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Magnetoencephalography and electroencephalography (M/EEG) measure the weak
electromagnetic signals generated by neuronal activity in the brain. Using these signals
to characterize and locate neural activation in the brain is a challenge that requires
expertise in physics, signal processing, statistics, and numerical methods. As part of the
MNE software suite, MNE-Python is an open-source software package that addresses
this challenge by providing state-of-the-art algorithms implemented in Python that cover
multiple methods of data preprocessing, source localization, statistical analysis, and
estimation of functional connectivity between distributed brain regions. All algorithms
and utility functions are implemented in a consistent manner with well-documented
interfaces, enabling users to create M/EEG data analysis pipelines by writing Python
scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for
scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as
well as the greater neuroimaging ecosystem in Python via the Nibabel package. The
code is provided under the new BSD license allowing code reuse, even in commercial
products. Although MNE-Python has only been under heavy development for a couple of
years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials
because multiple labs have collaborated during code development to help share best
practices. MNE-Python also gives easy access to preprocessed datasets, helping users
to get started quickly and facilitating reproducibility of methods by other researchers. Full
documentation, including dozens of examples, is available at http://martinos.org/mne.
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1. INTRODUCTION
Magnetoencephalography (MEG) and electroencephalography
(EEG) measure non-invasively the weak electromagnetic signals
induced by neural currents. While the more common neuroimag-
ing method of functional magnetic resonance imaging (fMRI)
provides volumetric images defined over voxel grids using a sam-
pling rate of around one image per second, M/EEG captures
both slowly and rapidly changing dynamics of brain activations
at a millisecond time resolution. This enables the investigation
of neuronal activity over a wide range of frequencies that can
offer potentially complementary insights regarding how the brain
works as a large system (Tallon-Baudry et al., 1997; Fries, 2009).

The processing and interpretation of M/EEG signals is, how-
ever, challenging. While fMRI provides unambiguous localization
of the measured blood-oxygen-level dependent signal, estimating
the neural currents underlying M/EEG is difficult. This complex

task involves segmenting various structures from anatomical
MRIs, numerical solution of the electromagnetic forward prob-
lem, signal denoising, a solution to the ill-posed electromagnetic
inverse problem, and appropriate statistical control. This com-
plexity not only constitutes methodological challenges to MEG
investigators, but also offers a great deal of flexibility in data anal-
ysis. To successfully process M/EEG data, a comprehensive and
well-documented analysis pipeline is therefore required.

MNE-Python is a sub-project of the more general academic
software package MNE (Gramfort et al., 2013a), whose goal is
to implement and provide a set of algorithms allowing users
to assemble complete data analysis pipelines that encompass
most phases of M/EEG data processing. Several of such software
packages for M/EEG data processing exist, including Brainstorm
(Tadel et al., 2011), EEGLAB [Delorme and Makeig (2004)
and Delorme et al. (2011)], FieldTrip (Oostenveld et al., 2011),
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NutMeg (Dalal et al., 2011) and SPM (Litvak et al., 2011). These
other packages are implemented in MATLAB, with some depen-
dencies on external packages such as OpenMEEG (Gramfort
et al., 2010b) for boundary element method (BEM) forward mod-
eling or NeuroFEM for volume based finite element method
(FEM) (Wolters et al., 2007) forward modeling. Many analysis
methods are common to all these packages, yet MNE-Python
offers some unique capabilities, in a coherent package facilitating
the combination of standard and advanced techniques in a single
environment described below.

While MNE-Python is designed to integrate with packages
within the Python community, it also seamlessly interfaces with
the other components of the MNE suite (and other M/EEG anal-
ysis tools) because it uses the same Neuromag FIF file format,
with consistent analysis steps and compatible intermediate files.
MNE-Python and the related MNE-Matlab sub-package that ship
with MNE are both open source and distributed under the new
BSD license, a.k.a 3-clause BSD, allowing their use in free as
well as commercial software. The MNE-Python code is the most
recent addition to the MNE suite. After an intensive collaborative
software development effort, MNE-Python now provides a large
number of additional features, such as time–frequency analysis,
non-parametric statistics, connectivity estimation, independent
component analysis (ICA), and decoding, a.k.a. multivariate pat-
tern analysis (MVPA) or simply supervised learning, each of which
is readily integrated into the standard MNE analysis pipeline. This
comprehensive and still growing set of features available in the
MNE-Python package is made possible by a group of dedicated
contributors coming from multiple institutions, countries, and
research areas of expertise who collaborate closely. These inter-
actions are facilitated by the use of an inclusive, highly interactive
software development process that is open for public viewing and
contribution.

MNE-Python reimplements common M/EEG processing algo-
rithms in pure Python. In addition, it also implements new
algorithms, proposed and only recently published by the MNE-
Python authors, making them publicly available for the first time
(Gramfort et al., 2010a, 2011, 2013b; Larson and Lee, 2013).
To achieve this task, MNE-Python is built on the foundation
of core libraries provided by the scientific Python environment:
NumPy (Van der Walt et al., 2011) offers the n-dimensional array
data structure used to efficiently store and manipulate numeri-
cal data; SciPy is used mainly for linear algebra, signal processing
and sparse matrices manipulation; matplotlib (Hunter, 2007) is
used for 2D graphics; Mayavi (Ramachandran and Varoquaux,
2010) is employed for 3D rendering; Scikit-Learn [Pedregosa
et al. (2011) and Buitinck et al. (2013)] is required for decod-
ing tasks; and the Python Data Analysis Library (Pandas) is used
for interfacing with spreadsheet table oriented data processing
tools as often used in econometrics and behavioral sciences.
Mayavi, Scikit-Learn and Pandas are only required by a small
subset of the code, and are therefore considered optional depen-
dencies. Besides these general libraries, MNE-Python has some
other optional dependencies on neuroimaging packages such
as Nibabel for reading and writing volume data (MRI, fMRI).
The online documentation of MNE is generated with Sphinx
http://sphinx-doc.org.

