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Glucose is an essential metabolic substrate for all bodily tissues. The brain depends
particularly on a constant supply of glucose to satisfy its energy demands. Fortunately,
a complex physiological system has evolved to keep blood glucose at a constant
level. The consequences of poor glucose homeostasis are well-known: hyperglycemia
associated with uncontrolled diabetes can lead to cardiovascular disease, neuropathy and
nephropathy, while hypoglycemia can lead to convulsions, loss of consciousness, coma,
and even death. The glucose counterregulatory response involves detection of declining
plasma glucose levels and secretion of several hormones including glucagon, adrenaline,
cortisol, and growth hormone (GH) to orchestrate the recovery from hypoglycemia. Low
blood glucose leads to a low brain glucose level that is detected by glucose-sensing
neurons located in several brain regions such as the ventromedial hypothalamus, the
perifornical region of the lateral hypothalamus, the arcuate nucleus (ARC), and in
several hindbrain regions. This review will describe the importance of the glucose
counterregulatory system and what is known of the neurocircuitry that underpins it.
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INTRODUCTION
Glucose is a major source of energy for all cells in mammals.
In particular, the nervous system requires a continuous sup-
ply of glucose to support its energy requirements and maintain
metabolic homeostasis. A large proportion of energy provided by
glucose is used only to support the neuronal resting membrane
potential. In addition, marked regional differences in glucose uti-
lization may be associated with changes in cognitive function even
at steady state. As such, multifaceted physiological mechanisms
were selected for during the evolution of mammalian species to
adjust and maintain blood glucose within a narrow range. By con-
trast, in Type 1 diabetes, pathological increases in blood glucose,
known as hyperglycemia, may lead to adverse, chronic conse-
quences including cardiovascular disease, neuropathy, retinopa-
thy and nephropathy. In Type 1 diabetes, hyperglycemia is treated
with insulin to restore normoglycemia. However, diabetic patients
may also experience hypoglycemia, as a result of inappropriate
doses of insulin. Similarly, ∼30% of patients with advanced Type
2 diabetes treated with hypoglycemic agents can experience hypo-
glycemia. If severe, hypoglycemia can result in convulsions, loss
of consciousness, coma and even death. In order to restore nor-
moglycemia, the body activates a series of defense mechanisms
that act in conjunction and are referred to as the “glucose coun-
terregulatory response.” The autonomic and neuroendocrine
responses associated with the glucose counterregulatory response
are usually accompanied by other behaviors such as arousal and
feeding.

Although the mechanisms that underpin glucose homeosta-
sis reside partly in the periphery, it is apparent that the central
nervous system plays an important role in glucose counterregula-
tion. For instance, adrenaline release in response to hypoglycemia

or glucoprivation (local glucose deprivation) is essentially medi-
ated by the sympathetic nervous system. Glucose sensors are
distributed throughout several bodily regions and are capable of
detecting decreases in glucose levels in the plasma and in the
brain extracellular milieu. Activation of some of these sensors
results in glucose counterregulation by adjusting the secretion
of several hormones. In response to declining plasma glucose
there is a decrease in insulin secretion and increases in glucagon,
adrenaline, cortisol, and GH secretion. Decreases in glucose levels
are detected by glucose-sensing neurons that are found in sev-
eral brain regions including the ventromedial hypothalamus, the
perifornical region of the lateral hypothalamus (PeH), the arcu-
ate nucleus (ARC), as well as in several hindbrain regions and in
the periphery e.g., pancreas, carotid body, liver, and gastrointesti-
nal tract. This review addresses the central and peripheral neural
pathways involved in blood glucose homeostasis.

GLUCOSE SENSING
GLUCOSE SENSING IN THE PERIPHERY
Apart from glucose-sensing by pancreatic β-cells, which will
not be dealt with in this review, peripheral glucose sensing has
been demonstrated at several sites including the liver, via the
hepatic portal vein, vagal (Adachi, 1981) and sympathetic affer-
ents, intestinal vagal glucose sensors, and possibly the carotid
body (Figure 1). Hepatic glucose sensors appear to be neces-
sary for expression of the sympathoadrenal response to hypo-
glycemia (Donovan et al., 1991) and are located close to or in
the portal vein. Portal vein denervation blunts the adrenal cate-
cholamine response to slowly-developing hypoglycemia (Hevener
et al., 2000). These portal vein sensory afferents contain cal-
citonic gene-related peptide since they are capsaicin sensitive,
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FIGURE 1 | Afferent inputs from the periphery to brain neurons

involved in glucose homeostasis. Glucose-sensing vagal and sympathetic
afferents arise from the liver and gastrointestinal tract and convey
information to the nucleus of the solitary tract (NTS). Unlike their
sympathetic sensory counter-parts arising near the portal vein, vagal
glucose sensors probably do not contribute the counter-regulatory
response. Carotid body glucose sensors may also contribute to the
counter-regulatory response. Information is relayed from NTS to the dorsal
motor nucleus of the vagus (DMV) which provides parasympathetic drive to
the pancreatic islets and via the parabrachial nucleus (PBN) top
supramedullary structures. C1 adrenergic neurons with projections
ascending to hypothalamic sub-regions such as the arcuate (ARC), lateral
(LH), and ventromedial hypothalamic (VMH) nuclei, are involved in the
feeding response to insulin-induced hypoglycemia.

