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Neurons in the dorsal motor nucleus of the vagus (DMV) play a critical role in the
regulation of autonomic functions. Previous studies indicated that central activation
of sirtuin 1 (SIRT1) has beneficial effects on homeostasis, most likely via modulation
of the autonomic output. Sirtuins are NAD+-dependent deacetylases and have been
associated with longevity. SIRT1 is one of the best-characterized sirtuins expressed in
mammals, and may be involved in the regulation of metabolism. Resveratrol, a SIRT1
activator reduced hyperglycemia likely through activation of vagal output; however, the
cellular mechanisms of action have not been determined. In this study, whole-cell
patch-clamp electrophysiology on acute brainstem slices was used to test the hypothesis
that activation of SIRT1 with resveratrol enhances neurotransmission in DMV neurons.
Application of resveratrol increased the frequency of spontaneous excitatory postsynaptic
currents (sEPSC). This effect was KATP channel-dependent and was prevented with
pre-application of SIRT1 inhibitor, EX527. Resveratrol also increased miniature EPSC
(mEPSC) frequency without change in amplitude. Furthermore, our data demonstrated
that resveratrol regulates excitatory neurotransmission in a PI3 kinase-dependent manner,
since wortmannin, a PI3K inhibitor prevented the increase of mEPSC frequency caused
by resveratrol. In conclusion, our data demonstrate that resveratrol via SIRT1 increases
excitatory neurotransmission to DMV neurons. These observations suggest that activation
of SIRT1 may regulate the function of subdiaphragmatic organs through controlling the
activity of parasympathetic DMV neurons.
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INTRODUCTION
Neurons within the dorsal motor nucleus of the vagus (DMV) are
parasympathetic motor neurons as they project to the periphery
and regulate the tone to most of the subdiaphragmatic organs and
thus, regulate feeding, digestion, energy, and glucose homeosta-
sis (Laughton and Powley, 1987; Berthoud, 2008). The activity of
DMV neurons is largely controlled by local circuits and by inputs
from other brain regions including the hypothalamus (Saper
et al., 1976; Swanson and Sawchenko, 1980; Zsombok and Smith,
2009). Hormones, metabolic signals, gastrointestinal signals, or
pharmacological agents have the potential to alter the activity of
DMV neurons and thereby modulate the parasympathetic out-
flow to the organs. Therefore, there is a continuous search to
identify potential therapeutic agents that alter synaptic activity
and thus, influence the function of the visceral organs.

Sirtuins are NAD+-dependent histone deacetylases that are
highly conserved throughout the evolution (Imai et al., 2000;
Michan and Sinclair, 2007). Sirtuins play protective roles pro-
moting the survival of the organism and it has been suggested
that they may serve as the molecular link between calorie restric-
tion and prolonged lifespan following dietary restrictions (Cohen
et al., 2004; Michan and Sinclair, 2007; Haigis and Sinclair,
2010; Satoh et al., 2010; Coppari, 2012). Sirtuin 1 (SIRT1) is

one of the best characterized sirtuins and plays a pivotal role
in adaptive responses to high-energy states and hypercaloric
diets (Haigis and Sinclair, 2010). Liver-specific deletion of SIRT1
impairs lipid metabolism and reduces glucose production (Erion
et al., 2009; Purushotham et al., 2009). In pancreatic beta cells,
SIRT1 increases insulin secretion through reduction of uncou-
pling protein 2 (UCP2) (Moynihan et al., 2005). In addition to its
peripheral action, activation of SIRT1 in the brain improves diet-
induced diabetes (Ramadori et al., 2009). Central administration
of resveratrol, a SIRT1 activator can normalize diet-induced
hyperglycemia and mediate anti-diabetic actions (Ramadori et al.,
2009). On the other hand, fasting increases SIRT1 levels in
the hypothalamus, and blockade of SIRT1 in the hypothalamus
decreases food intake and body weight (Ramadori et al., 2008;
Cakir et al., 2009). Resveratrol administration into the hypothala-
mus also improved insulin sensitivity and hepatic vagotomy sig-
nificantly attenuated this effect (Knight et al., 2011). Despite that
the expression of SIRT1 has been shown in brain areas involved
in energy and glucose homeostasis, including the hypothalamus
and the dorsal vagal complex of the brainstem (Ramadori et al.,
2008) and the in vivo studies suggested its beneficial effects, the
synaptic mechanism underlying the actions of resveratrol in the
brain remained to be determined.
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In this study, we used whole-cell patch-clamp electrophysi-
ology from DMV neurons to test the hypothesis that activation
of SIRT1 with resveratrol enhances neurotransmission in DMV
neurons. Our data demonstrate that resveratrol increased spon-
taneous and miniature excitatory neurotransmission through
modulation of ATP-sensitive K+ channels (KATP) in a PI3-kinase-
dependent manner.