At present, MNE-Python contains more than 44,000 lines of
Python code with around 22,000 lines of comments, contributed
by a total of 35 persons.

In this paper, we describe the MNE-Python package in
detail, starting from the standard analysis pipeline to more
advanced usage. With this work, we aim to help standard-
ize M/EEG analysis pipelines, to foster collaborative soft-
ware development between institutes around the world, and
consequently improve the reproducibility of M/EEG research
findings.

2. THE MNE-PYTHON STANDARD WORKFLOW FOR M/EEG
DATA ANALYSIS

This section describes the standard analysis pipeline of MNE-
Python. First, we discuss sample datasets that are available for
working with MNE-Python. They allow readers to follow along
with the workflow and examples in this manuscript. We then
present the core Python structures employed in such an analysis,
and use these to go from raw data preprocessing to the most com-
monly used linear inverse methods. The full script corresponding
to the steps described below is available at the end of this section
in Table 1.

2.1. SAMPLE DATASETS
The MNE software package provides a sample dataset consist-
ing of recordings from one subject with combined MEG and
EEG conducted at the Martinos Center of Massachusetts General
Hospital. These data were acquired with a Neuromag VectorView
MEG system (Elekta Oy, Helsinki, Finland) with 306 sensors
arranged in 102 triplets, each comprising two orthogonal planar
gradiometers and one magnetometer. EEG was recorded simul-
taneously with 60 electrodes. In the experiment, auditory stimuli
(delivered monaurally to the left or right ear) and visual stim-
uli (shown in the left or right visual hemifield) were presented
in a random sequence with a stimulus-onset asynchrony (SOA)
of 750 ms. To control for subject’s attention, a smiley face was
presented intermittently and the subject was asked to press a
button upon its appearance. These data are used in the MNE-
Python package and in this manuscript for illustration purposes.
Small samples from these data are also used in the MNE-Python
test suite which guarantees reproducibility of results across sys-
tems and environments, as well as the absence of regression when
new code is contributed. This sample dataset can also serve as a
standard validation dataset for M/EEG methods, hence favoring
reproducibility of results. For the same purpose, MNE-Python
facilitates easy access to the MEGSIM datasets (Aine et al., 2012)
that include both experimental and simulated MEG data.

2.2. DESIGN, APPLICATION PROGRAMMING INTERFACE (API) AND
DATA STRUCTURES

M/EEG data analysis typically involves three types of data con-
tainers coded in MNE-Python as Raw, Epochs, and Evoked
objects. The raw data comes straight out of the acquisition sys-
tem; these can be segmented into pieces often called epochs or
trials, which generally correspond to segments of data after each
repetition of a stimulus; these segments can be averaged to form
evoked data. MNE-Python is designed to reproduce this standard
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Table 1 | From raw data to dSPM source estimates in less than 30 lines of code.

import mne

# load data
raw = mne.fiff.Raw(’raw.fif’,preload=True)
raw.info [’bads’] = [’MEG 2443’, ’EEG 053’]  #mark bad channels

# low-pass filter data
raw.filter (l_freq=None, h_freq=40.0)

# extract epochs and save them
picks = mne.fiff.pick_types (raw.info, meg=True, eeg=True, eog=True,

exclude=’bads’)
events = mne.find_events (raw)
epochs = mne.Epochs (raw, events, event_id=1, tmin=−0.2, tmax=0.5, proj=True,

picks=picks, baseline=(None, 0), preload=True, 
reject=dict (grad=4000e−13, mag=4e−12, eog=150e−6))

# compute evoked response and noise covariance,and plot evoked
evoked = epochs.average ()
cov = mne.compute_covariance (epochs, tmax=0)
evoked.plot ()

# compute inverse operator
fwd_fname = ’sample_audvis−meg−eeg−oct−6−fwd.fif’
fwd = mne.read_forward_solution(fwd_fname,surf_ori=True)
inv = mne.minimum_norm.make_inverse_operator(raw.info, fwd, cov, loose=0.2)

# compute inverse solution
stc = mne.minimum_norm.apply_inverse(evoked, inv, lambda2=1./9., method=’dSPM’)

# morph it to average brain for group study and plot it
stc_avg = mne.morph_data (’sample’, ’fsaverage’, stc, 5, smooth=5)
stc_avg.plot ()

operating procedure by offering convenient objects that facilitate
data transformation.

Continuous raw data are stored in instances of the Raw class.
MNE-Python supports reading raw data from various file formats
e.g., BTI/4D, KIT, EDF, Biosemi BDF and BrainVision EEG. Other
formats such as eXimia or CTF can be converted to FIF files using
tools available in the MNE-C package, also available at http://
martinos.org/mne. The Neo project (Garcia et al., under review)
implements readers in Python for micromed and elan files, which
can facilitate the use of these formats with MNE-Python. The FIF
file format allows organization of any type of information into
a multi-leaved tree structure of elements known as tags. It is at
the core of the MNE-Python package which favored the develop-
ment of highly optimized reading and writing routines for this
format. It offers for example the ability to read data from disk
only when needed. This access-on-demand principle can also be
inherited by other classes that build upon Raw (such as Epochs
and Evoked, below), which offers the possibility to process data
with a very limited memory usage. Typical processing steps at this
stage include filtering, noise suppression (such as blinks or car-
diac artifacts), data cropping, and visual data exploration. All of
these are supported by convenient instance methods of the Raw
class that will be explored in greater detail below.