but probably do not travel in the vagus (Fujita et al., 2007).
The carotid body may also sense glucose (Pardal and Lopez-
Barneo, 2002; Conde et al., 2007; Garcia-Fernandez et al., 2007)
and contribute to the counterregulatory modulation of glucagon
secretion (Koyama et al., 2000). However, its chemosensitivity to
CO2 and O2 hampers the interpretation of glucose-sensing affer-
ent signals. In man, hyperoxia attenuates the counterregulatory
hormonal responses to insulin-induced hypoglycemia (Wehrwein
et al., 2010). Nevertheless, the glucose-sensing locus seems to
shift from the portal-mesenteric vein to a different site (e.g., cen-
tral nervous system) during fast developing hypoglycemia (Saberi
et al., 2008).

GLUCOSE SENSING IN THE BRAIN
In the central nervous system glucose levels are necessarily
maintained at ∼0.4–2.5 mM, in which glucose-sensing involves
the interplay of neurons and astrocytes (Marty et al., 2005).
Their machinery involves the activity of glucokinase, adenosine
triphosphate-sensitive K+ (KATP) channels, AMP-activated pro-
tein kinase (AMPK), odium-glucose co-transporters, and glucose
transporter type 2 (Glut2). The membrane potential of glucosens-
ing neurons changes according to their intracellular metabolism
(Oomura et al., 1974; Rowe et al., 1996) and to potentials pro-
duced by the interaction of glucose with glucose transporters
(O’Malley et al., 2006; Williams et al., 2008). Signaling in glucose-
sensing neurons and astrocytes involves glucose uptake by Glut2.
Following glycolysis in astrocytes, lactate is produced and released
into the extracellular space. Extracellular glucose and lactate
from astrocytes are internalized by neurons. Lactate is inter-
nalized via monocarboxylate transporter 2 whereas glucose is

phosphorylated by glucokinase (Levin et al., 2004) and converted
to pyruvate (Lam et al., 2005; Marty et al., 2007).

In glucose excited (GE) neurons (Oomura et al., 1964, 1974),
oxidative phosphorylation of glucose and the internalization of
lactate by monocarboxylate transporters increases the intracellu-
lar ATP/ADP ratio resulting in closure of KATP channels (Lee
et al., 1999; Miki et al., 2001). Subsequent membrane depolar-
ization leads to action potential generation resulting in activation
of voltage-gated calcium channels and neurotransmitter release
(Amoroso et al., 1990; Moriyama et al., 2004). Glucose inhib-
ited (GI) cells (Oomura et al., 1964, 1974) have a glucose-sensing
mechanism that involves glucokinase in part. It has been spec-
ulated, however, that a rise in the intracellular ATP/ADP ratio
results in augmented activity of the Na+/K+ ATPase pump
(Oomura et al., 1974; Song and Routh, 2005). Alternatively, a
reduction in extracellular glucose increases intracellular AMP
raising the activity of AMPK (Murphy et al., 2009). This mech-
anism is potentiated by augmented concentrations of guanylate
cyclase driven by nitric oxide, which production is stimulated
by AMPK. The increase in concentration of AMPK activates the
cystic fibrosis transmembrane conductance regulator, increasing
chloride conductance and hyperpolarizing the cell (Murphy et al.,
2009).

Nonetheless, the presence of the aforementioned transporters,
channels, and kinases does not define a glucose sensing neu-
ron. For instance, in the ventromedial hypothalamic nucleus
(VMH) ∼65% of GE and 45% of GI neurons have their responses
gated by glucokinase (Kang et al., 2004). In addition, KATP
channels are ubiquitous and contribute to diverse physiological
functions. Finally, these mechanisms also fail to explain why
neurons in the VMH do not express Fos in response to sys-
temic glucoprivation or hypoglycemia (Briski and Sylvester, 2001;
Cai et al., 2001). Hence, electrophysiological characterization
is the most effective method for identification of glucosensing
neurons.

