
REVIEW ARTICLE
published: 21 January 2014

doi: 10.3389/fnins.2014.00001

Misconceptions in the use of the General Linear Model
applied to functional MRI: a tutorial for junior
neuro-imagers
Cyril R. Pernet*

Brain Research Imaging Centre, Imaging Sciences, University of Edinburgh, Edinburgh, UK

Edited by:

Bertrand Thirion, Institut National de
Recherche en Informatique et
Automatique, France

Reviewed by:

Matthew Brett, University of
Cambridge, UK
Arnaud Delorme, Centre de
Recherche Cerveau et Cognition,
France

*Correspondence:

Cyril R. Pernet, Brain Research
Imaging Centre, Division of Clinical
Neurosciences, Western General
Hospital, Crewe Road, EH4 2XU,
Edinburgh, UK
e-mail: cyril.pernet@ed.ac.uk

This tutorial presents several misconceptions related to the use the General Linear Model
(GLM) in functional Magnetic Resonance Imaging (fMRI). The goal is not to present
mathematical proofs but to educate using examples and computer code (in Matlab). In
particular, I address issues related to (1) model parameterization (modeling baseline or null
events) and scaling of the design matrix; (2) hemodynamic modeling using basis functions,
and (3) computing percentage signal change. Using a simple controlled block design and
an alternating block design, I first show why “baseline” should not be modeled (model
over-parameterization), and how this affects effect sizes. I also show that, depending
on what is tested; over-parameterization does not necessarily impact upon statistical
results. Next, using a simple periodic vs. random event related design, I show how
the hemodynamic model (hemodynamic function only or using derivatives) can affects
parameter estimates, as well as detail the role of orthogonalization. I then relate the above
results to the computation of percentage signal change. Finally, I discuss how these issues
affect group analyses and give some recommendations.
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INTRODUCTION
A common way the analyze functional Magnetic Resonance
Imaging (fMRI) time series is to use the General Linear Model
(GLM—Friston et al., 1994, 1995; Worsley and Friston, 1995). In
short, time series from each voxel (y) are analyzed by fitting an
experimental design matrix (X) in which the different conditions
are explicitly described and most often modeled via a convolu-
tion by a hemodynamic response function (hrf—Equation 1).
Fitting involves finding the parameters (β) that allow scaling each
regressor of the experimental design such as to minimize the dis-
tance (in the least squares sense) between the data and the model
(Equation 2). Having this in mind, it therefore appears essential
to have a design matrix (and sampling scheme) that reflects as
much as possible of the data.

y = Xβ + ε (1)

with y the time series from one voxel, X the design matrix, β the
model parameters, ε the error (or residuals)

�

β= (XTX)−1XTy (2)

σ̂2 = (êT ê)/(n − rank(X)) (3)

with
�

β the parameter estimates, σ̂2 the variance estimate, and ê

the estimated residuals (y–X
�

β)—note that Equation 2 only applies
when XTX is invertible. When XTX is rank deficient, a pseudo-
inverse is used instead.

While the mathematical machinery behind mass univariate
GLM analyses is described in many papers (see e.g., Monti,
2011; Poline and Brett, 2012), and many articles or book chap-
ters present the different type of designs and issues related to
sampling and efficiency (Dale, 1999; Friston et al., 1999; Miezin
et al., 2000; Birn et al., 2002; Mechelli et al., 2003; Amaro and
Barker, 2006; Henson, 2007; Smith et al., 2007), few address in
details the issue of modeling the experimental data, i.e., spec-
ifying the design matrix, and how this affects results [at the
exception of Poline et al. (2007)]. Although most fMRI articles
published do model the data appropriately, there are still mis-
takes and misconceptions about the results from such analyses.
One of the most persistent question one can read on forums and
discussion lists relate to the modeling of rest periods and/or null
events. Here I show that in theory this is better not to model
those events, although it does not necessarily impact the statis-
tical results. A short survey of the specialized literature (Figure 1,
annex 1) suggests that at least 50% of studies include such peri-
ods or events and 23% of them (12% of the total) do model
these events. Most studies seemed to have used the right statis-
tical analysis for full brain analysis, but a minority of reported
effect sizes might be wrong (for 3 studies of the 75 reviewed,
it was not clear if the right parameters were extracted/plotted
relative to the statistical maps). Another common issue relates
to the use of basis functions and in particular the use of a
hemodynamic model and its derivatives. Although there are sev-
eral advantages in having a more complex model (Lindquist
et al., 2009), only ∼8% of event related studies used deriva-
tives, and only 2% (1 out of 50 event related studies) used this
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FIGURE 1 | Survey of 6 months of fMRI literature obtained from the

journal Neuroimage between January and June, 2013. The list of article
reviewed and the information sheet used for the survey are presented in
annex 1. The pie chart splits studies into block design (n = 24.75—blue),
event related design (n = 50.75—red), and mixed design (n = 1.75—green)
ones. Bar graphs on the top right show the percentages of studies having
rest periods or null events among block design vs. event related design

studies. The question mark in the x-axis indicates cases for which it was not
clear from the method section if such periods/events were included.
Similarly, bar graphs at the bottom right show the percentages of studies
modeling these periods or events among studies for which there are present.
The bottom left bar graph show the percentages of studies reporting effect
sizes in terms of parameter estimates (beta or con), percentage signal
change (PSC) or Cohen’s d.