Typical M/EEG experiments involve presentation of stimuli
and responses based on some form of task demands. The occur-
rence of each stimulus or response can can be used to define an
epoch which captures the brain signals preceding the stimulus or
response as well as the response following them. Depending on

the experimental paradigm and the analysis employed, an epoch
is typically 500 ms to 2 s long. Epochs of different experimental
conditions obtained from one subject are stored in MNE-Python
in an instance of the Epochs class. An Epochs instance is
created by specifying one or more instances of Raw to operate
on, the event/stimulus type(s) of interest, and the time window
to include. The Epochs object has various parameters for pre-
processing single trial data, such as baseline correction, signal
detrending, and temporal decimation. Epochs can be averaged to
form evoked data containing the MEG and EEG signals known
respectively as event related fields (ERFs) and event related poten-
tials (ERPs). The averaged data are stored in instances of the
Evoked class, and can be created simply by calling the average
method on an instance of Epochs. As the Raw class, both
Epochs and Evoked classes expose convenient plot methods
that help visualizing single trials and evoked responses.

Each of these data containers can be written to and read
from disk using the FIF file format, which is readable from
the MNE C code and the MNE-Matlab toolbox. These con-
tainers share some common attributes such as ch_names,
which is a Python list containing the names of all of the
channels, and an info attribute which is a modified Python
dictionary storing all the metadata about the recordings. This
attribute is commonly called the measurement information. For
example, the sfreq key in the info dictionary, accessed with
info[’sfreq’] syntax, is the sampling frequency; the chan-
nel types and positions are available in info[’chs’]; the
positions of the head digitization points used for coregistration
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are contained in info[’dig’]; and info[’bads’] stores
the list of bad channels. The info attribute can be used to
conveniently do some channel selection by type (e.g., gradiome-
ters, magnetometers, EEG), general position (e.g., right temporal
channels), or simply by channel names. These convenience func-
tions in MNE-Python are known as pick functions, and they
start with pick_ (e.g., pick_types to select by channel type).
Other standard data structures in MNE-Python handle forward
operators, covariance matrices, independent components, and
source estimates. These structures will be introduced below after
explaining their role in the standard pipeline. Importantly, the
API follows as much as possible the Python standard library
and the widely spread NumPy package. It avoids the prolif-
eration of classes and limits the use of complex inheritance
mechanisms. This helps to keep the code simple, favoring new
contributions.

2.3. PREPROCESSING
The major goal when preprocessing data is to attenuate noise
and artifacts from exogenous (environmental) and endogenous
(biological) sources. Noise reduction strategies generally fall into
two broad categories: exclusion of contaminated data segments
and attenuation of artifacts by use of signal-processing techniques
(Gross et al., 2013). MNE-Python offers both options at differ-
ent stages of the pipeline, through functions for automatic or
semi-automatic data preprocessing as well as interactive plotting
capabilities.

The first preprocessing step often consists in restricting the
signal to a frequency range of interest through filtering. MNE-
Python supports band-pass, low-pass, high-pass, band-stop, and
notch filtering. Instances of Raw can be filtered using the
filter method that supports fast Fourier transform (FFT)
based finite impulse response (FIR) filters (optionally using the
overlap-add technique to minimize computation time), as well
as infinite impulse response (IIR) filters such as Butterworth fil-
ters implemented in SciPy. Several channels can be filtered in
parallel, thanks to the standard multiprocessing Python module
exposed via the Joblib package (http://pythonhosted.org/joblib/).

The FFTs used to implement FIR filters can also be efficiently
computed on the graphical processing unit (GPU) via CUDA and
PyCUDA (Klöckner et al., 2012), further reducing the execution
time.

When segmenting continuous data into epochs, single epochs
can be rejected based on visual inspection, or automatically
by defining thresholds for peak-to-peak amplitude and flat sig-
nal detection. The channels contributing to rejected epochs can
also be visualized to determine whether bad channels have been
missed by visual inspection, or if noise rejection methods have
been inadequate.

Instead of simply excluding contaminated data from the anal-
ysis, artifacts can sometimes be removed or significantly sup-
pressed by using methods for signal decomposition such as signal
space projection (SSP; Uusitalo and Ilmoniemi, 1997) or inde-
pendent component analysis (ICA, see Section 3.1 below). The
assumption behind the SSP method is that artifacts are confined
to a small-dimensional spatial subspace with specific topographic
patterns that are orthogonal or almost orthogonal to the brain
signal patterns of interest and can thus be suppressed with appro-
priate projection vectors. Projection vectors can be derived from
instances of Raw as well as Epochs. MNE-Python also offers
command-line level scripts and Python-level functions to auto-
matically detect heart beats and eye blinks in the data, making
automatic SSP computation possible. Once projection vectors
are specified for subtraction in the measurement info, MNE
minimizes memory and disk space usage by not modifying the
original data but instead applying the projections on demand.
This enables the user to explore the effects of particular SSPs later
in the pipeline and to selectively abandon some projection vectors
if the signals of interest are attenuated. After the above steps, one
can obtain clean data as illustrated in Figure 1, which then can be
further processed in epochs and evoked data, see Figure 2.

2.4. LINEAR INVERSE METHODS
After performing noise reduction via preprocessing, sensor-level
data, especially those from planar gradiometers, may indicate the
probable number and approximate locations of active sources.

FIGURE 1 | Noisy raw MEG magnetometer signals corrupted by a) slow

drifts, b) line noise (at 50 or 60 Hz), and c) heartbeats present across

sensors. To clean signals data were filtered between 1 and 45 Hz.