METHODS
ANIMALS
Male CD1 mice (6–8 weeks; Harlan Laboratories, Indianapolis,
IN) were used for these experiments. Animals were housed in a
vivarium under 12-h light, 12-h dark cycle with food and water
available ad libitum. Experiments were performed under the
guideline of National Institute of Health Guide for the Care and
Use of Laboratory Animals and approved by Tulane University’s
Institutional Animal Care and Use Committee.

BRAIN SLICES PREPARATION
Acute brainstem slices containing the DMV were prepared as
previously described (Williams et al., 2007; Zsombok et al.,
2011). Under deep anesthesia, mice were decapitated and the
brain was removed and immersed in ice-cold oxygenated arti-
ficial cerebrospinal fluid (aCSF) containing the following (in
mM): 124 NaCl, 26 NaHCO3, 1.4 NaH2PO4, 11 glucose, 3 KCl,
1.3 MgCl2, 1.5 CaCl2, pH 7.3–7.4. Transverse brainstem slices
(300 µm) were cut with a vibratome (Leica), and then the
slices were transferred to a holding chamber containing aCSF
(34–36◦C, ∼1 h) before being transferred to a recording cham-
ber mounted on a fixed stage under an upright microscope
(Nikon FN1).

WHOLE-CELL PATCH-CLAMP RECORDINGS
Whole-cell patch-clamp recordings were performed at 34–36◦C.
Neurons were identified under 40x water-immersion objective
(N.A = 0.8) using infrared illumination and differential inter-
ference contrast optics (IR-DIC). For whole-cell patch-clamp
recordings, electrodes (2–5 M�) were filled with a solution con-
taining the following (in mM): 130 K+ gluconate, 10 HEPES,
5 EGTA, 1 NaCl, 1 MgCl2, 1 CaCl2, 3 KOH, 2–3 Mg-ATP, pH
7.3–7.4. Excitatory postsynaptic currents (EPSCs) were examined
at a holding potential of −60 mV. Electrophysiological signals
were recorded using an Axoclamp 700B amplifier (Molecular
Devices) and acquired by pClamp 10 (Molecular Devices).
Synaptic currents were analyzed offline using pClamp 10 and
MiniAnalysis (Synaptosoft).

DRUG APPLICATION
Tetrodotoxin (TTX, 1 µM, Tocris Bioscience) was used in the
bath solution in specific experiments to block action poten-
tial and monitor miniature EPSCs (mEPSCs). The SIRT1
activator resveratrol (1–500 µM, Tocris Bioscience) and the
selective SIRT1 inhibitor EX527 (500 nM, Tocris Bioscience)
were dissolved in ethanol and diluted in aCSF (final concen-
tration of ethanol <0.1% by volume). The ATP-sensitive K+
channel blocker glibenclamide (1 µM, Tocris Bioscience), and
a PI3-kinase inhibitor wortmannin (1 µM, Tocris Bioscience)

were dissolved in DMSO and diluted in aCSF (final DMSO
concentration <0.01%).

STATISTICAL ANALYSIS
Continuous recordings of EPSCs have been conducted before and
after application of the drugs and the data were analyzed in 2 min
epochs. We observed the maximum effect of resveratrol ∼6–8 min
following bath application and we have used this time point in
bar-graphs. The effect of activators and inhibitors on sponta-
neous and mEPSC frequency and amplitude were analyzed within
individual cells using the Kolmogorov-Smirnov test by compar-
ing 2 min epochs before and 6–8 min after drug application.
The effects of drug applications across the neuron groups were
analyzed using a paired two-tailed Student’s t-test. For all anal-
ysis, probability values over the 95% confidence level (p < 0.05)
were considered significant. Numbers were reported as mean ±
standard error (SEM).