information at the 2nd level (group) analysis. Importantly, I show
that depending on the software and the design, using deriva-
tives have different impact on parameter estimates and users
must be aware of differences. Finally, related to both previous
issues, is the common question of how to compute percent-
age signal change in relation to GLM parameters. Most studies
report percentage signal change (∼54%) in some regions of inter-
est, but none actually described how it was obtained. At best,
it is described which software was used [Marsbar (n = 5), REX
toolbox (n = 1), or AFNI (n = 3); 12% of cases only] but with-
out specifying the parameter used in those toolboxes. This is a
real concern as the reported estimates might be miss-estimated
(up to 29% of all studies reviewed), but there is no way to
know from the method sections. Here I show how to obtain the
percentage signal change using GLM parameters (with deriva-
tives if any) and what should be reported for this metric to
be valid.

SIMULATION CODES AND EXAMPLES
All simulations were programmed in Matlab and the codes
can be seen in annexes as well as available to down-
load. The section on Model parameterization corresponds
to the file Model_parameterization.m (annex 2), the sec-
tion on Hemodynamic modeling corresponds to the files
Derivative_effect.m (annex 3), and Orthogonalization_effect.m
(annex 4) and the section on percentage signal change corre-
sponds to the file PSC_simulations.m (annex 5). To run the codes,
SPM needs to be installed as well as the function spm_orth2.m that
can be downloaded. Figures were generated from these codes and
post-edited with Photoshop.

MODEL PARAMETERIZATION, PARAMETER ESTIMATES,
AND T -VALUES
Let’s consider first a simple controlled block design (one con-
dition of interest—Figure 2). In the simulated data used here,
baseline (values 10 ± 0.1) and the condition of interest (values
11 ± 0.1) were alternated such as the “activation blocks” showed
10% signal change on average. Note that the data were created
without convolution allowing very simple modeling. The analy-
sis was as follow: (1) model the data with an over-parameterized
model (i.e., modeling both baseline and activation); (2) model
the data with a well-parameterized model (i.e., modeling activa-
tion blocks only); (3) model the data with a well-parameterized
model but value range for the regressor of interest in the design
matrix equals to 2 rather than 1 (i.e., the regressor of interest in
the design matrix was not scaled between 0 and 1—Figure 2).
This 3rd model is of particular interest because, depending on
the software, the design matrix is not always scaled to 1 and it is
essential to understand how this affects parameter estimates. For
model 2 and 3, the t-values for the condition(s) of interest were
computed following Equation 4 and p-values obtained from the
Student’s t distribution.

t = cT
�

β

/√
σ̂2cT(XTX)−1c (4)

c defined the contrast of interest,
�

β are the parameter esti-
mates, σ̂2 is the variance obtained from the residuals, X is
the design matrix. For model 1, X is rank deficient (because
one of the column can be computed with a linear combina-
tion of the others), and therefore is XTX is rank deficient, in
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FIGURE 2 | Controlled block design with a single “active” condition

above baseline. Three different models were used: one over-para
meterized one (baseline and condition were modeled—top), and two
well-parameterized ones (only the condition was modeled) but with the
design matrix value either between 0 and 1 (middle) or 0 and 2
(bottom). As illustrated on the right hand side, all 3 models (dashed

blue lines) fitted the data (red line) the same way giving the same R2. In
addition, since the model degrees of freedom depend on the rank of the
design matrix, all models have the same degrees of freedom giving the
same F - and p-values. Differences arise when considering effect sizes
(beta values) and t-values for the parameter of interest against 0, defined
by the contrast C.

which case a pseudo-inverse of XTX is used instead of the
inverse.

Despite different design matrices, all models provided the
same fit, i.e., the same fitted data. This is explained by the fact
that all design matrices can predict equally well the data. In
model 1, the sum of the two first regressors is the constant term;
and having this constant term in the model cannot thus change
the fit, compared to model 2. The same sums of squares of the
effect and the same residuals were therefore obtained, and the
amount of variance explained was always the same (same R2).
Also, because degrees of freedom are defined by the rank (i.e., the
number of independent regressors) of the design matrix, the over-
parameterized model (model 1) had the same degrees of freedom
as the other models, and therefore F- and p-values were also the
same.

Differences among models occurred when looking at the
parameters of interest: the 1st model returned parameter esti-
mate values different from the simulated data (β̂1 = 3 for base-
line, β̂2 = 4 for activation), whilst model 2 returned parameter

estimates that reflected directly the amount of change in the data
(β̂1 = 1 for activation, β̂2 = 10 for baseline/constant). The reason
why the estimated parameters in Model 1 do not reflect the sim-
ulations is because there is no unique solution, indeed there is an
infinite number of possible solutions for the estimated param-
eter that can lead to the same error (the same sum of square
of the error). Following Equations 1 and 2, the data are simply
expressed as the sum of weighted regressors plus the error term.
Model 2 (i.e., modeling activation only, plus the constant) thus
follows Equation 5 and the constant term (the intercept) is given
by Equation 6.