Subsequently, five signal space projection (SSP) vectors were applied (3
computed from empty room noise, 2 from ECG signals). The plots were
generated using the plot method of the Raw class.
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In order to actually locate the sources, several different unique
solutions to the ill-posed electromagnetic inverse problem exist.
Each localization technique has its own modeling assumptions
and thus also strengths and limitations. Therefore, the MNE
software provides a selection of inverse modeling approaches.
Importantly, in all of the approaches discussed here, the elemen-
tary source employed is a current dipole, motivated by the phys-
iological nature of the cerebral currents measurable in M/EEG
(Hämäläinen et al., 1993). Different source modeling approaches
are set apart by the selection constraints on the sources and
other criteria to arrive at the best estimate for the cerebral current
distribution as a function of time.

Source localization methods generally fall into one of three
categories: parametric overdetermined methods such as time-
varying dipole fitting (Scherg and Von Cramon, 1985), scanning
methods (including beamformers and the MUSIC algorithm),
and distributed inverse methods. While MNE-Python does not
provide dipole-fitting functionality, it does implement multiple
beamformer methods and distributed inverse methods. The most
popular of these is the software namesake MNE, which stands for
Minimum-Norm Estimate (Wang et al., 1992; Hämäläinen and
Ilmoniemi, 1994), and its variants which include dSPM (Dale
et al., 2000) and sLORETA (Pascual-Marqui, 2002).

The standard MNE pipeline by uses MNE or dSPM as the
inverse method by default. These methods employ the (weighted)
�2-norm of the current distribution as regularizer. The impor-
tant practical benefit of such �2 solvers is that the inverse problem
is linear and, therefore, the solution is obtained by multiplying
the data with a matrix, called the inverse operator. Once the
inverse operator has been constructed, it can be applied to evoked,
epochs, and raw data containers. The output of these inverse
solvers, as well as all alternative inverse methods, is provided as
instances of the SourceEstimate object that can be saved
to disk as .stc files. The acronym stc stands for source times
courses.

The source estimates are defined on what is called a source
space, which specifies the locations of the candidate dipole

FIGURE 2 | An evoked response (event-related fields in planar

gradiometers of an Elekta-Neuromag Vectorview system) showing

traces for individual channels (bad channels are colored in red). Epochs
with large peak-to-peak signals as well as channels marked as bad can be
discarded from further analyses. The figure was generated using the plot

method of the Evoked class.

sources, typically regularly sampled over the cortical mantle or
on a volumetric grid. The source space routinely used by MNE is
based on the surface defined by the boundary between the gray
and the white matter, which consists of a high-resolution mesh
with over 100,000 vertices per hemisphere. To reduce the number
of dipoles in the source space defined on this surface, it is neces-
sary to decimate the mesh. However, preserving surface topology,
spacing, and neighborhood information between neighboring
vertices is difficult. Therefore, MNE uses a subsampling strategy
that consists of polygon subdivisions using the spherical coordi-
nate system provided by FreeSurfer. For example, an icosahedron
subdivided 5 times, abbreviated ico-5, consists of 10242 loca-
tions per hemisphere, which leads to an average spacing of 3.1 mm
between dipoles (assuming a reasonable surface area of 1000 cm2

per hemisphere), see illustration in Figure 3. The source estimate
defined on this low-resolution surface can then be up-sampled
and represented on the original high-resolution cortical surface
as presented in Figure 4.

FIGURE 3 | Cortical segmentation used for the source space in the

distributed model with MNE. Left: The pial (red) and white matter (green)
surfaces overlaid on an MRI slice. Right: The right-hemisphere part of the
source space (yellow dots), represented on the inflated surface of the left
hemisphere, was obtained by subdivision of an icosahedron leading to
10242 locations per hemisphere with an average nearest-neighbor distance
of 3.1 mm. Left image was produced with FreeSurfer tksurfer tool and the
right one with PySurfer (http://pysurfer.github.io) which internally depends
on Mayavi (Ramachandran and Varoquaux, 2010).

FIGURE 4 | Source localization of an auditory N100 component. Left:

Results obtained using dSPM and a surface source space based on
combined MEG and EEG data. The figure was generated using the plot

method of the SourceEstimate class which internally calls PySurfer.
Right: Results obtained using LCMV beamformer and a volume source
space based on MEG channels only. The figure was generated using
Freeview shipped with FreeSurfer.
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2.5. SURFACE-BASED NORMALIZATION
While clinical examinations generally consider data from
each patient separately, neuroscience questions are frequently
answered by comparing and combining data from groups of sub-
jects. To achieve this, data from all participating subjects need
to be transformed to a common space in a manner that helps
compensate for inter-subject differences. This procedure, called
morphing by the MNE software, exploits the FreeSurfer spherical
coordinate system defined for each hemisphere (Dale et al., 1999;
Fischl et al., 1999). The process is illustrated in Figure 5.

3. ADVANCED EXAMPLES
Having described the standard MNE-Python workflow for source
localization, we will now present some more advanced examples
of data processing. Some of these examples provide alternative
options for preprocessing and source localization.

3.1. DENOISING WITH INDEPENDENT COMPONENT ANALYSIS (ICA)
In addition to SSP, MNE supports identifying artifacts and
latent components using temporal ICA. This method con-
stitutes a latent variable model that estimates statistically
independent sources, based on distribution criteria such as
kurtosis or skewness. When applied to M/EEG data, artifacts
can be removed by zeroing out the related independent com-
ponents before inverse transforming the latent sources back
into the measurement space. The ICA algorithm currently
supported by MNE-Python is FastICA (Hyvärinen and Oja,
2000) implemented in Scikit-Learn (Pedregosa et al., 2011). Here,
MNE-Python has added a domain specific set of convenience
functions covering visualization, automated component selec-
tion, persistence as well as integration with the MNE-Python
object system. ICA in MNE-Python is handled by the ICA
class which allows one to fit an unmixing matrix on either
Raw or Epochs by calling the related decompose_raw
or decompose_epochs methods. After a model has been
fitted, the resulting source time series can be visualized using
trellis plots (Becker et al., 1996) (cf. Figure 6) as provided by
the plot_sources_raw and plot_sources_epochs
methods (illustrated in Figure 6). In addition, topographic
plots depicting the spatial sensitivities of the unmixing matrix
are provided by the plot_topomap method (illustrated
in Figure 6). Importantly, the find_sources_raw and
find_sources_epochs methods allow for identifying

