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When animals have to make a number of decisions during a limited time interval, they
face a fundamental problem: how much time they should spend on each decision in
order to achieve the maximum possible total outcome. Deliberating more on one decision
usually leads to more outcome but less time will remain for other decisions. In the
framework of sequential sampling models, the question is how animals learn to set their
decision threshold such that the total expected outcome achieved during a limited time is
maximized. The aim of this paper is to provide a theoretical framework for answering this
question. To this end, we consider an experimental design in which each trial can come
from one of the several possible “conditions.” A condition specifies the difficulty of the
trial, the reward, the penalty and so on. We show that to maximize the expected reward
during a limited time, the subject should set a separate value of decision threshold for each
condition. We propose a model of learning the optimal value of decision thresholds based
on the theory of semi-Markov decision processes (SMDP). In our model, the experimental
environment is modeled as an SMDP with each “condition” being a “state” and the value
of decision thresholds being the “actions” taken in those states. The problem of finding
the optimal decision thresholds then is cast as the stochastic optimal control problem of
taking actions in each state in the corresponding SMDP such that the average reward rate
is maximized. Our model utilizes a biologically plausible learning algorithm to solve this
problem. The simulation results show that at the beginning of learning the model choses
high values of decision threshold which lead to sub-optimal performance. With experience,
however, the model learns to lower the value of decision thresholds till finally it finds the
optimal values.

Keywords: semi-Markov decision process, average reward rate maximization, speed-accuracy trade-off,

reinforcement learning, sequential sampling models, diffusion process, decision threshold

1. INTRODUCTION
In many problems that animals and humans encounter, the qual-
ity of a desired outcome that they can achieve depends on the
amount of a resource they spent. For example, one can pay more
money (resource) to buy a more stylish (higher quality) coat
(desired outcome). If the resource is limited (which is almost
always the case), the animal or human should decide how much
of the resource she is willing to spend on obtaining one outcome.
By spending more of the resource on an outcome the quality
increases but less would be left for other outcomes. A rational ani-
mal or human, then, should decide how to allocate the resource
for obtaining each outcome to maximize the total amount of
obtained outcome. That is, she should find out what resource
allocation maximizes outcome per unit of the resource.

One interesting example of a situation in which the subject
should trade a resource with the quality of the outcome is per-
ceptual decision making in which the subject should detect a
noisy stimulus and choose a proper response based on it. Because
of the noise in the stimulus, to make more accurate responses
the subject should spend more time to detect the stimulus.
Since faster responses are less accurate, the subject should trade
between the amount of time (resource) and the accuracy (which

determines the quality of the outcome). This leads to the so-called
speed-accuracy tradeoff (SAT).

In the past few decades, computational modeling has been
a popular method for investigating the mechanisms underlying
perceptual decision making. A large class of models of percep-
tual decision making, called sequential sampling models, assume
that the subject sequentially samples from the stimulus (Link
and Heath, 1975; Townsend and Ashby, 1983; Luce, 1986; Smith
and Vickers, 1988; Busemeyer and Townsend, 1993; Smith, 2000;
Usher and McClelland, 2001; Ratcliff and Smith, 2004). These
samples are noisy and so the decision cannot be made based on
a single sample. These models propose that the subject responds
whenever the accumulated evidence favoring one of the responses
exceeds a specific value called the decision threshold. This way,
these models separate the perceptual process from the decisional
process. The evidence accumulation models the perceptual pro-
cess and is assumed to be affected by the physical stimulus. The
decisional process is modeled by the decision threshold and is
assumed to be controlled by the subject. Higher values of the
decision threshold mean that more information is needed for
making a decision and so the decisions will be more accurate.
However, accumulating more information takes more time and
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so decisions will be slower. Thus, the SAT is explained in sequen-
tial sampling models by changes in the decision threshold. This
feature of sequential sampling models has motivated a large body
of research on the SAT phenomena. A standard experimental
method of investigating this phenomena is to vary the emphasis
on speed or accuracy in the task instructions. Sequential sam-
pling models predict that the subjects will choose lower decision
threshold in the speed condition in comparison to the accuracy
conditions. This prediction has been confirmed in many stud-
ies (Ratcliff, 1978; Luce, 1986; Ratcliff, 2002; Palmer et al., 2005;
Ratcliff and McKoon, 2007; Ivanoff et al., 2008; Wagenmakers
et al., 2008; Bogacz et al., 2010; Forstmann et al., 2010).