Y = X1 ∗ β̂1 + X2 ∗ β̂2 + ê (5)

X2 ∗ β̂2 = Y − X1 ∗ β̂1 − ê (6)

with Y the data, X the design matrix (X1 coding for activation

and X2 coding for the constant term),
�

β1,
�

β2, are the parameter
estimates and ê the error.

www.frontiersin.org January 2014 | Volume 8 | Article 1 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Pernet GLM misconceptions

It becomes apparent that the constant term (here X2 ∗ β̂2) rep-
resents the average across observations of the adjusted data, i.e.,
the estimated average of the data minus the effect of the activation
regressors and the error. In this model, the constant term there-
fore models baseline, and β̂1 reflects the signal change relative to
it. In Model 1 (i.e., modeling activation and baseline, plus the
constant), individual beta estimate values cannot be interpreted
because they are not “estimable”. Since the design matrix is over-
parameterized (i.e., X is rank deficient), the inverse of XTX in
Equation 2 cannot be obtained, meaning that there is no unique
solution. Instead, an infinity of parameter estimate values can
be obtained depending on the generalized inverse used (in the
code used here, the pinv Matlab function uses the Moore–Penrose
pseudo-inverse, giving one, among many, possible solutions).
Having different parameter estimate values depending on the
method used is, however, not necessarily an issue because the pre-
dicted values and the corresponding residuals remain unchanged
(as shown above the same model fit is obtained by the different
models). This implies that the “right” T/p-values can be obtained
by using a combination of regressors that make their linear
dependency irrelevant: in our case, the linear dependency is that
“baseline” + “activation” = constant, therefore X∗[k k –k]T = 0
(k is any constant) and we have XB = X[B + k[1 1 –1]T]. If we
are using contrasts orthogonal to [1 1 –1] then our result is inde-
pendent of the arbitrary constant k, and this is an “estimable”
contrast. Testing explicitly activation versus baseline (i.e., a con-
trast [–1 1 0]) in model 1 is one of such contrast, and in this case
one obtains the same results as testing activation vs. 0 (i.e., a con-
trast [1 0]) in model 2 [for a more in depth treatment of this issue
see appendix section in Poline and Brett (2012)].

Another important aspect of the GLM is the scale of the design
matrix. Since the design matrix is a model of the data, the param-
eters can be seen as values that simply scale the columns of X.
A consequence of this is that model 2, for which the activation
regressor in the design matrix was scaled between 0 and 1, had
a parameter estimate for activation that reflected directly the sig-
nal change relative to the constant/baseline (β̂1 = 1, β̂2 = 10). In
contrast, model 3, for which the activation regressor was scaled
between 0 and 2, had a parameter estimate for activation of half
the value of the signal change (β̂1 = 0.5, β̂2 = 10). In fMRI, after
regressors are convolved by the hemodynamic response model,
they are not always rescaled between 0 and 1 and this will mat-
ter when looking at the PSC because the parameter estimates do
not then reflect directly changes in the signal. However, if we only
focus on the statistics, and because T-values are defined as the
ratio between the parameter estimate and error variance (which
is also scaled by the design matrix, see Equation 4), results are
identical between different scaled models (here model 2 and 3).

Consider now an alternating block design (Figure 3). In this
simulation, data corresponded to an alternation between two
conditions of interest (11 ± 0.1 and 9 ± 0.1) relative to a base-
line (10 ± 0.1) having again 10% signal change on average (and
thus 20% signal change between the 2 conditions). Doing the
same analysis as above, we can observe that all models gave simi-
lar fits and that the over-parameterized model (model 1) gave the
“wrong” parameter estimates given the data change simulated.
However, the contrast between conditions 1 and 2 was always

correct. Differences between parameter estimates and standard-
ized variances were identical for model 1 and 2, whilst those
values were simply scaled for model 3, such as their ratio (i.e., the
t-values) gave the same results. This illustrates again that model
parameterization does not always impact on statistical results.

These examples illustrate the fundamental point that “contrast
specification and the interpretation of results are entirely depen-
dent on the model specification (and parameterization) which
in turn depends on the design of the experiment” (Poline et al.,
2007—italic added). For the reader interested into computational
details related to the GLM and application to fMRI, the arti-
cles by Monti (2011) and Poline and Brett (2012) are extremely
well-documented. For a more comprehensive covering of linear
models, a must read is Christensen (2011).