FIGURE 5 | Current estimates obtained from an individual subject

can be remapped (morphed), i.e., normalized, to another cortical

surface, such as that of the FreeSurfer average brain “fsaverage”

shown here. The normalization is done separably for both
hemispheres using a non-linear registration procedure defined on the
sphere (Dale et al., 1999; Fischl et al., 1999). Here, the N100m
auditory evoked response is localized using dSPM and then mapped
to “fsaverage.” Images were produced with PySurfer.

sources based on bivariate measures, such as Pearson correlations
with ECG recording, or simply based on univariate measures
such as variance or kurtosis. The API, moreover, supports user-
defined scoring measures. Identified source components can then
be marked in the ICA object’s exclude attribute and saved into
a FIF file, together with the unmixing matrix and runtime infor-
mation. This supports a sustainable, demand-driven workflow:
neither sources nor cleaned data need to be saved, signals can
be reconstructed from the saved ICA structure as required. For
advanced use cases, sources can be exported as regular raw data
or epochs objects, and saved into FIF files (sources_as_raw
and sources_as_epochs). This allows any MNE-Python
analysis to be performed on the ICA time series. A simplified
ICA workflow for identifying, visualizing and removing cardiac
artifacts is illustrated in Table 2.

3.2. NON-PARAMETRIC CLUSTER-LEVEL STATISTICS
For traditional cross-subject inferences, MNE-Python offers
several parametric and non-parametric statistical methods.
Parametric statistics provide valid statistical contrasts in so far as
the data under test conform to certain underlying assumptions of
Gaussianity. The more general class of non-parametric statistics,
which we will focus on here, do not require such assumptions to
be satisfied (Nichols and Holmes, 2002; Pantazis et al., 2005).

M/EEG data naturally contains spatial correlations, whether
the signals are represented in sensor space or source space, as
temporal patterns or time–frequency representations. Moreover,
due to filtering and even the characteristics of the signals them-
selves, there are typically strong temporal correlations as well.
Mass univariate methods provide statistical contrasts at each
“location” across all dimensions, e.g., at each spatio-temporal
point in a cortical temporal pattern, independently. However,

FIGURE 6 | Topographic and trellis plots of two automatically

identified ICA components. The component #22 corresponds to the EOG
artifact with a topography on the magnetometers showing frontal signals
and a waveform typical of an eye blink. The component #6 on the right
captures the ECG artifact with a waveform matching 3 heart beats.
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Table 2 | From epochs to ICA artifact removal in less than 20 lines of code.

import mne
from mne.datasets import sample
import numpy as np

# Setup paths and prepare data
raw_fname = sample.data_path () + ’/MEG/sample/sample_audvis_filt−0−40_raw.fif’
raw = mne.fiff.Raw (raw_fname)
picks = mne.fiff.pick_types (raw.info, meg=’mag’, exclude=’bads’)

ica = mne.preprocessing.ICA (n_components=49)
ica.decompose_raw (raw, picks=picks, decim=3) #  use every third sample

# find artifacts using bivariate and univariate measures
scores = ica.find_sources_raw (raw, target=’EOG 061’, score_func=’correlation’)
ica.exclude += [scores.argmax ()]

scores = ica.find_sources_raw (raw, score_func=np.var)
ica.exclude += [scores.argmax ()]

# Visualize result using topography and source time course
ica.plot_topomap (ica.exclude)
ica.plot_sources_raw (raw, ica.exclude, start=100., stop=103.)

due to the highly correlated nature of the data, the resulting
Bonferroni or false discovery rate corrections (Benjamini and
Hochberg, 1995) are generally overly conservative. Moreover,
making inferences over individual spatio-temporal (or other
dimensional) points is typically not of principal interest. Instead,
studies typically seek to identify contiguous regions within
some particular dimensionality, be it spatio-temporal or time–
frequency, during which activation is greater in one condition
compared to a baseline or another condition. This leads to
the use of cluster-based statistics, which seek such contigu-
ous regions of significant activation (Maris and Oostenveld,
2007).

MNE-Python includes a general framework for cluster-based
tests to allow for performing arbitrary sets of contrasts along
arbitrary dimensions while controlling for multiple compar-
isons. In practice, this means that the code is designed to
work with many forms of data, whether they are stored as
SourceEstimate for source-space data, or as Evoked for
sensor-space data, or even as custom data formats, as neces-
sary for time–frequency data. It can operate on any NumPy
array using the natural (grid) connectivity structure, or a more
complex connectivity structure (such as those in a brain source
space) with help of a sparse adjacency matrix. MNE-Python also
facilitates the use of methods for variance control, such as the
“hat” method (Ridgway et al., 2012). Two common use cases are
provided in Figure 7.

3.3. DECODING—MVPA—SUPERVISED LEARNING
MNE-Python can easily be used for decoding using Scikit-
Learn (Pedregosa et al., 2011). Decoding is often referred to
as multivariate pattern analysis (MVPA), or simply supervised
learning. Figure 8 presents cross-validation scores in a binary
classification task that consists of predicting, at each time point, if
an epoch corresponds to a visual flash in the left hemifield or a left
auditory stimulus. Results are presented in Figure 8. The script to
reproduce this figure is available in Table 3.