RESULTS
RESVERATROL INCREASED SPONTANEOUS EXCITATORY
NEUROTRANSMISSION
Previous in vivo findings revealed that the beneficial effect of
central administration of resveratrol is modulated by the auto-
nomic nervous system. Hepatic vagotomy attenuated this effect
(Knight et al., 2011) suggesting the involvement of synaptic
mechanisms at the level of DMV. Here, we have assessed the
excitatory control of DMV neurons following SIRT1 activa-
tion with resveratrol. Recordings of spontaneous EPSC (sEPSCs)
were conducted at −60 mV. The average frequency of sEPSCs
was 3.5 ± 0.7 Hz (range from 0.7 to 6.5 Hz, n = 8). After bath
application of 100 µM resveratrol the frequency of sEPSCs sig-
nificantly increased to 4.2 ± 0.8 Hz (range from 0.8 to 8.2 Hz,
n = 8, p < 0.05) (Figures 1A–C). The average amplitude of sEP-
SCs was 13.2 ± 1.4 pA (range from 7.5 to 19.2 pA) before and
10.3 ± 0.6 pA (range from 8.0 to 13.7 pA) after application of
resveratrol (n = 8, p < 0.05).

To verify that the increased sEPSC frequency is due to SIRT1
activation we pre-incubated the slices with a selective SIRT1
inhibitor, EX527 (500 nM). The average frequency of sEPSCs
was 5.9 ± 1.3 Hz (range from 1.1 to 10.1 Hz, n = 7) before and
5.8 ± 1.3 Hz (range from 0.6 to 11.9 Hz) after application of
EX527 indicating no change in sEPSC frequency in the pres-
ence of EX527 (p > 0.05). Furthermore, application of resveratrol
(100 µM) in the presence of EX527 did not increase sEPSC fre-
quency (5.1 ± 1.0 Hz, range from 0.5 to 8.5 Hz, n = 7, p > 0.05)
(Figure 1D). The amplitude of sEPSCs was 15.6 ± 1.7 pA in aCSF,
12.6 ± 1.8 pA in the presence of EX527 and 11.9 ± 2.7 pA after
resveratrol application (n = 7, p > 0.05) (Figure 1E). Together,
our data indicate that resveratrol through SIRT1 activation sig-
nificantly increased spontaneous excitatory neurotransmission in
DMV neurons.

RESVERATROL INCREASED MINIATURE EXCITATORY SYNAPTIC
NEUROTRANSMISSION
Recordings of miniature EPSCs were conducted in the presence of
TTX (1 µM) to block action potential dependent neurotransmit-
ter release. The average frequency of mEPSCs was 2.1 ± 0.5 Hz
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FIGURE 1 | Resveratrol increased spontaneous excitatory

neurotransmission through SIRT1 activation in neurons of the dorsal

motor nucleus of the vagus (DMV). (A) Continuous whole-cell
patch-clamp recordings of spontaneous EPSCs (sEPSCs) at holding
potential of −60 mV before (upper trace) and after (lower trace) resveratrol
application. (B) Combined data showing increased frequency of sEPSCs
following resveratrol application. ∗Significance (p < 0.05). (C) Cumulative
event probability plot of inter-event interval distribution in the recording
shown in (A). (D) Mean group data showing that in the presence of a
selective SIRT1 inhibitor EX527 resveratrol failed to increase sEPSC
frequency in DMV neurons. (E) Combined data showing no significant
change in amplitude of sEPSCs following resveratrol application in the
presence of EX527.

(range from 0.4 to 3.5 Hz, n = 6). Bath application of resvera-
trol (100 µM) significantly increased the frequency of mEPSCs to
2.7 ± 0.6 Hz (range from 0.6 to 4.6 Hz, n = 6, p < 0.05) with-
out altering the amplitude (10.3 ± 1.7 vs. 9.4 ± 2.0 pA, n = 6,
p > 0.05) (Figure 2). These data demonstrate that resveratrol
via SIRT1 activation increased mEPSC frequency and suggest
presynaptic site of action.

