold, in order to further
compare the properties of the FRN and the P300.

Differences in the experimental design could explain the dis-
crepancies with other studies which have addressed the issue of
the FRN modulation by RPE and showed either no modulation,
or modulation by either negative, or positive only RPE [for review
see Walsh and Anderson (2011); San Martin (2012)]. Indeed,
previous studies report that aMCC/ACC neuronal responses are
sensitive to experimental context (Procyk et al., 2000; Quilodran
et al., 2008; Rothe et al., 2011). In contrast to most of the gambling
tasks that have been used previously, our task involved learning
from both negative and positive feedback to allow an appropriate
exploration of the 5 possible actions. The neuronal dissociation
of responses to positive and negative feedback by aMCC cells (Ito
et al., 2003; Amiez et al., 2005; Sallet et al., 2007; Quilodran et al.,
2008) provide the neuronal substrates for the signed RPE mod-
ulation we observed in this experiment and in a previous fMRI
experiment in humans using a similar protocol (Amiez et al.,
2012). The heterogeneity of the neuronal populations coding for
outcomes in the anterior part of the cingulate cortex (Ito et al.,
2003; Amiez et al., 2005; Sallet et al., 2007; Quilodran et al.,
2008; Kvitsiani et al., 2013) and the dopaminergic nuclei that
are projecting to the prefrontal cortex (Bromberg-Martin et al.,
2010) might provide the neuronal basis for a flexible system that
is capable of adapting its responses depending on task-specific
requirements. Performance adjustment has been correlated to
FRN amplitude in some studies that required subjects to learn
about reward contingencies (Cohen et al., 2007; Bellebaum and
Daum, 2008; Van de Vijver et al., 2011; San Martin, 2012; Van
Der Helden and Boksem, 2012; Walsh and Anderson, 2012). In
the current study, the structure of the task was explained to the
subjects prior to the experiment. A modulation of the FRN was
then observed in conjunction with adapted behaviors. The sub-
jects did the tasks without making almost any perseverative error,
and as suggested by RTs, their expectations in obtaining the cor-
rect feedback increased with the fewer targets they had to choose
among.

IS FRN SPECIFIC TO FEEDBACK?
Finally we observed a FRN-like potential following a SC cue.
Cingulate cells in monkeys encode events that signal the need
to adapt behavior, even if the event is not a reward or an error

(Amiez et al., 2005). Here we demonstrate that an FRN-like
potential could be elicited by an event that is not related to action
performance (the SC cue), but being nevertheless important to
behavioral adaptation. In contrast with the FRN modulation by
RPE for feedback, we did not observe an RPE modulation at
the SC. One might have expected a modulation by the value
of information rather than by the value of reward at the time
of the SC. Bromberg-Martin and Hikosaka (2011) have shown
that midbrain neurons can code both a RPE and information
prediction error (IPE). However, the IPE value for the differ-
ent SCs is constant in our task (the probability of the reward
following all SC is p = 0.2). This fact could explain the lack of
modulation of the FRN at SC. Further experiments should be
conducted, specifically addressing the issue of FRN sensitivity
to IPE.

The presence of an FRN-like potential whenever adaptation is
required (IC1-4, C1-5, or SC0-2) suggests that the FRN partici-
pates in signaling the need for behavioral adaptation. This result
is in line with recent research suggesting a general role of the a
MCC in behavioral adaptation (Quilodran et al., 2008; Hayden
et al., 2011b; Karlsson et al., 2012; Kolling et al., 2012). The pro-
duction of a FRN after various events would suggest that the FRN
source is responding to various types of adaptations. For instance
an IC1-4 feedback is followed by selection of a new target on the
next trial, but C1-5 and SC0-2 feedbacks are indicating the need
to change strategy, i.e., switching from exploring to exploiting and
from exploiting to exploring, respectively. Further analysis using
time-frequency decomposition could offer new perspectives on
how different types of adaption are implemented (Womelsdorf
et al., 2010; Cohen et al., 2011; Rothe et al., 2011; Van de Vijver
et al., 2011; Cavanagh et al., 2012; Hajihosseini and Holroyd,
2013).

CONCLUSION
The present study demonstrates that the FRN is linked to the
evaluation of positive and negative feedback during exploration.
Such evaluation is likely to carry information necessary for appro-
priate adaptation, such as maintaining exploration after errors,
shifting toward exploitation following the occurrence of the first
positive feedback, or shifting back to exploration following the
presentation of the SC. The modulation of the FRN by RPE
values illustrates that the FRN also reflects a mechanism of
reinforcement-based evaluation of feedback in the exploratory
period. Results of the aMCC computations could lead to a regu-
lation of decision processes in other structures, for instance in the
dorsolateral prefrontal cortex or in the ventral striatum (Rothe
et al., 2011; Kolling et al., 2012; Khamassi et al., 2013).
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