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Basic research during embryonic development has led to the identification of general
principles governing cell cycle progression, proliferation and differentiation of mammalian
neural stem cells (NSC). These findings were recently translated to the adult brain in an
attempt to identify the overall principles governing stemness in the two contexts and
allowing us to manipulate the expansion of NSC for regenerative therapies. However,
and despite a huge literature on embryonic neural precursors, very little is known about
cell cycle parameters of adult neural, or any other somatic, stem cell. In this review, we
briefly discuss the long journey of NSC research from embryonic development to adult
homeostasis, aging and therapy with a specific focus on their quiescence and cell cycle
length in physiological conditions and neurological disorders. Particular attention is given
to a new important player in the field, oligodendrocyte progenitors, while discussing the
limitation hampering further development in this challenging area.
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INTRODUCTION
The study of the cell cycle is one of the most prolific areas in
developmental neuroscience with hundreds of publications span-
ning half a century and contributing new methodologies, basic
knowledge and a deeper understanding of brain development and
evolution (Fujita, 1962; Schultze and Korr, 1981; Takahashi et al.,
1995; Dehay and Kennedy, 2007; Salomoni and Calegari, 2010;
Borrell and Calegari, in press).

Cell cycle regulation in itself is a huge field and several reviews
already discussed its molecular control during brain develop-
ment and adulthood (Dehay and Kennedy, 2007; Salomoni and
Calegari, 2010; Beukelaers et al., 2011b). As one factor fuelling
interest in this area, short cell cycles were found to correlate
with a higher proliferative potential of neural precursors at
the cellular and tissue level and across phylogeny (Borrell and
Calegari, in press). This correlation led to functional manipula-
tions showing that the proliferative potential of neural precursors
is increased by shortening their cell cycle while, conversely, length-
ening it leads to differentiation and neurogenesis (Calegari and
Huttner, 2003; Lange et al., 2009; Pilaz et al., 2009; Artegiani et al.,
2011; Beukelaers et al., 2011a).

Considering that the first calculation of the cell cycle during
development coincided with the first report on adult neurogenesis
five decades ago (Altman, 1962; Fujita, 1962) and that immense
efforts are currently invested worldwide in stem cell research and
regenerative medicine, it comes as a surprise that cell cycle stud-
ies during adulthood, contrary to development, are extremely
limited with only a handful addressing the diseased brain. Here
we summarize our knowledge on cell cycle parameters of adult
neural precursors in physiological and pathological conditions
with particular attention to a new player in biomedicine, oligo-
dendrocyte progenitors. This is important to identify potential

correlations of biological significance and to identify our gaps in
knowledge that the field should address in the years to come.

NEUROGENIC PRECURSORS
CELL CYCLE IN PHYSIOLOGICAL CONDITIONS
Mammalian NSC generate neurons and glia throughout life
within two restricted areas: the subgranular zone (SGZ) of the
dentate gyrus and the subventricular zone (SVZ) of the lateral
ventricles (Zhao et al., 2008; Kriegstein and Alvarez-Buylla, 2009).
In both niches a pool of NSC, progenitors and neuroblasts coex-
ist in a dynamic system in which the production of neurons is
regulated by intrinsic and extrinsic factors (Lois and Alvarez-
Buylla, 1994; Cameron and McKay, 2001). Similarly to their
embryonic precursors (Merkle et al., 2004; Li et al., 2013), adult
NSC maintain a radial morphology (Doetsch et al., 1999; Seri
et al., 2001), contact blood vessels (Palmer et al., 2000; Tavazoie
et al., 2008) and share common markers (Kriegstein and Alvarez-
Buylla, 2009). However, in contrast to embryonic development no
unique marker has been identified that exclusively labels one, but
not others, precursor types (Ming and Song, 2011). In addition,
no positive marker of quiescent cells is available to date. These
limitations, together with the fact that a significant proportion
of NSC are quiescent, makes it remarkably difficult to assess cell
cycle parameters during adulthood.