Although these results show that subjects choose different val-
ues of decision threshold in response to varying the task’s instruc-
tions, they do not specify what value of the decision threshold
should be chosen in each condition. In other words, the results
of theses studies do not provide a normative account of the SAT
phenomena. The rationality notion explained above, however,
suggests a possible way to provide such an explanation: if the total
time of the task is fixed, a rational subject should balance between
her speed and accuracy such that the total outcome obtained dur-
ing the whole task is maximized. Spending more time on one trial
results in less remaining time for the other trials, meaning the
subject experiences fewer trials in the task. However, by spend-
ing more time on one trial the subject can increase the chance of
responding correctly.

This experimental design was first suggested by Gold and
Shadlen (2002). They considered a perceptual decision making
task in which the total time of the task is fixed and so the total
number of trials that the subject can experience depends on the
average time she spends on each trial. Also, the subject receives
a reward after each correct response and a penalty after each
incorrect response. They proposed that a rational subject sets her
decision threshold such that the expected total outcome (sum of
rewards and penalties) would be maximized. Because the total
time of the task is limited and fixed, this is equivalent to maxi-
mizing the expected outcome per unit time, or the average reward
rate.

Bogacz et al. (2006) further investigated the properties of the
average reward rate as a function of the task parameters (e.g.,
reward, penalty, stimulus salience and so on) and the parameters
of a class of sequential sampling models. Specifically, they derived
the relationship between the task parameters and the optimal
value of the decision threshold in the experimental design of Gold
and Shadlen. More recently, Simen et al. (2009) and Balci et al.
(2011) conducted a series of experiments to see if human subjects
can achieve the optimal performance in this experimental design.
The results of these studies showed that after extensive training in
tasks similar to what was proposed by Gold and Shadlen (2002),
human subjects could learn to set the decision threshold at values
close to optimal.

Knowing that subjects can learn to behave optimally, the next
question would be how the brain learns the optimal threshold.
The aim of this paper is to propose a computational framework
to answer this question. To this end, we consider a more gen-
eral experimental design than the design of Gold and Shadlen.
In this design, instead of having one condition, trials in a block

can come from one of several possible conditions and so the
subject should set different decision thresholds for different con-
ditions to achieve the maximum average reward rate (section 2).
We then show that this experiment can be modeled as a stochas-
tic process, specifically a semi-Markov decision process (section 4).
Learning the optimal decision threshold will be framed as an
optimal control problem in this stochastic environment. We then
propose a biologically plausible model that can solve this problem
(section 5). In the final section of this paper, we test the perfor-
mance of our model in learning the optimal value of the decision
threshold in different experiments (section 6).

2. COMPUTATIONAL METHODS
Our model is developed to account for a more general experimen-
tal design than what was used in previous research on optimal
SAT. To the best of our knowledge, Simen et al. (2009) conducted
the first experimental study to investigate if human subjects can
learn the optimal value of the decision threshold. To contrast their
experimental design with the one that is considered in this paper,
here we briefly explain experiment 1 of Simen et al. (2009).

The stimulus in each trial of this experiment was the well-
known random-dot kinematogram. This stimulus consists of a
number of dots, some of them moving coherently toward the left
or toward the right, while other dots move randomly. The sub-
jects’ task is to decide in each trial if the net direction of motion is
toward the left or right. The salience of the stimulus is determined
by the percentage of dots that are moving coherently. Other task
parameters were the reward that the subject receives after each
correct response and the response-stimulus interval (RSI), the
time between subject’s response and the presentation of the next
stimulus. Each session of the experiment consisted of 12 blocks
(the number of blocks was more than 12, but here we just consider
those that are relevant to our explanation). The blocks’ dura-
tion was fixed (4 min) and so the number of trials in each block
depended on how much time the subject spent on each trial.