The role of the hindbrain in glucose sensing and control of the
counterregulatory response has been reviewed recently by Ritter
et al. (2011). It was proposed that the hindbrain contains all of
the elements necessary for orchestration of the counterregulatory
response. Glucose counterregulatory responses to neuroglucopri-
vation remained following decerebration, or obstruction of the
cerebral aqueduct in rat (DiRocco and Grill, 1979; Ritter et al.,
1981). The evidence for this notion is convincing and it is possible
that hypothalamic and hindbrain systems operate cooperatively
as redundant or “fail-safe” mechanisms. Glucose-sensing neurons
have been identified in the dorsal motor nucleus of the vagus
(DMV) and the solitary tract nucleus (NTS) (Adachi et al., 1995).
However, these sites do not clearly overlap with sites identified
using localized glucoprivation (Andrew et al., 2007). Perhaps this
is because the relatively large injection volumes that were used in
these studies do not allow fine discrimination of the regions that
are sensitive to localized neuroglucoprivation. Early studies that
support an important role for the hindbrain (DiRocco and Grill,
1979; Ritter et al., 1981) did not unequivocally identify the partic-
ipation of the sympathoadrenal system. Nevertheless, immuno-
toxic destruction of the rostral C1 medullospinal neurons in the
RVLM eliminates the hyperglycemia, adrenaline secretion and
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adrenal medullary Fos expression in response to the glucoprivic
agent 2-deoxy-D-glucose (2DG) (Ritter et al., 2001; Madden et al.,
2006). This is in agreement with our report that the rostral ven-
trolateral medulla (RVLM) contains medullospinal neurons that
are activated by 2DG and that stimulation of these neurons results
in hyperglycemia that is markedly reduced by prior adrenalec-
tomy (Verberne and Sartor, 2010). In the studies that used the
immunotoxin it is somewhat surprising that a rise in glucagon
secretion did not compensate for the loss of adrenaline secretion
in response to 2-DG (Karlsson and Ahren, 1991).

In the forebrain, glucose-sensing occurs primarily in the
hypothalamus. A strong case has been made for the importance
of the VMH in orchestration of the counterregulatory response
to hypoglycemia (Borg et al., 1994, 1995, 1997, 1999; Tong et al.,
2007). Glucose-sensing neurons have been identified in the VMH,
PeH, and the ARC (Oomura et al., 1974; Burdakov et al., 2005a,b;
Routh, 2010). It is likely that these different groups of glucose-
sensing neurons subserve different physiological roles that may
include the counterregulatory response, energy balance and sen-
sations of hunger.

NEURAL CIRCUITRY INVOLVED IN THE GLUCOSE
COUNTERREGULATORY RESPONSE
GLUCOSE CONTROL BY HYPOTHALAMIC NEURONS
The involvement of hypothalamic neurons in blood glucose
control has been determined by neuroanatomy, neurochemistry,
electrophysiology, and neuropharmacology. Hypoglycemia
(Moriguchi et al., 1999; Cai et al., 2001) or systemic
glucoprivation (Briski and Sylvester, 2001) excites neurons
in the ARC, the paraventricular nucleus (PVN), dorsomedial
hypothalamic nucleus (DMH), VMH, and lateral hypothalamus
(LH; including the perifornical area), as determined by Fos
expression in these neurons. Additionally, some of those neurons
were characterized according to their electrophysiological prop-
erties in response to changes in glucose levels and glucoprivation
(Oomura et al., 1964, 1969, 1974; Burdakov et al., 2005a, 2006;
Gonzalez et al., 2008). The majority of the GE neurons are
positioned laterally in the hypothalamus, whereas GI neurons are
located ventromedially.

Studies using neurotropic viruses have shown that in the
perifornical hypothalamus only orexin- and MCH-containing
neurons project to adrenal sympathetic premotor neurons in the
RVLM (Kerman et al., 2007). In addition, insulin-induced hypo-
glycemia or neuroglucoprivation induces Fos expression in orexin
neurons of the PeH suggesting a possible role in glucose sensing
(Moriguchi et al., 1999; Briski and Sylvester, 2001; Cai et al., 2001;
Paranjape et al., 2006; Tkacs et al., 2007). On the other hand, an
in vitro study has shown that GI orexin neurons respond in an
identical fashion to both glucose and 2DG through a K+ channel-
mediated mechanism. In addition, these studies showed that this
glucose-sensing mechanism is direct and operates independently
of glucose metabolism (Gonzalez et al., 2008). This suggests
that the orexin neurons are not the principal glucose-sensors
involved in the counterregulatory response. This discrepancy may
be explained if the site of action of 2DG may not be directly
at the PeH orexin neurons but at some other synaptically con-
nected location. In addition, the complexity of hypothalamic

interconnections limit the precision with which we can iden-
tify glucose-sensing neurons that modulate the counterregulatory
response.

HYPOTHALAMIC DESCENDING PATHWAYS
Hypothalamic responses to hypoglycemia occur via connections
with sympathetic and parasympathetic efferent neurons in the
brainstem and spinal cord (Figure 2). Anterograde and retro-
grade transport studies show that neurons in the PVN and