HEMODYNAMIC MODELING AND THE USE OF BASIS
FUNCTIONS
Using a set of functions [here the hemodynamic response func-
tion (hrf) and its time derivative] rather than the hrf alone is usu-
ally considered desirable, because even minor miss-specification
of the hemodynamic model can result in substantial bias and
loss of power, possibly inflating the type I error rate (Lindquist
et al., 2009). In this simulation, data mimicked a periodic event
related design with one condition presented at 0.05 Hz. Data
corresponded to 10 events of various intensities to reflect some
variations in the signal, convolved using a standard hemodynamic
response function (i.e., a double gamma function—Friston et al.,
1998) with a time resolution of 0.5 s. To demonstrate the impact
of adding basis functions on parameter estimates, events were
modeled with or without temporal shift (+2 s) relative to the
design matrix. As expected, miss-specification of the hemody-
namic timing led to a decrease of the parameter estimate and a
decrease in model fit (R2—Figure 4).

Data were analyzed using design matrices where events
were convolved by the hrf (model 1) vs. the hrf and its 1st
derivative. Three models were compared: adding the deriva-
tive without orthogonalization (model 2), adding the derivative
orthogonalized onto the regressor convolved by the hrf [SPM
(Friston et al., 2007)—http://www.fil.ion.ucl.ac.uk/spm/] and
AFNI styles [(Cox, 1996—http://afni.nimh.nih.gov/afni), model
3], and adding the derivative orthogonalized against the rest of
the design matrix [i.e., the regressor convolved by the hrf and
the constant term; FSL style, Jenkinson et al. (2012)—http://fsl.
fmrib.ox.ac.uk/fsl/, model 4]. Results showed that adding the
1st derivative improved the overall model fit, giving a higher
R2, which is expected since more variance was explained com-
pared with the hrf alone model (Figure 5). Of particular interest
here is the behavior of the parameter estimates. In the simu-
lation presented here, the incorrect model gives β1 = 6.96 (vs.
10 expected) and adding the temporal derivative, irrespective
of orthogonalization, led to an increase of the hrf parameter
estimates (7.44 for model 2, 7.39 for model 3, and 7.12 for
model 4) thus giving a better estimate of the true hrf regressor.
However, when applying the same simulation with the hemo-
dynamic signal peaking earlier than the standard hrf model,
adding the temporal derivative has the opposite effect, i.e., it
gives lower estimates of the true hrf regressor (see annex 3).
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FIGURE 3 | Alternating block design with two “active” conditions and a

baseline. Three different models were used: one over-parameterized one
(condition 1, baseline and condition 2 were modeled—top), and two
well-parameterized ones (only conditions were modeled) but with the design
matrix value either between 0 and 1 (middle) or 0 and 2 (bottom). As
illustrated on the right hand side, all 3 models fitted the data the same way,
giving the same R2. Parameter estimates however differed. The fitted data
for condition 1 are plotted in blue, for condition 2 in red and for the baseline

(model 1 only) in black. In model 1, condition 1 and 2 are modeled as positive
effects relative to the constant term (7.5 + 1.5 = 9 for condition 1,
7.5 + 3.5 = 11 for condition 2) whereas for model 2 and 3, they are modeled
as a negative effect relative to constant for condition 1 (10 – 1 = 9 for model
2 or 10 – 0.5∗2 = 9 for model 3) and a positive effect relative to constant for
condition 2 (10 + 1 = 11 for model 2 and 10 + 0.5∗2 = 11 for model 3).
Despite those differences, contrasts C between the conditions gave the
same T -values.

FIGURE 4 | Periodic event related designs with 1 condition. In the 1st
model (left), the hemodynamic response always start and peak at the same
time after stimulus onset (as described in the design matrix) such as the

model (blue dashed lines) reflects well the data (red lines). In the 2nd model
(right), the hemodynamic response is delayed by 2 s, leading to a poorer fit
of the model, reducing R2/F /p-values.
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FIGURE 5 | Periodic event related designs with 1 condition with a

temporal shift of 2 s between the model and the data. From top

to bottom, data are modeled using the hrf and 1st derivative without
orthogonalization, using the hrf and 1st derivative with orthogonalization
on the hrf only, and the hrf and 1st derivative with orthogonalization

on the hrf and constant. Adding derivatives improved the model fit
(see R2, Figure 3) and all 3 designs give the same result. Because
of the way regressors are orthogonalized, the weight attributed to the
hrf alone however varies, also affecting the T -value when tested
against 0.

Because the true response is however not known with real data,
one wants to minimize this effect whilst still accounting for time
or dispersion miss-specification. This can be achieved, in the-
ory, by orthogonalizing the derivative(s) regressors with regard
to the regressor convolved by the hrf. Orthogonalization also has
the advantage to make clear the relative contribution of each
regressor to the model (Andrade et al., 1999). Once orthogo-
nalized, the maximum variance is attributed to the regressor
convolved by the hrf and additional variance is explained by
the orthogonalized regressor convolved by the hrf 1st deriva-
tive. In the simulation presented here, this was the 4th model
(orthogonalization against the rest of design matrix) which was
the most accurate followed by model 3 (orthogonalization against
the regressor convolved by the hrf) and finally model 2 (no
orthogonalization).