In the SGZ, dividing NSC (type 1) give rise to intermediate
progenitors (type 2) that in turn generate neuroblasts (type 3)
producing granule neurons (Seri et al., 2001; Kempermann et al.,
2004). The significance of adult hippocampal neurogenesis is not
fully understood but evidence points to a role in learning and
memory (Kempermann, 2008; Deng et al., 2010). With regard
to the lineage of hippocampal NSC, studies have calculated that
type 1 cells undergo 3–4 asymmetric divisions before becoming
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postmitotic astrocytes (Encinas et al., 2011) while others have
concluded that at least some type 1 cells can self-renew unlimited
times throughout life (Bonaguidi et al., 2011). Despite this con-
troversy, studies attempting to measure the cell cycle in the adult
hippocampus found that cycling NSC divide every about 1 day
(Lugert et al., 2010; Encinas et al., 2011; Brandt et al., 2012) with
S being the most variable phase among progenitors (Brandt et al.,
2012). In particular, type 1 cells complete the cell cycle in 23 h
with an S-phase of 10 h (Brandt et al., 2012). Subsequently, type 2
cells lengthen to 27 h while type 3 shorten again to 23 h. Although
G1, G2, and M were not individually measured, cell cycle differ-
ences were found to be almost exclusively due to S-phase (Table 1)
(Brandt et al., 2012).

The SVZ is the second and most proliferative neurogenic niche
of the adult mammalian brain (Kriegstein and Alvarez-Buylla,
2009; Ming and Song, 2011). Here, NSC (B cells) have an api-
cal process intercalating between ependymal cells and contacting
the ventricle (Mirzadeh et al., 2008) and a basal process contact-
ing blood vessels (Shen et al., 2008). B cells give rise to amplifying
progenitors (C cells) that generate migrating neuroblasts (A cells)
dividing along the SVZ and rostral migratory stream toward the
olfactory bulb where they ultimately differentiate into neurons
(Petreanu and Alvarez-Buylla, 2002; Ming and Song, 2011). At
any given time, B cells represent 10% of all cycling cells (Doetsch
et al., 2002) with a similar proportion being cycling as opposed
to quiescent (Ponti et al., 2013). B cells complete the cell cycle in
18 h and G1 and S in 8 and 5 h, respectively (Table 1) (Ponti et al.,
2013). Regarding C cells, these represent over 60% of proliferat-
ing cells (Doetsch et al., 2002) with nearly 90% of them cycling at
any given time (Ponti et al., 2013). C cells are proposed to divide
symmetrically 2–3 times before generating A cells and have more
heterogeneous cell cycles of 17–22 h, a longer S-phase of 12–15 h
and a remarkably short G1 of 2 h (Ponti et al., 2013). Finally, A
cells account for 26% of dividing cells in the SVZ (Doetsch et al.,
2002), have a cell cycle similar to C cells with perhaps a longer G1
(2–5 h) and shorter S of 10 h (Table 1) (Ponti et al., 2013).

Altogether, cell cycle differences within neurogenic niches
seem minor with the only consistent change being a lengthen-
ing of S-phase from NSC to progenitors and shortening from
progenitors to neuroblasts. Not only is the significance of such
changes unknown but no parallelism is evident between embry-
onic and adulthood precursors because in the former S-phase was
found to be longer in NSC than in progenitors (Arai et al., 2011)
and G1 during adulthood was found to length from C to A cells
but not from B to C cells (Ponti et al., 2013).

CELL CYCLE IN PATHOLOGICAL CONDITIONS
Neural progenitors increase their proliferation, meant both as
exiting quiescence and shortening the cell cycle, under patho-
logical conditions in both neurogenic niches (Dash et al., 2001;
Arvidsson et al., 2002). Most studies focused on the SVZ where
neural precursors change their migration and are redirected to
the injured area to acquire the phenotype of local cells (Arvidsson
et al., 2002), thus, making the SVZ a potential target of ther-
apy. Increased proliferation and altered migration were found
in rodent models of multiple sclerosis (Rasmussen et al., 2011;
Mecha et al., 2013), Huntington’s disease (Tattersfield et al.,

2004), Parkinson (Aponso et al., 2008) and stroke (Thored
et al., 2006), the latter of which was also shown in humans
(Jin et al., 2006; Minger et al., 2007). Among these diseases, the
neurogenic response triggered by stroke is the most prominent
and best characterized.