3.4. FUNCTIONAL CONNECTIVITY
Functional connectivity estimation aims to estimate the struc-
ture and properties of the network describing the dependencies
between a number of locations in either sensor- or source-
space. To estimate connectivity from M/EEG data, MNE-Python
employs single-trial responses, which enables the detection of
relationships between time series that are consistent across tri-
als. Source-space connectivity estimation requires the use of an
inverse method to obtain a source estimate for each trial. While
computationally demanding, estimating connectivity in source-
space has the advantage that the connectivity can be more readily
related to the underlying anatomy, which is difficult in the sensor
space.

The connectivity module in MNE-Python supports a num-
ber of bivariate spectral connectivity measures, i.e., connectivity
is estimated by analyzing pairs of time series, and the connectiv-
ity scores depend on the phase consistency across trials between
the time series at a given frequency. Examples of such mea-
sures are coherence, imaginary coherence (Nolte et al., 2004),
and phase-locking value (PLV) (Lachaux et al., 1999). The moti-
vation for using imaginary coherence and related methods is
that they discard or downweight the contributions of the real
part of the cross spectrum and, therefore, zero-lag correlations,
which can be largely a result of the spatial spread of the mea-
sured signal or source estimate distributions (Schoffelen and
Gross, 2009). However, note that even though some methods
can suppress the effects of the spatial spread, connectivity esti-
mates should be interpreted with caution; due to the bivariate
nature of the supported measures, there can be a large num-
ber of apparent connections due to a latent region connecting
or driving two regions that both contribute to the measured
data. Multivariate connectivity measures, such as partial coher-
ence (Granger and Hatanaka, 1964), can alleviate this problem by
analyzing the connectivity between all regions simultaneously (cf.
Schelter et al., 2006). We plan to add support for such measures
in the future.
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FIGURE 7 | Examples of clustering. (A) Time-frequency clustering showing
a significant region of activation following an auditory stimulus. (B) A
visualization of the significant spatio-temporal activations in a contrast

between auditory stimulation and visual stimulation using the sample dataset.
The red regions were more active after auditory than after visual stimulation,
and vice-versa for blue regions. Image (B) was produced with PySurfer.

FIGURE 8 | Sensor space decoding. At every time instant, a linear support
vector machine (SVM) classifier is used with a cross-validation loop to test if
one can distinguish data following a stimulus in the left ear or in the left
visual field. One can observe that the two conditions start to be
significantly differentiated as early as 50 ms and maximally at 100 ms which
corresponds to the peak of the primary auditory response. Such a statistical
procedure is a quick and easy way to see in which time window the effect
of interest occurs.

The connectivity estimation routines in MNE-Python are
designed to be flexible yet computationally efficient. When
estimating connectivity in sensor-space, an instance of Epochs
is used as input to the connectivity estimation routine. For
source-space connectivity estimation, a Python list containing
SourceEstimate instances is used. Instead of a list, it is
also possible to use a Python generator object which produces
SourceEstimate instances. This option drastically reduces
the memory requirements, as the data is read on-demand
from the raw file and projected to source-space during the
connectivity computation, therefore requiring only a single
SourceEstimate instance to be kept in memory. To use
this feature, inverse methods which operate on Epochs, e.g.,
apply_inverse_epochs, have the option to return a
generator object instead of a list. For linear inverse methods,
e.g., MNE, dSPM, sLORETA, further computational savings are
achieved by storing the inverse kernel and sensor-space data in

the SourceEstimate objects, which allows the connectivity
estimation routine to exploit the linearity of the operations and
apply the time-frequency transforms before projecting the data
to source-space.

Due to the large number of time series, connectivity estimation
between all pairs of time series in source-space is computation-
ally demanding. To alleviate this problem, the user has the option
to specify pairs of signals for which connectivity should be esti-
mated, which makes it possible, for example, to compute the
connectivity between a seed location and the rest of the brain. For
all-to-all connectivity estimation in source-space, an attractive
option is also to reduce the number of time series, and thus the
computational demand, by summarizing the source time series
within a set of cortical regions. We provide functions to do this
automatically for cortical parcellations obtained by FreeSurfer,
which employs probabilistic atlases and cortical folding patterns
for an automated subject-specific segmentation of the cortex
into anatomical regions (Fischl et al., 2004; Desikan et al., 2006;
Destrieux et al., 2010). The obtained set of summary time series
can then be used as input to the connectivity estimation. The
association of time series with cortical regions simplifies the
interpretation of results and it makes them directly compara-
ble across subjects since, due to the subject-specific parcellation,
each time series corresponds to the same anatomical region in
each subject. Code to compute the connectivity between the
labels corresponding to the 68 cortical regions in the FreeSurfer
“aparc” parcellation is shown in Table 4 and the results are shown
in Figure 9.

3.5. BEAMFORMERS
MNE-Python implements two source localization techniques
based on beamforming: Linearly-Constrained Minimum
Variance (LCMV) in the time domain (Van Veen et al., 1997)
and Dynamic Imaging of Coherent Sources (DICS) in the
frequency domain (Gross et al., 2001). Beamformers construct
adaptive spatial filters for each location in the source space
given a data covariance (or cross-spectral density in DICS). This
leads to pseudo-images of “source power” that one can store as
SourceEstimates.