FIGURE 2 | Descending connections and intrahypothalamic pathways

involved in glucose homeostasis. Neurons in the paraventricular nucleus
of the hypothalamus (PVN) and the perifornical region of the hypothalamus
(PeH) have connections with important premotor sympathetic and
parasympathetic neuronal groups located in the rostral ventrolateral
medulla (RVLM) and the dorsal motor nucleus of the vagus (DMV) as well
as to the major sensory relay structure the nucleus of the solitary tract
(NTS) and sympathetic preganglionic neurons (SPNs) located in the
intermediolateral cell column (IML) of the spinal cord. Glucose-sensing
neurons are found in the ARC, the ventromedial hypothalamic nucleus
(VMH) and the perifornical region (PeH) of the lateral hypothalamic (LH)
area. Parasympathetic efferents to the pancreatic islets can activate insulin
and glucagon secretion while C1 neurons in the RVLM provide drive to
adrenal SPNs. Parasagittal section at the top of the figure indicates
rostrocaudal locations of coronal sections (A–E).
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LH project directly to sympathetic preganglionic motor neurons
(SPN) in the spinal cord (Saper et al., 1976; Luiten et al., 1985),
and catecholaminergic sympathetic premotor neurons (C1) (Ter
Horst et al., 1984; Luiten et al., 1985; Allen and Cechetto, 1992;
Shafton et al., 1998) in the RVLM. Furthermore, orexinergic and
MCH neurons in the LH project to both sympathetic groups
(Bittencourt et al., 1992; Peyron et al., 1998; Kerman et al., 2007).
However, the evidence for differential sympathetic control of
adrenaline and glucagon release is scarce. Although neurotropic
viral transport studies (Strack et al., 1989a,b; Kerman et al., 2007)
confirm that these pathways are involved in the control of the
chromaffin cells, they coincide with the sympathetic pathways
that control the pancreas (Jansen et al., 1997). Additionally, the
synergism between the PVN and LH extends outside their com-
munication through neural pathways. For example, an increase
in circulating adrenaline stimulates corticotropin-releasing fac-
tor (CRF) secretion by pituitary corticotrophic cells (Mezey et al.,
1984).

Apart from the LH and PVN, medullary sympathetic premotor
neurons contribute to glucose homeostasis by driving SPNs that
control adrenaline release (Verberne and Sartor, 2010). Studies
by Ritter and colleagues have identified the importance of cate-
cholaminergic medullary neurons in mediation of the counter-
regulatory responses to glucoprivation (Ritter et al., 1998, 2001,
2006; Li et al., 2006, 2009). Systemic glucoprivation increases
the firing rate of slow-conducting (<1 m/s) RVLM adrenal
premotor medullospinal neurons (Verberne and Sartor, 2010),
implying that they are C1 catecholaminergic cells (Schreihofer
and Guyenet, 1997). Glucoprivation also elicits phosphorylation
(Damanhuri et al., 2012), and expression of Fos (Ritter et al.,
1998) and dopamine β-hydroxylase mRNA (Ritter et al., 2006) in
RVLM C1 neurons. By contrast, neurotoxic ablation of C1 neu-
rons eliminates the glucose response to the glucoprivic agent 2DG
(Ritter et al., 2001; Madden et al., 2006). Interestingly, medullary
orexinergic terminals (De Lecea et al., 1998; Peyron et al., 1998)
make close appositions with RVLM C1 neurons (Puskas et al.,
2010). Presumably, these close appositions arise from the orexin
neurons labeled after injection of a neurotropic virus into the
adrenal gland (Kerman et al., 2007). A subpopulation of these cat-
echolaminergic neurons also expresses NPY (Li and Ritter, 2004).
These neurons are located at the C1/A1 level and project rostrally
to the hypothalamus (Verberne et al., 1999; Li and Ritter, 2004;
Li et al., 2009) and are probably involved in the feeding response
to neuroglucoprivation (Ritter et al., 2001; Li and Ritter, 2004).
Finally, RVLM sympathetic premotor neurons make monosynap-
tic (McAllen et al., 1994; Zagon and Bacon, 1991; Oshima et al.,
2008), glutamatergic (Morrison et al., 1989a; Morrison and Cao,
2000) connections with adrenal SPN (Morrison and Cao, 2000)
to form a sympathoexcitatory pathway.

Studies using neuronal tracers have also identified direct pro-
jections from the PVN (Luiten et al., 1985) and the LH (Ter Horst
et al., 1984; Allen and Cechetto, 1992) to parasympathetic motor
neurons (Fox and Powley, 1986), particularly in the NTS/DMV
area (Loewy et al., 1994). Furthermore, orexinergic terminals are
found in the DMV (Date et al., 1999) and direct injection of
orexin increases gastric motility (Krowicki et al., 2002) presum-
ably mediated by an increase in parasympathetic nerve activity.

An orexinergic input to the DMV has also been implicated in the
increase in pancreatic parasympathetic nerve discharge produced
by insulin-induced hypoglycemia (Wu et al., 2004). These find-
ings suggest that the PVN and LH act as the major hypothalamic
gateways for descending pathways that modulate glucose home-
ostasis (Luiten et al., 1985; Ter Horst and Luiten, 1987; Sim and
Joseph, 1991).