Another important point to notice, it that despite orthogonal-
ization, the parameter estimate for the regressor convolved by the
hrf was different before and after adding the temporal derivative.
It must be understood that this change in parameter estimate is

function of (1) how the orthogonalization is performed (as exem-
plified above); (2) the correlation between the regressor of interest
and the constant term (which itself depends on the inter-stimulus
interval—see annex 4); and (3) the presence of other regressors
and their degree of correlation. This issue must not be disre-
garded because results can change drastically between different
models (adding derivatives or not, orthogonalization method)
and designs (inter-stimulus interval and correlation between
regressors).

COMPUTING THE PERCENTAGE SIGNAL CHANGE
Rather than using the raw parameter estimates to report or inves-
tigate local changes, it is often preferable to compute a more
standard measure such as the Percentage Signal Change (PSC).
The PSC is defined here as the ratio between the magnitude of the
BOLD response and the overall mean of the adjusted time series.
Because the parameter estimates from the GLM (Equation 2) are a
scaled version of this magnitude, it is also mandatory to account
for the value range in the design matrix (Poldrack et al., 2011).
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The PSC is thus computed as

PSC = �

β condition ∗ SF /
�

β constant ∗ 100 (7)

SF = max(TrialXss) (8)

with
�

β condition the parameter estimates for a condition of inter-

est,
�

β constant the parameter estimates for the constant term, SF the
scale factor corresponding to the maximum value of a reference trial
computed at the resolution of the super-sampled design matrix Xss.

As explained below, the SF not only allows recovering the true
signal change but also allows comparing results across different
designs. Therefore, instead of using the maximum of a given
trial in the experimental design matrix, we may choose a “typi-
cal” trial which does not have to be present in the actual design
(Poldrack et al., 2011), by default a single event convolved by the
super-sampled double gamma-function.

To evaluate the impact of hemodynamic modeling on the
computation of PSC and T/p-values, two event related designs
were simulated: the same periodic event related designs as in
the previous section (i.e., one experimental event presented at
0.05 Hz) and a randomized event related design for which the
experimental condition can occur at closer time interval. In both
cases, data corresponded to 10 events with identical mean sig-
nals over time. For the first set of analyses, design matrices were
created by indicating the onset of each event and convolving the
regressor with the double gamma function, with a time resolu-
tion of 0.5 s. For the second set of analyses, the data and the
design matrices were down-sampled (without interpolation) to
correspond to data acquired with a TR of 2 s. This 2nd analysis
is crucial because in most software, the design matrix is con-
structed using a super-sampled hrf (referred to as Xss Equation
8) and then down-sampled at the resolution of the TR (lead-
ing to the design matrix X, Equation 1). In each case, the PSC
as well as a t-test for the effect of the regressor of interest
were computed.

For both the periodic design and the fast event related designs,
the data were created so that the mean activity was identical;
with GLM parameters being different (Figure 6). As illustrated,
the convolution of the regressor of interest gave identical hrf
for each stimulus in the periodic design because stimuli were
sufficiently spaced in time. In contrast, the convolution of the
regressor of interest in the random design gave different shapes
and heights across trials, because stimuli could be closer in time,
and convoluted responses accumulated, which reflects real phys-
iological responses. As a consequence of having different shapes
and heights in this second design, and since data fitting consists in
minimizing the distance between the model and the data, a small
(negligible) decrease in total variance explained was observed.
This is not to say that random event related designs should not
be used: on the contrary, having highly variable designs is more
desirable overall (Friston et al., 1999) by maximizing variance
between conditions.

COMPUTING PSC
To be comparable between designs, computation of the PSC has
to account for differences in the height of the regressors because,

as illustrated in Figure 3, parameter estimate values depend on
the scaling of the design matrix. Yet, in none of the studies sur-
veyed (Figure 1) a scaling factor was reported, or maybe even
computed. In the examples of Figure 6, the PSC is of ∼1.05, and
if one computes the PSC without accounting for the scaling fac-
tor, we obtain 10 and 9.9%. The PSC is wrong by a factor of 10
(with real data this is unlikely to observe such a large error but
it shows here how important this is to account for the design
height). However because in both cases the same scaling fac-
tor was used (i.e., not using any is like using 1), the difference
between the two PSC estimates is small (=0.0620%). This means
that PSC reported are often wrong in absolute terms but, assum-
ing that 2 studies have similar designs, the reported values could
be roughly compared. Whilst, no studies that computed the PSC
manually reported a scaling factor or accounted for the design
matrix height, ∼12% of studies that reported a PSC were likely to
report the right absolute PSC by using toolboxes such as MarsBaR
(Brett et al., 2002) which does account the height of regressors
by computing the PSC using the fitted response using a refer-
ence trial. However, in those cases it is also mandatory to report
which parameters were used in those toolboxes as they often offers
several options.