Figure 4 presents example results of applying the LCMV
beamformer to the sample data set for comparison with results
achieved using dSPM. The code that was used to generate this
example is listed in Table 5.
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Table 3 | Sensor space decoding of MEG data.

import mne
from sklearn.svm import SVC
from sklearn.cross_validation import cross_val_score, ShuffleSplit

# Take only the data channels (here the gradiometers)
data_picks = mne.fiff.pick_types (epochs1.info, meg=’grad’, exclude=’bads’)
# Make arrays X and y such that:
# X is 3d with X.shape[0] is the total number of epochs to classify
# y is filled with integers coding for the class to predict
# We must have X.shape[0] equal to y.shape[0]
X = [e.get_data () [:, data_picks, :] for e in (epochs1, epochs2)]
y = [k * np.ones (len(this_X)) for k, this_X in enumerate(X)]
X = np.concatenate(X)
y = np.concatenate(y)

clf = SVC(C=1, kernel=’linear’)
# Define a monte-carlo cross-validation generator (to reduce variance):
cv = ShuffleSplit (len(X), 10, test_size=0.2)

scores, std_scores = np.empty (X.shape[2]), np.empty (X.shape[2])

for t in xrange(X.shape[2]):
Xt = X[:, :, t]
scores_t = cross_val_score(clf, Xt, y, cv=cv, n_jobs=1)
scores [t] = scores_t.mean ()
std_scores [t] = scores_t.std ()

Table 4 | Connectivity estimation between cortical regions in the source space.

import mne
from mne.minimum_norm import apply_inverse_epochs
from mne.connectivity import spectral_connectivity

# Apply inverse to single epochs
stcs = apply_inverse_epochs (epochs, inverse_op, lambda2, method=’dSPM’,

pick_normal=True, return_generator=True)
# Summarize souce estimates in labels
labels, label_colors = mne.labels_from_parc (’sample’, parc=’aparc’,

subjects_dir=subjects_dir)

label_ts = mne.extract_label_time_course (stcs, labels, inverse_op [’src’], mode=’mean_flip’,
return_generator=True)

# Compute all-to-all connectivity between labels
con, freqs, times, n_epochs, n_tapers = spectral_connectivity (label_ts,

method=’wpli2_debiased’, mode=’multitaper’, sfreq=raw.info[’sfreq’],
fmin=8., fmax=13., faverage=True, mt_adaptive=True)

3.6. NON-LINEAR INVERSE METHODS
All the source estimation strategies presented thus far, from
MNE to dSPM or beamformers, lead to linear transforms of
sensor-space data to obtain source estimates. There are also
multiple inverse approaches that yield non-linear source esti-
mation procedures. Such methods have in common to promote
spatially sparse estimates. In other words, source configurations
consisting of a small set of dipoles are favored to explain the
data. MNE-Python implements three of these approaches, namely
mixed-norm estimates (MxNE) (Gramfort et al., 2012), time–
frequency mixed-norm estimates (TF-MxNE) (Gramfort et al.,
2013b) that regularize the estimates in a time–frequency repre-
sentation of the source signals, and a sparse Bayesian learning
technique named γ-MAP (Wipf and Nagarajan, 2009). Source
localization results obtained on the ERF evoked by the left visual

stimulus with both TF-MxNE and γ-MAP are presented in
Figure 10.

4. DISCUSSION
Data processing, such as M/EEG analysis, can be thought of
as a sequence of operations, where each step has an impact
on the subsequent (and ultimately final) results. In the pre-
ceding sections we have first detailed the steps of the standard
MNE pipeline, followed by the presentation of some alterna-
tive and complementary analysis tools made available by the
package.

MNE-Python is a scripting-based package with many visu-
alization capabilities for visualizing results of processing steps
and final outputs, but limited graphical user interfaces (GUIs)
for actually performing processing steps. Leveraging the good

www.frontiersin.org December 2013 | Volume 7 | Article 267 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Gramfort et al. MEG and EEG data analysis with MNE-Python

FIGURE 9 | Connectivity between brain regions of interests, also called

labels, extracted from the automatic FreeSurfer parcellation visualized

using plot_connectivity_circle. The image of the right presents

these labels on the inflated cortical surface. The colors are in agreement
between both figures. Left image was produced with matplotlib and right
image with PySurfer.

Table 5 | Inverse modeling using the LCMV beamformer.

import mne

# load raw data and create epochs and evoked objects as in Table 1, but picking
# only MEG channels using mne.fiff.pick_types(raw.info, meg=True, eeg=False)

# compute noise and data covariance
noise_cov = mne.compute_covariance(epochs, tmax=0.0)
noise_cov = mne.cov.regularize (noise_cov, evoked.info,

mag=0.05, grad=0.05, eeg=0.1, proj=True)
data_cov = mne.compute_covariance (epochs, tmin=0.04, tmax=0.15)

# compute LCMV inverse solution
fwd_fname = ’sample_audvis−meg−vol−7−fwd.fif’
fwd = mne.read_forward_solution (fwd_fname, surf_ori=True)
stc = mne.beamformer.lcmv(evoked, fwd, noise_cov, data_cov, reg=0.1,

pick_ori=’max−power’)

# save result in 4D nifti file for plotting with Freesurfer
stc.save_as_volume(’lcmv.nii.gz’, fwd[’src’], mri_resolution=False)

readability on the Python language, particular care has been
taken to keep the scripts simple, easy to read and to write.
This is similar in spirit with the FieldTrip package (Oostenveld
et al., 2011), in that it pushes users toward standardizing anal-
yses via scripting instead of processing data in a GUI. Perhaps
the largest downside of this scripting approach is that users
clearly need to be able to write reasonable scripts. However
this approach, which is facilitated by many examples that
can be copied from the MNE website, has very clear bene-
fits. First, our experience from analyzing several M/EEG stud-
ies unambiguously indicates that the processing pipeline must
be tailored for each study based on the equipment used, the
nature of the experiment, and the hypotheses under test. Even