The ARC/VMH and DMH neurons project to the DMV in the
dorsal medulla, but they do not communicate with sympathetic
premotor neurons in the ventral medulla. In fact, direct projec-
tions from the ARC/VMH and DMH to DMV motor neurons
have been confirmed by anterograde (Ter Horst and Luiten, 1986;
Sim and Joseph, 1991; Canteras et al., 1994) and retrograde (Ter
Horst et al., 1984) tracer studies. However, there is no evidence
for projections from ARC/VMH and DMH neurons to RVLM
sympathetic premotor neurons. Although the studies by Borg and
colleagues suggest that glucoprivation of VMH neurons induces
glucagon, adrenaline and noradrenaline release, the microdialysis
technique used in their studies is likely to have allowed diffu-
sion of the glucoprivic agent throughout several hypothalamic
regions, confounding the interpretation of these findings (Borg
et al., 1995, 1997). Therefore, it is conceivable that additional
inputs from ARC-VMH-DMH neurons to DMV neurons drive
glucagon release, whereas adrenaline release is modulated in
parallel by neurons in the LH (Yardley and Hilton, 1987) and
PVN (Blair et al., 1996). Nevertheless, Chan and colleagues have
clearly demonstrated that suppression of GABAergic drive in the
VMH enhances the secretion of glucagon and adrenaline but
not corticosterone in response to insulin-induced hypoglycemia
(Chan et al., 2006). In STZ diabetic rats, blockade of VMH
GABA receptors restores the glucagon response to hypoglycemia
more effectively than the adrenaline response (Chan et al., 2011).
Furthermore, these investigators have shown an inverse rela-
tionship between counterregulatory hormone release and VMH
extracellular GABA (Zhu et al., 2010). On the other hand,
Elmquist and colleagues have shown that reduction of VMH
glutamatergic drive during hypoglycemia reduces the glucagon
response to a greater extent than the adrenaline response (Tong
et al., 2007).

INTRAMEDULLARY PROJECTIONS—EVIDENCE FOR INDEPENDENT
GLUCOSE CONTROL IN THE BRAINSTEM
Several pieces of evidence suggest that the glucose counterregula-
tory network is confined to the brainstem, rather than involving
the hypothalamus. Following decerebration (DiRocco and Grill,
1979) or obstruction of the cerebral aqueduct (Ritter et al.,
1981), systemic glucoprivation with 2DG or injection of 5-thio-
D-glucose (5TG) into the fourth ventricle elicits hyperglycemia,
supposedly resulting from adrenaline release. However, these
early studies assumed the involvement of adrenaline secretion
based on glucose measurements alone, a role that could be fairly
attributed to glucagon, as previously discussed in this review.
Vagal afferent fibers conveying signals from the portal vein ter-
minate onto the NTS and DMV neurons (Adachi et al., 1984;
Berthoud et al., 1992).

Neurons in the DMV/NTS-A2 express Fos in response to
hypoglycemia or glucoprivation (Ritter et al., 1998; Cai et al.,
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2001; Damanhuri et al., 2012) and a small proportion (21%)
are glucose-sensing as based on electrophysiological characteriza-
tion. This finding is supported by the presence of KATP channels
and glucokinase in DMV (Balfour et al., 2006) and NTS (Briski
et al., 2009) neurons. Nevertheless, activation of adrenal premo-
tor neurons by an intrinsic drive from brainstem neurons cannot
be disregarded. For instance, C1 sympathetic premotor neurons
receive excitatory inputs from other brainstem nuclei including
the NTS (Aicher et al., 1996), a structure which provides a high
proportion of asymmetric synapses onto C1 neurons. By contrast,
although sympathetic premotor neurons in the ventral medulla
are activated by glucoprivation, evidence supporting the notion
that they are intrinsically glucose-sensitive is poor.

Based on the evidence discussed here, it can be inferred that
a rudimentary brainstem circuit is sufficient to counteract hypo-
glycemia and maintain life (DiRocco and Grill, 1979). It seems
that NTS and DMV neurons constitute the first line of defense
against hypoglycemia by mediating the release of glucagon. A pro-
portion of these cells is intrinsically glucose sensitive, and receives
input signals from vagal afferent neurons. However, whether the
excitatory drive to adrenal premotor neurons following hypo-
glycemia or glucoprivation directly originates from brainstem
neurons, or derives from descending hypothalamic projections
is unknown. Moreover, if the former assumption is proven true,
the question arises as to what is the role of the aforementioned
hypothalamic circuitry. On the other hand, it can be speculated
that the brainstem neurons that mediate the autonomic apparatus
for glucose homeostasis, whereas hypothalamic neurons integrate
complex behaviors such as feeding and arousal. This hierarchical
structure of the neuroaxis adds a new dimension to the coun-
terregulatory response to hypoglycemia. During the execution of

these behaviors, it seems that the hypothalamic neurons can over-
ride the activity of brainstem neurons in order to adjust the auto-
nomic outputs to a new metabolic demand. For instance, selective
pharmacogenetic activation of ARC- AGRP neurons and opto-
genetic activation of orexinergic neurons elicit feeding (Krashes
et al., 2011) and arousal (Adamantidis et al., 2007), respectively;
behaviors that work in conjunction to increase glycemia.