In the simulations presented here, the maximum height in
the periodic design was 0.105 vs. a maximum height in the fast
event related design of 0.115. If one scales the PSC using those
heights, we obtained values of 1.05 vs. 1.15%, even though the
true signal changes are comparable. In contrast, if one uses the
same SF for both designs, the estimates PSC become compara-
ble. If one uses a SF of 0.105, we obtained 1.05% for the period
design vs. 1.04% for the fast event related design. If one uses a
SF 0.115, the PSC of the periodic design goes up to 1.157 vs.
1.1506% for the fast event related design. This simply illustrates
that the PSC is a relative metric. To use the same analogy as
Poldrack et al. (2011), the reference trial used to obtain the SF
can be thought at as a currency. Looking at the stock market,
we can compute the PSC of shares in US dollars or in British
pounds. In both cases we use PSC but the absolute values will
differ. If the currency is known, we can however convert the PSC
from one currency to the other. Similarly if the SF is reported,
the can convert the PSC observed in one design to the PSC
observed in another design. As proposed, one can use a single trial
height computed at the resolution of the super-sampled design
matrix as the default currency. In that case we obtain 1.05%
for the period design vs. 1.04% for the fast event related design
(annex 5).

ACCOUNTING FOR MODEL SAMPLING
Analysis of the down-sampled data showed that the models
before/after down-sampling explained about the same amount
of variance as with the original data. F-values for the model
and T-values for the effect of interest were however different
because of the difference in the number of observations (degrees
of freedom of the error). More importantly, the PSC for down-
sampled models were biased and could only be obtained by using
a scaling factor from a trial computed at the resolution of the
super-sampled design matrix. The reason for this effect is that
the minimum or maximum of the hrf can be missed in the
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FIGURE 6 | Periodic vs. random event related designs with a single

“active” condition. On the left are displayed the original design
matrices and data and on the right their down-sampled version. PSC
stands for Percentage Signal Change computed using the parameters
from the hrf and a scaling factor taken as the maximum of the
design matrix. PSC using original X (for down sampled data only),

stands for Percentage Signal Change computed using the parameters
from the hrf and a scaling factor taken as the maximum of the
super-sampled design matrix. PSC corrected stands for Percentage
Signal Change computed using the parameters from the hrf and a
scaling factor taken as the maximum of a reference trial in the
super-sampled design matrix.

down-sampled designs. This an important aspect related to the
SF, and users of fMRI software must re-compute either the super
sampled design matrix or obtain the reference trial at that reso-
lution (see annex 5 for details as well as specific code for SPM
users).

PSC ACCOUNTING FOR TIME SHIFT
To finish this tutorial, we considered how timing misspecification
also impacts PSC computations. Analyses of the high resolution
designs were replicated but using data with a temporal shift of
+2 s, and a design matrix including the hrf and its time deriva-
tive. For these analyses, we compared the PSC computed using
the parameter estimates of the hrf to the corrected parameter esti-
mates, which are based on the combination of the hrf and its

derivative (Steffener et al., 2010—Equation 9). This correction
is required as the magnitude of the hrf is biased because of the
temporal shift (Calhoun et al., 2004).

H =
√√√√�

β
2

1

N∑
1

x12+ �

β
2

2

N∑
1

x22 ∗
�

β1∣∣∣∣
�

β1

∣∣∣∣
(9)

with H the combined parameter (i.e., amplitude of the hrf account-

ing for the shift of the derivative),
�

β1 the parameter estimates for

the hrf, x1 the regressor convolved by the hrf,
�

β2 the parameter
estimates for the temporal derivative, x2 the regressor convolved by
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FIGURE 7 | Periodic (top) vs. random (bottom) event related designs

with a temporal shift in the data. The fitted data using the hrf only
(green) are misaligned with the signal (red), leading to under-estimate

the magnitude of the response and thus the PSC. The magnitude is
better estimated using the hrf and derivative (blue) giving more
accurate PSC.

the 1st derivative. Note the difference with Steffener et al. (2010),

here there is a post-multiplication of
�

β1 divided by its absolute
value, allowing recovering the sign [as in Calhoun et al. (2004)].

Analysis and modeling of the periodic vs. fast event related
designs with some temporal delay are displayed in Figure 7. As
illustrated, fitted data using the hrf regressors only were mis-
aligned with the observed responses, leading to smaller parameter
estimates than expected. Consequently, computing the PSC using
these parameters also gave smaller values: 0.74 and 0.79%. In
contrast, adding temporal derivatives improved the data fit, and
fitted data were aligned with the signal. Using the height of
the fitted data (i.e., the combination of parameters from the
hrf and derivatives—Equation 9) therefore returned much closer
estimates of the PSC (here 1.03 and 1.07%).

DISCUSSION
The first misconception about the GLM has to do with model-
ing rest or null events and can be related to the understanding
of (1) what the constant term is (2) what model (over) parame-
terization implies. Because the constant term is often referred to
as the intercept, this is often interpreted as “baseline.” Physically,
the constant term reflects the offset of the measured signal,