Stroke is a cerebrovascular accident resulting in a permanent
damage and second leading cause of death worldwide (WHO,
2013). Two days after striatal stroke, SVZ precursors shorten
the cell cycle form 19 to 12 h due to a shorter G1 from 13 to
8 h and S from 5 to 2 h (Table 1) (Zhang et al., 2006, 2008).
Subsequently, cell cycle progressively lengthens reaching normal
values 14 days after stroke. Interestingly, the proportion of pro-
liferative, as opposed to differentiative, divisions increases (from
10 to 50%) during the period of short cell cycles and, conversely,
decreases (back to 10%) during the long ones (Zhang et al., 2008)
although it is important to note that in these studies precursor
types were not distinguished and that these values refer to the
total SVZ population. Nevertheless, stroke results in an increas-
ing cohort of neuroblasts migrating from the SVZ toward the
striatum with a peak at day 14 (Zhang et al., 2004) and last-
ing for at least 4 months (Arvidsson et al., 2002; Thored et al.,
2006; Yamashita et al., 2006). Most of these newborn neurons
undergo apoptosis but those that survive functionally integrate
(Yamashita et al., 2006; Hou et al., 2008) with evidence indicating
that this endogenous neurogenesis can contribute to functional
recovery after stroke since, for instance, ablation of neural pre-
cursors impairs recovery (Jin et al., 2010; Sun et al., 2013). Yet, it
still has to be shown whether an artificial increase in endogenous
neurogenesis would favor brain function.

Altogether, cell cycle parameters of precursor cells after stroke
recapitulate embryonic development in the sense that short cell
cycles are coupled to proliferation and long cell cycles to differen-
tiation. In this context, cell cycle re-entry is likely instrumental
to guide the stroke-induced neurogenic response and, in fact,
activation of cell cycle regulators is known to occur in both
rodents and humans (Love, 2003; Rashidian et al., 2007). Yet,
this response in postmitotic neurons is likely to induce apopto-
sis rather than cell cycle re-entry (Rashidian et al., 2007). This is
supported by the fact that injecting a cdk inhibitor in the ischemic
area reduces apoptosis and extension of the ischemic core (Osuga
et al., 2000) suggesting that cell cycle regulators have different
effects in postmitotic neurons or precursors, which should be
considered in manipulations aimed to improve recovery. In this
context, increasing the endogenous pool of neurogenic precursors
by manipulating their cell cycle seems a promising approach to
therapy. Moreover, other targets have recently emerged including
ependymal cells (Carlen et al., 2009) and glial precursors (Zhang
et al., 2011). To our knowledge cell cycle of ependymal cells dur-
ing neurodegeneration has not been assessed while some groups
are now pioneering the study of gliogenesis.

GLIOGENIC PRECURSORS
CELL CYCLE IN PHYSIOLOGICAL CONDITIONS
Astrocytes and oligodendrocytes are the most abundant cell type
of the adult brain with the latter gaining more interest for their
role and potential use during brain recovery (Richardson et al.,
2011; Tsai et al., 2012).

Frontiers in Neuroscience | Neurogenesis February 2014 | Volume 8 | Article 39 | 2

http://www.frontiersin.org/Neurogenesis
http://www.frontiersin.org/Neurogenesis
http://www.frontiersin.org/Neurogenesis/archive


Bragado Alonso et al. Cell cycle and neurodegenerative diseases

Table 1 | Cell cycle parameters of neurogenic and oligodendrogenic precursors.

Left to right: precursor types in different areas of the CNS and individual cell types or tissues are indicated with proportion of cycling cells (growth fraction, GF),

length of individual phases and total cell cycle in hours (h) or days (d). Split cells indicate values calculated in physiological (left) or pathological (right) conditions.