EFFERENT PATHWAYS FOR COUPLING TO AUTONOMIC
EFFECTORS
The nervous system activates counterregulatory mechanisms to
hypoglycemia in order to restore the blood glucose to normal
levels. These mechanisms respond at different glycaemic levels
(Cryer, 1997). In clinical studies the thresholds are: ∼4.5 mM
at which the pancreatic β-cell responds with a decrease in
insulin secretion. At ∼3.6–3.8 mM release of counterregula-
tory hormones (glucagon, adrenaline, GH, and cortisol) occurs.
Furthermore, distinct subsets of neurons within the nervous sys-
tem seem to selectively regulate these responses. In this section,
we review the descending neural pathways and mechanisms con-
trolling glucose counterregulatory hormones via sympathetic and
parasympathetic motor neurons which originate in the hypotha-
lamus and brainstem where the premotor neurons are found
(Figure 3). Therefore, we first provide an insight of the neural
mechanisms, at the motor level, that control insulin and glucagon
secretion. Secondly, we discuss the neural control of adrenaline
release, and finally, the modulation of GH and cortisol release.

NEURAL CONTROL OF PANCREATIC α- AND β-CELLS
Insulin secreting β-cells and glucagon secreting α-cells are
innervated by sympathetic and parasympathetic neurons

FIGURE 3 | Hypothalamic projections to the adenohypophysis and to

parasympathetic motorneurons that innervate the pancreas (left

panel) and to sympathetic premotor neurons that supply the adrenal

gland (right panel). Neurons in the paraventricular nucleus of the
hypothalamus (PVN) control the release of adrenocorticotropin (ACTH)
into the circulation via corticotropin releasing factor (CRF) to promote
secretion of cortisol from the adrenal cortex while arcuate (ARC) neurons
control release of growth hormone (GH) via the release of growth

hormone releasing factor (GRF). Preganglionic parasympathetic neurons of
the dorsal motor nucleus of the vagus (DMV) receive inputs from
neurons in the ARC and the lateral hypothalamus (LH). PVN and LH
neurons send direct projections to the nucleus of the solitary tract (NTS)
and to sympathetic preganglionic neurons in the intermediolateral cell
column (IML). Adrenal catecholamine release is controlled by inputs from
LH to C1 neurons in the rostral ventrolateral medulla (RVLM) that drive
the adrenal sympathetic outflow.
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(Gerich et al., 1976). The branches of the subdiaphragmatic
vagus and of the splanchnic nerves form a mixed nerve connect-
ing to the pancreas (Woods and Porte, 1974; Gerich et al., 1976).
Electron microscopy has shown that both adrenergic and cholin-
ergic terminals make contact with pancreatic islets (Madden and
Sarras, 1989). These nerve terminals consist of both myelinated
(Lever, 1964; Esterhuizen et al., 1968) and unmyelinated (Watari,
1968) fibers, which can be found in the periphery and within
the center of the islets (Morgan and Lobl, 1968), in addition to
ganglion cells (Honjin, 1956; Kobayashi and Fujita, 1969). In the
nerve terminals found in the islets, electron microscopy reveals
two major types of vesicles: cholinergic agranular vesicles and
adrenergic granular cores (Richardson, 1964).

The pancreas receives parasympathetic cholinergic fibers in the
vagus nerve, which originate in the DMV. In vitro and in vivo
administration of acetylcholine induces insulin and glucagon
secretion (Malaisse et al., 1967; Iversen, 1973a). These responses
are mediated by activation of muscarinic receptors. Atropine
reduces basal levels of insulin (Bloom et al., 1974a) and glucagon
(Bloom et al., 1974b) induced by hypoglycemia and intravenous
injection of arginine, respectively. In vitro, atropine also blocks
the release of insulin and glucagon in response to acetylcholine
(Malaisse et al., 1967; Iversen, 1973a). Stimulation of the vagus
nerve elicits insulin and glucagon secretion in different species
(Daniel and Henderson, 1967; Frohman et al., 1967; Kaneto
et al., 1967, 1974), although bilateral section of the vagus fails
to produce a sustained change in resting levels of insulin and
glucagon (Hakanson et al., 1971; Bloom et al., 1974b). On the
other hand, in humans, vagal section increases the periodicity
of insulin secretion (Matthews et al., 1983). The cell bodies of
vagal preganglionic neurons that regulate insulin and glucagon
secretion are found in the DMV (Kalia, 1981). DMV neurons are
located bilaterally ventral and medial to the nucleus of the soli-
tary tract (NTS) in the dorsal surface of the caudal medulla, and
are identified by choline acetyltransferase (ChAT) immunoreac-
tivity (Takanaga et al., 2003; Llewellyn-Smith et al., 2013; Zheng
et al., 2013). Injections of neurotropic pseudorabies virus into the
pancreas retrogradely labels cell bodies of cholinergic neurons in
the DMV (Jansen et al., 1997). Excitation of DMV neurons aug-
ments plasma insulin levels, whereas inhibition of these neurons
reduces plasma insulin levels (Ionescu et al., 1983; Siaud et al.,
1991).