Based on Gold and Shadlen’s hypothesis (Gold and Shadlen,
2002), because the blocks’ duration is fixed, a rational subject will
try to balance her speed and accuracy such that the average reward
rate is maximized. Since the total reward is the sum of the reward
for each block, maximizing the total average reward rate is equiv-
alent to maximizing it in each individual block. In experiment 1
of Simen et al. (2009), the stimulus salience and reward were held
constant. RSI was held constant within each block, but manipu-
lated across blocks. Clearly, the average reward rate is a function
of RSI, since the longer the delay between the trials, the fewer tri-
als can be experienced within a block. In addition, (Bogacz et al.,
2006) showed that if the subjects’ performance in this experiment
is modeled in the sequential sampling framework, the optimal
value of the decision threshold is a function of RSI. Therefore,
to achieve the optimal performance in each block (and so maxi-
mize the total average reward rate) subjects have to set different
decision thresholds for different blocks, dependent on the RSI .

Although the optimal value of the decision threshold in a block
depends on the RSI in that block, it does not depend on the RSI
in other blocks. In other words, to maximize the average reward
rate in one block, the subject does not need to know what are the
values of RSI in other blocks. Therefore, the subject can set the
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value of the decision threshold in each block with a specific value
of RSI, independent of other blocks with different RSIs. This is the
main difference between this design and the design we consider in
the current paper.

Here, we consider a more general design in which to achieve
the optimal performance the subject should consider all con-
ditions together and the optimal decision threshold for one
condition depends on all other conditions in the task. As an exam-
ple, consider two conditions: RSI= 500 ms and RSI= 1000 ms. In
the previous design, there would be two types of blocks: in one
type the RSI of all trials is 500 ms while the RSI of the trials in
the other type of blocks is 1000 ms. In our design, however, tri-
als with RSI= 500 ms and RSI= 1000 ms are all intermixed. In
other words, there is no manipulation across blocks. Crucially, a
cue associated with each RSI value is presented at the beginning
of each trial. For example, in the task set-up shown in Figure 1, in
trials with RSI= 500 ms a red cross-hair is presented as the cue
while in trials with RSI= 1000 the cue is a blue cross-hair. As
seen in this figure, the cue is followed by the random dots stimu-
lus. The blocks’ duration is fixed and so a rational subject should
maximize the average reward rate.

Since a cue associated with the RSI of the trial is presented
before the presentation of the stimulus, we assume that subjects
can set different values of decision threshold for each value of
RSI. In other words, the subject can associate different value of
decision threshold to each cue. Thus, like the design in Simen
et al. (2009), the average reward rate will be a function of the two
decision thresholds. The crucial difference is that in their design
the two decision thresholds are independent of each other (since
RSI is only manipulated across blocks), whereas in our design the
optimal threshold for one value of RSI depends on the value of
the other RSI.

The reason for this dependency in our design can be conceived
intuitively by noting that because the blocks’ duration is fixed,

every second that the subject spends on one trial, she is actually
losing the opportunity to spend that time on other trials. If the
other trials on average lead to higher reward, it is better to spend
less time on the current trial. By being faster in one type of trials,
the accuracy decreases and so the subject will lose more rewards
in those trials. However, if other types of trials are “rewarding
enough” it may be worth it to be fast and inaccurate in those tri-
als which lead to less reward. This means that to set the decision
threshold in each condition, the subject should consider all other
conditions in the task. In the next section, we derive a formal
expression of the average reward rate in our design and investigate
its properties in more detail.

3. AVERAGE REWARD RATE
In this section, we investigate the properties of the average reward
rate as a function of the task parameters. We first state the formula
for the average reward rate in the experimental design explained
above. To see how this function is related to the decision threshold
in different conditions, we then explain a variant of sequential
sampling models called independent race model and show how the
decision making process is modeled in this framework. Finally,
we see some examples of the average reward rate for different task
parameters.

3.1. AVERAGE REWARD RATE AS A FUNCTION OF TASK PARAMETERS
In section 2, we explained the experimental design with an exam-
ple in which only one task parameter (RSI) was manipulated.
Before deriving the formula for the average reward rate, we should
explain the experimental design in more detail.