OPC values were acquired at the age of approximately 2 months. *Value calculated from (Simon et al., 2011; Young et al., 2013).

Oligodendrocyte progenitor cells (OPC) play pivotal roles
in CNS development (Richardson et al., 2006) and adulthood
where they represent the most abundant and homogeneously dis-
tributed cycling cell population of the CNS (Richardson et al.,
2011). Oligodendrocytes during development are generated from
different regions in consecutive waves but it is unknown whether
each population has any specific role in brain function (Kessaris
et al., 2006). Adult OPC represent 8 and 2% of the white and
gray matter, respectively (Dawson, 2003; Rivers et al., 2008) with
resident and migrating OPC in the SVZ and septum giving
rise to mature myelinating oligodendrocytes in physiological and
pathological conditions (Menn et al., 2006). Maturation of OPC
involves changes in morphology and marker expression including
Pdgfra, Ng2 for OPC and Olig2 and Sox10 for the whole lineage
(Fumagalli et al., 2011). OPC are reactive to neurotransmitters
(Bergles et al., 2000; Stevens et al., 2002) and display highly
dynamic behavior with regard to migration, filopodia extension,
proliferation, differentiation and reaction to injury (Hughes et al.,
2013).

Starting at postnatal day 7 and during adulthood, approx-
imately 50–80% of OPC in the whole brain were described
as cycling based on BrdU incorporation (Rivers et al., 2008;
Psachoulia et al., 2009; Simon et al., 2011). Another report based
on EdU however calculated a growth fraction of about 99%

(Young et al., 2013) but this thymidine analog has raised concern
with regard to toxicity (Ponti et al., 2013). Cell cycle length of
OPC differs among brain regions and is significantly longer than
that of neurogenic precursors. In the white matter, in particular
corpus callosum, OPC cell cycle linearly increases from 2 days at 1
week postnatal to a plateau of 150 days at 8 months (Rivers et al.,
2008; Psachoulia et al., 2009; Young et al., 2013) with the spinal
cord white matter yielding comparable results (Table 1) (Young
et al., 2013). In the cortical gray matter cell cycle length was esti-
mated to be about 37 days at 2 months (Simon et al., 2011; Young
et al., 2013) with S/G2/M of 5 days (Simon et al., 2011). Cell cycle
in the cortex also showed a decrease similar to the corpus cal-
losum with the important difference that a plateau is not reached
and cell cycle increases to up to 340 days at 18 months (Psachoulia
et al., 2009; Young et al., 2013). This almost linear relationship
between age and cell cycle implies a lengthening by about 16 h
every day starting at birth (Young et al., 2013), that is, every cell
cycle is two thirds longer than the previous one. Finally, cell cycle
in the gray matter of the spinal cord is significantly shorter than
in the cortex with OPC dividing every 8 or 27 days at 3 weeks
or 2 months postnatal, respectively (Table 1) (Young et al., 2013).
With regard to the proportion of OPC that divide to proliferate
as opposed to generate mature oligodendrocytes, different stud-
ies led to different estimations while consistently reporting higher
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values for the white matter both in the brain and spinal cord with
both declining during aging (Rivers et al., 2008; Psachoulia et al.,
2009; Kang et al., 2010; Simon et al., 2011; Zhu et al., 2011; Young
et al., 2013).

In conclusion, OPC exhibit a remarkably longer cell cycle
than neurogenic precursors, which to our opinion reflects long
periods of quiescence followed by re-entry in a cell cycle that
is a fraction of the total inter-mitotic time. Moreover, the cell
cycle of OPC differs between gray and white matter, which is
possibly explained by region-specific differences as revealed by
transplantation experiments (Vigano et al., 2013).