Activation of sympathetic drive to the pancreas reduces insulin
secretion and increases the secretion of glucagon. In experimen-
tal conditions, noradrenaline or adrenaline mimic the pancreatic
response to sympathoexcitation, reducing insulin release and
eliciting glucagon release (Coore and Randle, 1964; Karam et al.,
1966; Porte and Williams, 1966; Iversen, 1973b). Similar results
are observed following electrical stimulation of the splanchnic or
the pancreatic mixed nerve, in the presence of atropine (Marliss
et al., 1973; Bloom and Edwards, 1978). Anatomical findings
further support this mechanism. The sympathetic projections
to the pancreas originate in the celiac and superior mesenteric
plexi, and converge at the greater and middle splanchnic nerves
(Baron et al., 1985, 1988). Immunohistochemical studies show
that the terminals of these nerves contain catecholamines (Miller,
1981). Thus, it is likely that these terminals belong to sympathetic

postganglionic neurons, whose cell bodies are located in the sym-
pathetic chain ganglia. The afferent inputs to these neurons are
cholinergic (Feldberg, 1943; Feldberg et al., 1951; Oesch and
Thoenen, 1973) and originate from SPN located in both the inter-
mediolateral column (lamina VII) and the central autonomic area
(lamina X) of the thoracolumbar spinal cord (Torigoe et al., 1985;
Bacon and Smith, 1988; Pyner and Coote, 1994).

Apart from the noradrenergic and cholinergic inputs, neu-
ropeptides also contribute to the innervation of the pancreatic
islets. Neuropeptides released by the pancreatic nerve terminals
probably also control islet function by modulating the release of
insulin and glucagon (Ahren et al., 1986). Immunohistochemical
studies have identified a variety of peptides in nerve terminals
projecting to the pancreas. These include vasoactive intesti-
nal polypeptide (VIP) (Bishop et al., 1980), cholecystokinin
(CCK) (Rehfeld et al., 1980), gastrin releasing polypeptide (GRP)
(Moghimzadeh et al., 1983), galanin (Dunning et al., 1986), NPY
(Pettersson et al., 1987), calcitonin gene-related peptide (CGRP)
(Pettersson et al., 1986), substance P and enkephalin (Larsson,
1979). In functional studies, VIP, CCK, and GRP appear to be
excitatory while the inhibitory peptides are galanin, NPY, and
CGRP and substance P and enkephalin produce diverse responses
(Larsson, 1979).

ADRENAL SYMPATHETIC OUTFLOW
Adrenaline counters hypoglycemia by acting in the liver and pan-
creas. In the pancreas, adrenaline inhibits insulin release (Coore
and Randle, 1964; Karam et al., 1966; Malaisse et al., 1967) and
stimulates glucagon release (Iversen, 1973b; Gerich et al., 1974)
whereas, in the liver, adrenaline activates gluconeogenesis and
glycogenolysis (Exton, 1985; Pilkis et al., 1988; Kraus-Friedmann
and Feng, 1996; Fabbri et al., 1998). In addition, adrenaline
acts on skeletal muscle to reduce glucose uptake and also pro-
motes lipolysis via an action at β2-adrenoceptors. Adrenaline is
released by chromaffin cells in the adrenal medulla, under the
control of SPN. Sympathetic projections to the adrenal gland
are comprised of sympathetic pre- and post-ganglionic fibers
(Carlsson et al., 1992). The preganglionic fibers to the adrenal
gland are axons from a subset of SPNs, located in the T4–T13
segments of the spinal cord; the postganglionic fibers projecting
to the adrenal gland originate from neurons in the sympathetic
chain ganglion, and receive inputs from SPNs (Baron et al.,
1988; Strack et al., 1988, 1989b). Neuroglucoprivation induces
Fos expression in the adrenal medulla and in the intermedio-
lateral cell column, primarily at spinal cord segments T7–T10,
where adrenomedullary preganglionic neurons are found (Ritter
et al., 1995). Neuroglucoprivation also activates the adrenal sym-
pathetic outflow but not the renal sympathetic outflow (Niijima,
1975).

Systemic glucoprivation produces increases in levels of
adrenaline and blood glucose, suggesting increase in the sympa-
thoexcitatory drive to the adrenal gland (Ritter et al., 1995; Elman
et al., 2004).