though most pipelines follow the same general logic (filter-
ing, epoching, averaging, etc.), the number of options is large
even for such standard steps. Scripting gives the flexibility to
set those options once per study to handle the requirements
of different M/EEG studies. Second, analyses conducted with
help of documented scripts lead to more reproducible results
and ultimately help improve the quality of the research results.
Finally, studies that involve processing of data from dozens or
hundreds of subjects are made tractable via scripting. This is
particularly relevant in an era of large-scale data analysis with
possibly more than a thousand subjects, cf., the Human Brain
Project or the Human Connectome Project (Van Essen et al.,
2012).
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FIGURE 10 | Source localization with non-linear sparse solvers. The left
plot shows results from TF-MxNE on raw unfiltered data (due to the built-in
temporal smoothing), and the right plot shows results from γ-MAP on the
same data but filtered below 40 Hz. One can observe the agreement
between both methods on the sources in the primary (red) and secondary
(yellow) visual cortices delineated by FreeSurfer using an atlas. The γ-MAP
identifies two additional sources in the right fusiform gyrus along the visual
ventral stream. These sources that would not be naturally expected from
such simple visual stimuli are weak and peak later in time, which makes
them nevertheless plausible.

Software-based data analysis is not limited to neuroimaging,
and the fact today is that neuroscientists from different academic
disciplines spend an increasing amount of time writing software
to process their experimental data. We would wager that almost
all scientific data are ultimately processed with computers soft-
ware. The practical consequence of this is that the quality of
the science produced relies on the quality of the software writ-
ten (Dubois, 2005). The success of digital data analysis is made
possible not just by acquiring high-quality data and sometimes
by using sophisticated numerical and mathematical methods, but
critically it is made possible by using correct implementations of
methods. The MNE-Python project is developed and maintained
to help provide the best quality in terms of accuracy, efficiency,
and readability. In order to preserve analysis accuracy, the devel-
opment process requires the writing of unit and regression tests
(so-called test-driven development) that ensure that the soft-
ware is installed and functioning correctly, yielding results that
match those previously obtained from many different users and
machines. This testing framework currently covers about 86%
of the lines of MNE-Python code, which not only enhances the
quality and stability of the software but also makes it easier to
incorporate new contributions quickly without breaking exist-
ing code. Code quality is also improved by a peer review process
among the developers. Any code contribution must be read by
at least two people, the author and a reviewer, in order to miti-
gate the risk of errors. Moreover, the entire source code and full
development history is made publicly available by a distributed
version control system. This makes it possible to keep track of
the development of the project and handle code changes in a way
that minimizes the risk of rendering existing scripts and anal-
ysis pipelines inoperable. Finally, large parts of the source code
are commented using inline documentation that allows for auto-
matically building user manuals in PDF and HTML formats.

The Ohloh.net 1 source code analysis project attests that 35% of
the source code consists of documentation and with this, MNE-
Python scores in the upper third of the most well documented
Python projects.

Some recent studies have pointed out the heterogeneity of
functional MRI data analysis pipelines (Carp, 2012a,b). These
studies quantify the combinatorial explosion of analysis options
when many different steps are combined as required when ana-
lyzing neuroimaging data. Although they focused on fMRI, the
same issue arises for M/EEG. We argue that this fact does not
need to become a significant drawback, as long as the details
required to make the analysis reproducible are available. A dif-
ficulty does arise in that whatever level of detail is provided in a
methods section of a paper, it is ultimately unlikely to be suffi-
cient to provide access to all parameters used. However, sharing
the proper code provides a better guarantee for reproducible sci-
ence. The previously mentioned studies also raise the issue that
the geographical location of the investigators biases their choice in
terms of method and software. Again, this is not wrong per se, as
expertise is more easily found from colleagues than mailing lists
or user documentation. By favoring on-line collaborative work
between international institutions, MNE-Python aims to reduce
this geographical bias.

While an important goal in science is the reproducibility of
results, reproducibility can have two levels of meaning. Rerunning
the same analysis (code) on the same dataset using the same
machine should always be possible. However, we should really be
aiming for a deeper level of reproducability that helps foster new
scientific discoveries, namely where rerunning the same analysis
on data collected on an equivalent task in another laboratory. In
other words, analysis pipelines should ideally be reusable across
laboratories. Although it is often overlooked by users (and some
developers), care must be taken regarding the license governing
use of a given software package in order to maximize its impact.
The MNE-Python code is thus provided under the very permis-
sive open source new BSD license. This license allows anybody to
reuse and redistribute the code, even in commercial applications.

Neuroimaging is a broad field encompassing static images,
such as anatomical MRI as well as dynamic, functional data such
as M/EEG or fMRI. The MNE software already relies on some
other packages such as FreeSurfer for anatomical MRI process-
ing, or Nibabel for file operations. Our ambition is of course not
to make MNE-Python self-contained, dropping any dependency
on other software. Indeed the MNE-Python package cannot and
does not aim to do everything. MNE has its own scope and seeks
to leverage the capabilities of external software in the neuroimag-
ing software ecosystem. Tighter integration with fMRI analysis
pipelines could be facilitated by NiPype (Gorgolewski et al., 2011)
but is first made possible by adopting standards. That is why all
data MNE produces are stored in FIF file format which can be
read and written by various software packages written in differ-
ent languages. The MNE-Python code favors its integration in the
scientific Python ecosystem via the use of NumPy and SciPy, and
limits effort duplication and code maintainance burden by push-
ing to more general purpose software packages any improvement

1http://www.ohloh.net/p/MNE.
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to non M/EEG specific algorithms. For example, improvement of
ICA code were contributed back to Scikit-Learn, as it could be for
signal processing routines in the scipy.signal module.

Good science requires not only good hypotheses and theories,
creative experimental design, and principled analysis methods,
but also well-established data analysis tools and software. The
MNE-Python software provides a solid foundation for repro-
ducible scientific discoveries based on M/EEG data. Through
the contributions and feedback from a diverse set of M/EEG
researchers, it should provide increasing value to the neuroimag-
ing community.
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