CELL CYCLE IN PATHOLOGICAL CONDITIONS
Accumulating evidence indicates that OPC play key roles dur-
ing brain injury (Nguyen et al., 2006; Huang et al., 2011; Zhang
et al., 2013). Demyelination in multiple sclerosis leads to impaired
saltatory signal conduction and loss of axon integrity (Huang
et al., 2011). OPC react by migrating into the lesion and dif-
ferentiate in mature myelinating oligodendrocytes and Schwann
cells (Zawadzka et al., 2010). This reaction enhances recovery and
is known to decrease with age making it a potential target for
regenerative therapies (Nguyen et al., 2006; Zawadzka et al., 2010;
Huang et al., 2011; Deshmukh et al., 2013).

Stab wound in the cortex increases proliferation in the whole
brain with a five-fold higher response in the ipsilateral com-
pared to contralateral hemisphere 3 days post injury (Simon et al.,
2011). In particular, at 1 week 74% of OPC cycle suggesting
that cells enter the cell cycle from quiescence and, concomitantly,
shorten the G1-phase of their cell cycle (Simon et al., 2011).

Cerebral ischemia has a strong impact on oligodendrocytes
since they lack the ability to proliferate and, once damaged, to
myelinate axons (McTigue and Tripathi, 2008). After stroke resi-
dent and SVZ-derived OPC start to proliferate and migrate to the
penumbra where they differentiate into mature oligodendrocytes
that myelinate newly sprouted axons thus enhancing neuronal
survival and short-term synaptic plasticity (Zhang and Chopp,
2009; Ueno et al., 2012; Zhang et al., 2013) and preclinical stud-
ies showed improved healing of stroke after pharmaceutically
enhanced oligodendrogenesis (Zhang et al., 2013).

Most studies have focused on neuronal aspects of brain recov-
ery and the role of other cell types awaits further investigation.
Only recently studies started to focus on cell cycle parameters of
OPC and other cell types such as astrocytes and pericytes play-
ing critical roles in disease including glial scar formation and
inflammation (Goritz et al., 2011; Lambertsen et al., 2012).

DISCUSSION
Decades of cell cycle measurements during development have
been instrumental to understand and manipulate the contri-
bution of neural precursors in the mammalian brain (Fujita,
1962; Schultze and Korr, 1981; Takahashi et al., 1995; Dehay
and Kennedy, 2007; Salomoni and Calegari, 2010; Borrell and
Calegari, in press). Studies during adulthood have just begun and
parallelisms between the two contexts are hard to identify due
to our limited understanding of adult lineages and difficulties in
assessing cell cycle and quiescence. Notably, during development
progenitors have longer cell cycles than stem cells (Borrell and

Calegari, in press). Yet, differences of greater significance were
found by comparing cells undergoing proliferative vs. differentia-
tive division within these two populations (Calegari et al., 2005;
Arai et al., 2011). Hence, analyses of, say, type 1/B vs. 2/C cells can
only reveal part of the truth with identification of proliferative vs.
differentiative precursors within each type being perhaps more
important. Moreover, independently from physiological correla-
tions between cell cycle and stemness, it is clear that artificial
manipulations can still be effective in increasing stem cell expan-
sion since these can override physiological processes as indicated
by studies on NSC and OPC (Artegiani et al., 2011; Beukelaers
et al., 2011a; Caillava et al., 2011; Nobs et al., 2013).

It is premature to know whether manipulation of neural
precursors will ever allow practical and efficient means toward
effective therapy, but the history of cell cycle measurements dur-
ing development suggests that this may pave a promising road. To
achieving this goal, technical limitations need first to be overcome
including the identification of markers for the relevant cell types,
establishing behavioral tests reflecting functional recovery rather
than compensatory learning (Hicks et al., 2009) and animal mod-
els of disease faithfully recapitulating the human condition. As
one example of the latter, models of stroke often involve the stria-
tum whereas human ischemia mainly affects cortical areas while
the few that involve the striatum cause mild deficits (Delavaran
et al., 2013). Moreover, modeling disease is often done in young
mice while most neurodegenerative diseases are relevant during
aging, which has major effects on cell cycle and neurogenesis
(Artegiani and Calegari, 2012). We envision that improvements in
these aspects of biomedical research will have the greatest impact
in the field and hope that this review will help readers to identify,
hence overcome, some of our current limitations.
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