Adrenal-projecting SPNs can be functionally segregated
according to electrophysiological properties and neurochemical
phenotype. At least two subpopulations of SPN have been elec-
trophysiologically differentiated: one group is involved in control
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of adrenaline secretion, while the other is related to the con-
trol of noradrenaline release (Morrison and Cao, 2000). The
former subset of neurons is responsive to systemic glucopriva-
tion, whereas the latter is exclusively inhibited by increases in
blood pressure. The SPN clusters can be alternatively differen-
tiated according to their neurochemical content. For instance,
SPN that participate in cardiovascular regulation are immunore-
active for cocaine and amphetamine-regulated transcript peptide
(CART); and in the adrenal, CART positive terminals selectively
target noradrenergic chromaffin cells (Gonsalvez et al., 2010). On
the other hand, enkephalin is likely to be a selective marker for
adrenal-projecting SPN that control adrenaline release (Kumar
et al., 2010). In fact, neuroglucoprivation produces c-Fos expres-
sion in prepro-enkephalin mRNA positive neurons, but fails to
activate prepro-CART mRNA positive neurons (Parker et al.,
2013). Although enkephalin is an inhibitory peptide used as a
neurochemical marker, it does not imply that it inhibits chro-
maffin cells. Enkephalin produces variable responses in pancreatic
islets (Green et al., 1983). Patients with type 1 or severe type 2
diabetes are at high risk of life-threatening hypoglycemia, due
to a combination of intensive insulin treatment and impaired
glucagon secretion (Halimi, 2010). Hypoglycemia usually occurs
as a result of a mismatch between insulin dose, the amount
of food consumed, and energy expended. Due to the destruc-
tion of pancreatic α-cells, in these patients adrenaline is the
major glucose counterregulatory hormone secreted in response
to hypoglycemia. Although slow-acting counterregulatory hor-
mones contribute to rescue glucose levels (see below), the impor-
tance of adrenaline lies on the fact that it is the only remaining
fast-acting counterregulatory hormone.

SLOW-ACTING GLUCOSE COUNTERREGULATORY HORMONES
The slow-acting hormones, GH, and cortisol, contribute to glu-
cose counterregulation by shifting metabolism of non-neural tis-
sues away from glucose utilization (Schwartz et al., 1987). Cortisol
activates fatty acid oxidation, gluconeogenesis and ketogenesis
(Gerich et al., 1980). On the other hand, GH increases lipoly-
sis, fatty acid oxidation and induces the insulin resistance noted
in pregnancy (Barbour et al., 2002). Cortisol secretion is acti-
vated by adrenocorticotropic hormone (ACTH) release, which is
modulated by CRF. Insulin-induced hypoglycemia is a stressor
that produces large increases in plasma CRF (Engler et al., 1989)
and ACTH (Pacak et al., 1995). CRF is synthetized by parvocel-
lular neuroendocrine cells in the PVN of the hypothalamus and
is released into the hypothalamo-hypophyseal portal system and
transported to the anterior pituitary (adenohypophysis) where
it stimulates corticotropes to secrete ACTH into the circulation.
At the adrenal cortex, ACTH stimulates the synthesis of corti-
sol, glucocorticoids, mineralocorticoids, and dehydroepiandros-
terone. Alternatively, hypoglycemia can also trigger the release
of GH (Roth et al., 1963). This hormone is directly released by
the adenohypophysis, and is primarily stimulated by the growth
hormone-releasing factor (GRF) (Barinaga et al., 1985) pro-
duced in the ARC (Sawchenko et al., 1985). Nonetheless, growth
hormone-secretagogues (Howard et al., 1996) and somatostatin
(Plotsky and Vale, 1985), respectively, can stimulate and inhibit
GH release.

CONCLUSION
The preceding discussion provides a brief overview of the neural
circuitry involved in the control of glucose homeostasis. However,
in order to define how the neural pathways interplay to control
glucose homeostasis, more detailed knowledge of the important
neurons and their connections is still required. In contrast to
brainstem neurons, we believe that further neuropharmacological
and neurochemical characterization of hypothalamic neurons is
necessary to understand their role in glucose control. Most of the
current evidence relies on direct injections of drugs and neuronal
tracers which, due to short projections within the hypothala-
mus, hamper the interpretation of the findings. Fortunately, new
techniques are arising to overcome this issue. For instance, new
pharmaco- and opto-genetic tools will help to determine the links
between the neurochemical, pharmacological, and electrophysio-
logical properties of hypothalamic neurons.

Two important questions about the role of hypothalamic
neurons in the control of glucose homeostasis remain to be
answered. The first is to define the hypothalamic gateway for
downstream information, with an emphasis on the communica-
tion between the motor and premotor outputs and the glucose-
sensing brainstem circuitry. Identification of neurons that control
the release of adrenaline, glucagon, ACTH and GH will allow
us to understand how these are controlled differentially and to
determine the respective roles of the hypothalamic and brainstem
nuclei. Secondly, a better knowledge of the hypothalamic circuitry
involved in the control of blood glucose has yet to be elucidated. It
will allow us to determine the structures and mechanisms under-
lying complex behaviors in response to hypoglycemia, which
are related but distinct from autonomic and endocrine glucose
homeostasis. For example, it can be speculated that brainstem
neurons provide the essential output for autonomic responses
while the hypothalamus integrates feeding, arousal and “fight or
flight” behaviors associated with these responses. By answering
these questions we may delineate the multi-layered neural appa-
ratus that underpins glucose control and determine how it tunes
different body systems to the brain’s energy demand in mammals,
a condition simply necessary for life.
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