Previous studies used resveratrol in a variety of concentrations
suggesting that resveratrol may alter synaptic transmission in
dose-dependent manner. Therefore, we conducted additional
experiments using resveratrol from 1 to 500 µM. Our data
demonstrated that resveratrol did not alter the frequency of mEP-
SCs at concentration of 1 and 10 µM in the recorded DMV

FIGURE 2 | Resveratrol enhanced miniature excitatory

neurotransmission in DMV neurons. (A) Voltage-clamp recordings of
mEPSCs from a DMV neuron before (upper trace) and after (lower trace)
resveratrol application. (Vm = −60 mV). (B) Combined data demonstrating
that resveratrol increased mEPSC frequency. ∗Significance (p < 0.05).
(C) Cumulative event probability plot of inter-event interval distribution in
the recording shown in (A). (D) Mean group data showing that resveratrol
did not alter the amplitude of mEPSCs. (E) Histogram showing the
concentration dependence of the response to resveratrol in DMV neurons.
Number of replicates indicated at each concentration in parentheses.

neurons (p > 0.05) (Figure 2E). Application of 30 µM resveratrol
increased the frequency of mEPSCs from 4.0 ± 0.4 (range from
3.3 to 4.5 Hz) to 4.8 ± 0.3 Hz (range from 4.1 to 5.3 Hz, n =
4, p < 0.05) (Figure 2E). Application of 500 µM of resveratrol
increased mEPSC frequency from 2.4 ± 0.8 (range from 0.9
to 3.8 Hz) to 3.3 ± 0.6 Hz (range from 2.2 to 4.4 Hz, n = 4)
(Figure 2E).

MECHANISM OF EFFECT ON SYNAPTIC TRANSMISSION
Previous in vivo and cell culture studies suggested that resveratrol
may alter ATP-sensitive K+ channels (Chen et al., 2007; Knight
et al., 2011). To investigate whether KATP channels are involved in
the regulation of excitatory neurotransmission following resvera-
trol administration we have used a KATP channel blocker gliben-
clamide and investigated its effect on the resveratrol induced
increase of EPSC frequency. Slices were incubated in aCSF
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containing glibenclamide (1 µM) for 30 min to block KATP chan-
nels, and then recordings were conducted. The average frequency
of spontaneous EPSCs in the presence of glibenclamide (1 µM)
was 3.7 ± 0.7 Hz (range from 1.1 to 7.9 Hz, n = 9). Application
of resveratrol (100 µM) in the presence of glibenclamide did
not increase sEPSC frequency (3.9 ± 0.7 Hz, n = 9, p > 0.05;
not shown). The average frequency of mEPSCs in the presence
of glibenclamide was 2.6 ± 0.6 Hz (range from 0.9 to 4.4 Hz,
n = 6). In the presence of glibenclamide application of resver-
atrol failed to increase mEPSC frequency (2.6 ± 0.6 Hz, range
from 0.9 to 4.9 Hz, n = 6, p > 0.05) (Figures 3A,C). Resveratrol
did not have effect on the amplitude of mEPSCs (10.6 ± 2.2
vs. 9.3 ± 2.0 pA, p > 0.05) (Figure 3D). Our data suggest that
resveratrol acts to increase synaptic transmission through KATP

channels. In addition, we have conducted experiments to deter-
mine the effect of glibenclamide alone on mEPSC frequency. The
average frequency of mEPSCs was 3.9 ± 0.5 Hz (range from 2.0 to
6.2 Hz) before and 4.8 ± 0.7 Hz (range from 2.9 to 7.2 Hz; n = 6;
p < 0.05) after application of glibenclamide. These data demon-
strate the modulation of excitatory neurotransmission by KATP

channel.
Next, DMV neurons were exposed to wortmannin, a

PI3-kinase inhibitor for 30 min to determine whether the
resveratrol induced increase of excitatory neurotransmission is
PI3-kinase dependent. Slices were perfused with wortmannin
(1 µM) and mEPSCs were recorded. The average frequency
of mEPSCs in the presence of wortmannin was 4.0 ± 0.8 Hz
(range from 1.9 to 7.8 Hz, n = 8) while 4.1 ± 1.0 Hz (range
from 1.2 to 8.7 Hz) after resveratrol application (p > 0.05)
(Figures 3B,E,F). These findings demonstrate that the PI3-
kinase pathway is involved in the resveratrol induced increase
of EPSC frequency. The average amplitude of mEPSCs was
15.9 ± 3.3 (range from 7.2 to 29.5 pA, n = 8) and 11.7 ±
2.2 pA (range from 5.5 to 21.2 pA, p < 0.05) after resveratrol
administration.