which is not on average zero even without stimuli (Poline et al.,
2007). Mathematically, it corresponds to the intercept of the
full design matrix in n dimensions, meaning it is the estimated
average of the data adjusted for all of the other effects in the
design matrix (the adjusted mean). For instance, in a simple
regression, the adjusted data are the data minus a single (lin-
ear trend) effect and the constant term is the mean of these
adjusted data (i.e., the intercept of the regression line). In a con-
trolled block design, the adjusted data are the data minus the
modeled activation blocks and the constant is the mean of this
adjusted data (i.e., it reflects rest periods). Intuitively, it there-
fore makes sense to not model fMRI “rest” periods or null events.
At a more fundamental level, modeling baseline leads to rank
deficient, i.e., non-invertible, matrices which implies that the
model parameters are not estimable, i.e., that nothing can be
said about their individual value. In practice, after convolution
of the regressors by the hrf model, the design matrix is most often
not rank deficient, but is close to being singular which leads to
poor/unstable estimates as well. In addition, in fMRI, the actual
parameters and noise estimates are also affected by the noise
model [white, AR(1). . . ] added to Equation 1 (see e.g., Monti,
2011).
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Modeling rest periods or null events does not, however, neces-
sarily impact statistical results (second misconception), as long as
the right contrasts are used. For a simple block design (Figure 2)
modeling both “activation” and “rest” gave the wrong estimates
compared to the true underlying signal change, and the contrast
[0 1 0] returned the wrong T-value for testing activations alone,
while a contrast [–1 1 0] testing activation vs. rest was valid, since
the difference between activation and rest was the same as the
one obtained from parameter estimates of a well-parameterized
model. The same applies for any other designs (see e.g., Figure 2).
In terms of group analysis, this means that for models that do
include rest or null events, the group statistics is valid as long as
it is based on a contrast between conditions. Any use of individ-
ual parameter estimates (which is the same as using a contrast
like e.g., [1 0]) for modeling at the 2nd level but also for plotting
effect sizes (beta or PSC) or performing ROI analyses, is how-
ever invalid and again only contrast values must be used. This last
point is not trivial. Most fMRI studies do not report enough infor-
mation about effect sizes to allow comparisons between studies
and prospective power computations. It is essential that more
plots and parameter estimates (or PSC) of the observed effects
are reported, but no need to say that these reported values need
to be valid.

A third misconception is to think that adding temporal and/or
dispersion derivatives never change the parameter estimate(s) of
the hrf regressor(s), because of orthogonalization. In a linear sys-
tem, fitting orthogonal regressors is indeed identical as fitting
each regressor separately because orthogonal regressors are also
uncorrelated (for further insight into independence vs. orthog-
onality vs. correlation, see Rodgers et al., 1984). In the GLM
as used in fMRI, regressors are however never all uncorrelated.
Even for the simple single event related design as in Figure 3,
the regressor of the event is correlated with the constant to some
degree. Therefore, if one adds the orthogonalized 1st deriva-
tive, and depending on the software orthogonalization procedure,
the parameter estimate of the hrf regressor can change (see also
annex 4). It is thus essential for users to know exactly how orthog-
onalization is performed in the software they use. In most cases,
parameters will change because there is also more than one con-
dition and the correlations between regressors across different
conditions are likely to change after orthogonalization. Including
derivatives at the 1st level therefore also impact on group results
which only include the regressors from the hrf. In most cases it
is recommended to perform the analyses twice (with and without
derivatives) and examine differences carefully. Alternatively, com-
bined estimates may be used at the second level (Calhoun et al.,
2004) alleviating these issues.

The final and forth misconception related to the PSC. First, it
is essential to define relative to what the PSC is computed. If using
the GLM parameter estimates, the PSC is computed relative to the
adjusted mean (which can be seen as the baseline in block designs
or event related designs). In other cases, like the default in AFNI,
this is relative to the temporal mean. This has to be reported
because the actual values will differ between methods, even for
the same data. Second, when using the GLM parameter estimates,
it is also essential to define a reference trial at the resolution of
the super-sampled design and report the scaling factor because

of (1) the impact of the design matrix data range (scaling) on
parameter estimates, (2) the impact of data resolution (i.e., TR)
compared to the hemodynamic model, and (3) the differences
in the way hemodynamic responses can summate. Unfortunately
most software do not provide such information easily and one
needs to regenerate the super-sampled model or recreate a “typi-
cal” trial. For group analyses, if the 2nd level was performed using
the parameters of regressors convolved by hrf only, it makes sense
to report the PSC computed using these same parameters (and
use a scaling factor based on a reference trial sampled according
to the design). If the analysis, however, uses derivatives and/or
there are evidences of a temporal shift or narrowing/widening of
the hfr, using a combination of parameters is more likely to reflect
the true PSC as demonstrated in the simulation.
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ANNEX 1
The abstract of all articles published in the journal Neuroimage
between January 2013 and June 2013 were examined, following
which studies that used fMRI were retained (human and non-
human alike). The method part of each of these articles was
examined and only studies using the “standard” GLM procedure
were included in the review, i.e., studies using in house methods,
block averaging, FIR models or using multivariate pattern anal-
yses were discarded. In total, 75 articles were included and listed
below in an abbreviated reference format.

For each article, the following methodological criteria were
recorded:

(i) Blocked or event related design,
(ii) Rest periods or null events presents,

(iii) Modeling of rest or null events if any,
(iv) Reporting of effect size estimates (beta/con or PSC),
(v) Were reported parameter estimates valid (i.e. using a

contrast if rest was modeled),
(vi) If PSC reported, how was it computed.

Articles included in the review:
Agnew et al. (2013). Neuroimage 73, 191–199.
Andics et al. (2013). Neuroimage 69, 277–283.
Apps et al. (2013). Neuroimage 64, 1–9.
Archila-Suerte et al. (2013). Neuroimage 51–63.
Baeck et al. (2013). Neuroimage 70, 37–47.
Bennett et al. (2013). Neuroimage 72, 20–32.
Bergstrom et al. (2013). Neuroimage 58, 141–153.
Blank and von Kriegstein (2013). Neuroimage 65, 109–118.
Bonath et al. (2013). Neuroimage 66, 110–118.
Bonner et al. (2013). Neuroimage 71, 175–186.
Bonzano et al. (2013). Neuroimage 65, 257–266.
Bradley et al. (2013). Neuroimage 67, 101–110.
Brown et al. (2013). Neuroimage 54, 458–465.
Callan et al. (2013). Neuroimage 72, 55–68.
Callan et al. (2013). Neuroimage 66, 22–27.
Campanella et al. (2013). Neuroimage 71, 92–103.
Causse et al. (2013). Neuroimage 71, 19–29.
Chen et al. (2013). Neuroimage 66, 577–584.
Cohen Kadosh et al. (2013). Neuroimage 69, 11–20.
Cservenka et al. (2013). Neuroimage 66, 184–193.
de Hass et al. (2013). Neuroimage 70, 258–267.
Demanet et al. (2013). Neuroimage 72, 207–213.
Di Dio et al. (2013). Neuroimage 54, 425–436.
Egidi and Caramazza (2013). Neuroimage 71, 59–74.
Ferri et al. (2013). Neuroimage 70, 268–277.
Fischer et al. (2013). Neuroimage 66, 261–269.

Freud et al. (2013). Neuroimage 64, 685–692.
Gilead et al. (2013). Neuroimage 65, 267–279.
Gillebert et al. (2013). Neuroimage 67, 257–272.
Gorgolewski et al. (2013). Neuroimage 69, 231–243.
Heinzel et al. (2013). Neuroimage 71, 125–134.
Helbing et al. (2013). Neuroimage 64, 43–60.
Henderson and Norris (2013). Neuroimage 64, 582–589.
Hermans et al. (2013). Neuroimage 66, 278–287.
Hove et al. (2013). Neuroimage 67, 313–321.
Indovina et al. (2013). Neuroimage 71, 114–124.
James and James (2013). Neuroimage 67, 182–192.
Kassuba et al. (2013). Neuroimage 65, 59–68.
Kau et al. (2013). Neuroimage 64, 299–307.
Killgore et al. (2013). Neuroimage 71, 216–223.
Kitayama et al. (2013). Neuroimage 69, 206–212.
Koritzky et al. (2013). Neuroimage 72, 280–286.
Kruger et al. (2013). Neuroimage 64, 197–208.
Kulakova et al. (2013). Neuroimage 72, 265–271.
Liang et al. (2013). Neuroimage 64, 104–111.
Liew et al. (2013). Neuroimage 69, 138–145.
Limongi et al. (2013). Neuroimage 71, 147–157.
Lutz et al. (2013). Neuroimage 54, 538–546.
Lutz et al. (2013). Neuroimage 66, 288–292.
Madlon-Kay et al. (2013). Neuroimage 70, 66–79.
Manginelli et al. (2013). Nuroimage 67, 363–374.
Moon et al. (2013). Neuroimage 64, 91–103.
Muller et al. (2013). Neuroimage 66, 361–367.
Pau et al. (2013). Neuroimage 64, 379–387.
Pomares et al. (2013). Neuroimage 54, 466–475.
Raabe et al. (2013). Neuroimage 71, 84–91.
Rothermich and Kotz (2013). Neuroimage 70, 89–100.
Simonyan et al. (2013). Neuroimage 70, 21–32.
Spreckelmeyer et al. (2013). Nuroimage 66, 223–231.
Stice et al. (2013). Neuroimage 67, 322–330.
Sun et al. (2013). Neuroimage 65, 23–33.
Sutherland et al. (2013). Neuroimage 66, 585–593.
Telzer et al. (2013). Neuroimage 71, 275–283.
Thornton and Conway (2013). Neuroimage 70, 233–239.
Turk-Browne et al. (2013). Neuroimage 66, 553–562.
Tusche et al. (2013). Neuroimage 72, 174–182.
Tyll et al. (2013). Neuroimage 65, 13–22.
van der Heiden et al. (2013). Neuroimage 65, 387–394.
van der Zwaag et al. (2013). Neuroimage 67, 354–362.
Witt and Stevens (2013). Neuroimage 65, 139–151.
Wu et al. (2013). Neuroimage 65, 466–475.
Yu-Chen et al. (2013). Neuroimage 66, 169–176.
Zeki and Stutters (2013). Neuroimage 73, 156–166.
Zhang and Hirch (2013). Neuroimage 65, 223–230.
Zhang et al. (2013). Neuroimage 65, 119–126.
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