RESVERATROL DID NOT ALTER THE MEMBRANE POTENTIAL OR INPUT
RESISTANCE OF DMV NEURONS
Since resveratrol altered synaptic neurotransmission through
KATP channels we determined the effect of resveratrol on mem-
brane potential and input resistance. The resting membrane
potential of recorded DMV neurons was −45.9 ± 1.7 mV (range
from −39.7 to −50.4 mV, n = 6). Application of resveratrol
did not result in a significant change of membrane potential
(−46.2 ± 1.1 mV, range from −42.3 to −49.5 mV, n = 6, p >

0.05). The input resistance of DMV neurons was not differ-
ent before and after resveratrol application (0.9 ± 0.09 vs. 1.1 ±
0.1 G�). These data suggest that despite resveratrol effects on
KATP channels, it does not alter membrane potential or input
resistance of the recorded DMV neurons, further indicating
presynaptic mechanisms.

DISCUSSION
In this study we present novel evidence for synaptic regulation of
DMV neurons by resveratrol. The following major findings have
emerged from this investigation: (1) resveratrol increases sponta-
neous and mEPSC frequency via SIRT1 activation; (2) resveratrol

FIGURE 3 | Resveratrol increased excitatory neurotransmission

through PI3-kinase activated KATP channels. (A) Continuous whole-cell
patch-clamp recordings of mEPSCs before (upper trace) and after (lower
trace) resveratrol (100 µM) application in the presence of glibenclamide
(1 µM). (B) Voltage-clamp recordings showing mEPSCs recordings before
(upper trace) and after (lower trace) resveratrol application in the presence
of wortmannin (1 µM). (C) Combined data demonstrating that resveratrol
failed to increase mEPSC frequency in the presence of glibenclamide.
(D) Combined data indicating no change in amplitude of mEPSCs after
resveratrol application in the presence of glibenclamide. (E) Combined data
showing that resveratrol failed to increase mEPSC frequency in the
presence of wortmannin. (F) Cumulative event probability plot of inter-event
interval distribution in the recording shown in (B).

modulates excitatory neurotransmission through PI3-kinase acti-
vated KATP channels; and (3) resveratrol did not alter membrane
potential and input resistance, implying presynaptic mechanism
of action.

The increasing prevalence of diabetes, obesity and metabolic
syndrome results in a need to identify potential therapeutic tar-
gets for the management of these devastating diseases. SIRT1
has been considered as a potential therapeutic target for a
variety of diseases including metabolic disorders (Haigis and
Sinclair, 2010). Resveratrol, a natural compound found in grapes
and red wine has been shown as an effective SIRT1 activator
(Howitz et al., 2003). Numerous studies conducted on ani-
mals demonstrated that resveratrol improves glucose metabolism
(Baur and Sinclair, 2006; Baur et al., 2006; Barger et al., 2008;
Andersen et al., 2011; Kang et al., 2012; Marchal et al., 2012),
reduces inflammation (Rivera et al., 2009), reverses non-alcoholic
fatty liver disease (Bujanda et al., 2008) and prevents obe-
sity (Dal-Pan et al., 2010). On the other hand the results
of clinical studies using resveratrol are controversial. It has
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been reported that oral administration of resveratrol improves
mean hemoglobin A1C, systolic blood pressure, total choles-
terol, and protein in type 2 diabetic patients (Bhatt et al.,
2012). In contrast, a more recent study using high-dose resver-
atrol supplementation in obese men reported no effect on
endogenous glucose production, blood pressure, energy expen-
diture, fat mass or inflammatory and metabolic biomarkers
(Poulsen et al., 2013) raising debates about the effectiveness of
resveratrol as a dietary supplement in humans; however, addi-
tional studies with more subjects would be necessary to make
conclusion.

In addition to the overall effect of resveratrol, the question
regarding peripheral or central mechanisms of resveratrol also
has been investigated. SIRT1 protein expression has been detected
with Western blot analysis in the rat hypothalamus markedly
in the arcuate, ventromedial, dorsomedial hypothalamus, and
paraventricular nucleus (Knight et al., 2011). This is consis-
tent with in situ hybridization and immunohistochemical studies
performed on mice that showed marked expression of SIRT1
mRNA and protein in metabolically relevant brain areas includ-
ing the above mentioned sites (Ramadori et al., 2008; Sasaki
et al., 2010). The Ramadori et al. study also demonstrated high
expression in the brainstem including the area postrema and
the nucleus of the solitary tract (NTS) suggesting SIRT1 expres-
sion throughout the neuroaxis involved in energy and glucose
homeostasis (Ramadori et al., 2008). Administration of resvera-
trol into the brain improved insulin sensitivity and normalized
hyperglycemia (Ramadori et al., 2009; Knight et al., 2011); how-
ever, the underlying synaptic mechanisms are not fully under-
stood. Our study demonstrated that resveratrol, a SIRT1 activator
increased excitatory neurotransmission to parasympathetic DMV
neurons. Our findings also revealed that the resveratrol effect
requires the involvement of KATP channel and the PI3-kinase
pathway.

Glutamate, the main excitatory neurotransmitter is released in
the DMV from inputs arriving from many different brain areas
including the hypothalamus and the NTS (Travagli et al., 1991;
Jiang et al., 2003; Davis et al., 2004). In vitro application of resver-
atrol increased the frequency of both spontaneous and mEPSCs
in the DMV indicating a presynaptic action of resveratrol. Our
observations also revealed that resveratrol alters EPSC frequency
of DMV neurons in dose-dependent manner. The resveratrol
induced frequency increase of EPSCs was prevented in the pres-
ence of a SIRT1 inhibitor EX527. EX527 is a selective inhibitor
of SIRT1 that does not inhibit other sirtuins or histone deacethy-
lase, therefore, our data verified that resveratrol exerts its effect
through SIRT1 activation.

Previous studies established that resveratrol alters ion channels
by various mechanisms depending on the cell types. Resveratrol
activates BK channels in endothelial cells (Li et al., 2000), inhibits
IK channels in cultured rat hippocampal neurons (Gao et al.,
2006; Dong et al., 2013) and inhibits TRP channels in HEK and
dorsal root ganglia cells (Yu et al., 2013). The involvement of KATP

channels also has been demonstrated (Chen et al., 2007). This
study by Chen revealed that resveratrol significantly inhibits KATP

channels and voltage-gated K+ currents in order to depolarize the
membrane and increase insulin secretion from pancreatic beta

cells. Similarly, the in vivo work of Knight and co-workers indi-
cated that the effect of resveratrol was inhibited in the presence
of a KATP channel blocker, glibenclamide (Knight et al., 2011).
Our data also suggest that resveratrol increases excitatory neu-
rotransmission in the DMV through KATP channels (Figure 4).
Pre-incubation of the brainstem slices with glibenclamide pre-
vented the resveratrol-dependent increase of mEPSC frequency,
suggesting the involvement of KATP channels. Furthermore, appli-
cation of glibenclamide alone resulted in an increase of mEPSC
frequency, indicating that blocking KATP channels modulates
pre-synaptic neurotransmitter release. KATP channels have been
shown to modulate synaptic neurotransmission in the brainstem
(Ferreira et al., 2001; Williams and Smith, 2006; Williams et al.,
2007). Previous electrophysiological studies demonstrated that
tolbutamide, another KATP channel blocker depolarizes NTS neu-
rons, suggesting the presence of KATP channels in brainstem NTS
neurons (Williams and Smith, 2006). Depolarization of NTS neu-
rons could lead to increased neurotransmitter release to DMV
neurons. Furthermore, the effect of KATP channel opener diazox-
ide alone has been shown to reduce mEPSC frequency in DMV
neurons, demonstrating that KATP channels are able to modulate
glutamate release at the presynaptic terminals (Williams et al.,
2007). Another cellular observation demonstrated that gliben-
clamide mimics the actions of elevated glucose levels on the
amplitude of evoked PSCs in DMV neurons, while diazoxide,
a KATP opener had opposite effect (Ferreira et al., 2001). These
experiments also suggest a presynaptic site of action and indicate
modulation of neurotransmission by KATP channels.

The involvement of PI3K in KATP-dependent mechanisms
is known. Furthermore, it also has been demonstrated that
PI3K is involved in SIRT1 activation (Frojdo et al., 2011).
Therefore, we also pre-incubated the slices with wortmannin

FIGURE 4 | Schematic illustration of resveratrol action on presynaptic

terminals. SIRT1 activation with resveratrol results in increased glutamate
release from presynaptic terminals. This mechanism depends on PI3-kinase
dependent closure of KATP channels leading to depolarization and increased
neurotransmitter release.
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then applied resveratrol and found that wortmannin blunted
the resveratrol-dependent increase of EPSC frequency. Previous
electrophysiological studies used wortmannin from 10 nM to
3 µM concentration (Williams et al., 2007; Gao et al., 2012). In
our experiments we used 1 µM of wortmannin for 30 min, which
diminished the effect of resveratrol. It has been shown that this
concentration of wortmannin inhibits the mammalian target of
rapamycin (mTOR) (Brunn et al., 1996), therefore, there is a pos-
sibility that in addition to PI3K, the mTOR signaling is modulated
by resveratrol. However, this scenario is unlikely, because a recent
study demonstrated that less than 72 h treatment with rapamycin,
a specific inhibitor of mTOR did not alter the electrophysio-
logical properties of neurons (Weston et al., 2012). It also has
been demonstrated that 3-week long inhibition of mTOR with
rapamycin increases the excitability of hypothalamic neurons
via KATP channel (Yang et al., 2012), suggesting that changing
the electrophysiological properties of neurons via the mTOR
signaling requires longer duration. In our experiments resver-
atrol increased EPSC frequency within 10 min, therefore, it is
unlikely that the observed electrophysiological response involves
the mTOR signaling; however, additional studies would be nec-
essary to make conclusion regarding the interaction between
resveratrol and mTOR signaling. It has been observed in hypotha-
lamic cells that the presence of PI3K inhibitor per se reduced
the phosphorylation of protein kinase B (PKB) and glycogen
synthase kinase 3 (GSK3) levels, indicating that PI3K is active
to a limited degree in neurons of the arcuate nucleus, and it
also prevented the leptin and insulin induced phosphorylation of
PKB and GSK3 (Mirshamsi et al., 2004). Furthermore, inhibiting
PI3K has been shown to decrease insulin-stimulated phospho-
rylation of MAPK (Mirshamsi et al., 2004), and blocking PI3K
can also inhibit insulin induced increase of MAPK activity in
adipose tissue (Sajan et al., 1999). It also has been described
that inhibition of PI3K reduced the effect of leptin or insulin on
KATP channels (Mirshamsi et al., 2004). Moreover, inhibition of
PI3K prevented the leptin caused increase of phosphatidylinos-
itol 3,4,5-triphosphate. PtdIns activates KATP channels, proba-
bly not through direct binding (Harvey et al., 2000; Mirshamsi
et al., 2004), but actin remodeling. Furthermore, direct inter-
play between SIRT1 and insulin signaling pathway including
PI3K has been demonstrated in muscle (Frojdo et al., 2011).
Downregulation of SIRT1 expression levels diminished insulin-
stimulated PKB phosphorylation and overexpression increased
insulin-stimulated PKB phosphorylation. SIRT1 positively mod-
ulated the activity of upstream components of insulin pathway
and SIRT1 interacted with tyrosin phosphorylated proteins and
with the PI3K-p85alpha (Frojdo et al., 2011). In addition, it has
been shown that resveratrol also could directly modulate the sul-
fonylurea receptor 1 (SUR1) of KATP channels (Hambrock et al.,
2007), indicating a possible direct link between resveratrol and
binding to SUR1. In summary, the evaluation of interactions
among the above mentioned intracellular pathways remains to be
determined and could be the subject of future studies.

Together, these data indicate that pre-application of gliben-
clamide or wortmannin prevented the resveratrol induced
increase of EPSC frequency that might imply a PI3-kinase acti-
vated KATP channel in response. Previous data demonstrated

that the resveratrol effect depends on KATP channels and hep-
atic vagotomy significantly attenuated this effect (Knight et al.,
2011), indicating the involvement of the parasympathetic nervous
system. Our data confirmed that resveratrol is able to modu-
late neurotransmission to DMV neurons. The synaptic effects
of resveratrol appear to be due to increased glutamate release,
likely via closing KATP channels, from synaptic terminals con-
tacting DMV neurons (Figure 4). Based on the high expression
of SIRT1 mRNA detected in the NTS, one possible origin of the
synaptic terminals is the NTS. Another possibility is the hypotha-
lamus (Ramadori et al., 2008; Sasaki et al., 2010). Both brain
areas are known to send projections to the DMV (Swanson and
Sawchenko, 1980; Travagli et al., 1991) and thereby involved in the
modulation of parasympathetic output to the subdiaphragmatic
organs.

Our findings identified a potential cellular mechanism under-
lying the effect of resveratrol administration into the brain.
Considering the described anti-diabetic effects of central resver-
atrol administration and that vagotomy attenuated this effect
(Ramadori et al., 2009; Knight et al., 2011) we can speculate that
modulating the synaptic activity of DMV neurons underlies the
effect of resveratrol on the autonomic nervous system.
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