In the experimental design, there are several blocks with a
fixed duration. Each trial in each block comes from one of the
Nc possible “conditions” with each condition specifying the task
parameters in that trial. Each trial is drawn from a given condi-
tion Ci with probability Pi. As explained before, a cue presented at

FIGURE 1 | An example of the experimental design. In this example, each
trial can come from one of two conditions with equal probability. A colored
cross-hair presented at the beginning of each trial indicates the condition of the
upcoming trial. After the presentation of the cue, the stimulus appears and
remains on the screen till the subject responds. After responding, the subject
receives feedback. The time between subject’s response and the beginning of

the next trial is determined by the delay penalty (DP) and response-stimulus
interval (RSI). The table on the right of the figure shows the cue-condition
association along with the task parameters in each condition. As seen, the two
conditions differ only in the value of the RSI. See Table 1 for a description of the
task parameters. In this table, a separate parameter for the fixation time is not
considered and instead it is considered as a part of the RSI.
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the beginning of each trial indicates which condition this trial is
coming from. For example, in Figure 1 there are two conditions
and each trial can come from one of them with equal probabil-
ity. In this figure, all task parameters are the same in these two
conditions except the RSI.

The subject receives a reward after each correct response and
a penalty after incorrect responses. Also, there is a delay penalty
after each incorrect response. This is the time that the subject
should wait in addition to the RSI when the response is incorrect.
The task parameters and their notations are specified in Table 1.

The average reward rate is defined as the average reward
divided by the average time that it takes to obtain the reward. In
our experimental design , since the subject can choose different
decision thresholds for different conditions, the average time and
average reward will be different in different conditions . The aver-
age reward in the task, then, is the weighted sum of the average
reward in each condition with the weights being the probabil-
ity of each condition presented in the task. The average time is
computed in the same way. The average reward rate, then, can be
expressed as follows:

R̄ =
∑Nc

i= 1 Pi ·
[
rC

i · PC
i + rI

i · (1− PC
i )

]
∑Nc

i= 1 Pi ·
[
T̄C

i · PC
i +

(
T̄I

i + TDP
i

)· (1− PC
i

)+ TRSI
i + TND

]
(1)

Among all these parameters, the subject can only control the
probability of correct Pi

c, mean correct reaction time T̄C
i and

mean incorrect reaction time T̄I
i in each condition i, by adjusting

her decision threshold in each condition. All other parameters are
controlled by the experimenter. The sequential sampling mod-
els specify the relationship between the decision threshold and
mean reaction time and probability correct. In the next section
we explain this relationship.

3.2. DIFFUSION PROCESS MODEL OF PERCEPTUAL DECISION MAKING
As explained before, the sequential sampling models assume that
the subject accumulates noisy information favoring each response
and she will respond as soon as the evidence favoring one of the
responses reaches a decision threshold. Several models have been
proposed based on different assumptions about the accumulation
process and the decision process (see Ratcliff and Smith, 2004 for

Table 1 | Task parameters in the experiment.

Parameter Description

Nc Number of conditions

Pi Probability of condition i happening

PC
i Probability of being correct in condition i

rC
i Reward in condition i

r I
i Penalty in condition i

T̄ C
i Mean correct reaction time in condition i

T̄ I
i Mean incorrect reaction time in condition i

T DP
i Delay penalty after incorrect responses in condition i

T RSI
i Response-stimulus interval in condition i

T ND Non-decision time which is assumed to be independent of
the condition

a comprehensive review of different sequential sampling mod-
els). Although different models make different predictions about
a subject’s performance, most of these models can fulfil the pur-
pose of this paper. In this paper, we consider an independent race
model in which the information favoring each response is accu-
mulated in a separate accumulator. This model assumes that the
subject responds as soon as the accumulated information in one
of the accumulators reaches its decision threshold. The accumu-
lated information in each accumulator is modeled as a diffusion
process. In this model, the information is sampled and accumu-
lated in continuous time. A diffusion process X is specified by the
stochastic differential equation:

dX = μ · dt + σ · dB (2)

The parameter μ is called the drift coefficient and determines
the mean of the process X (It can be shown that E [X(t)] = μ · t
(see for example Smith, 2000)). This parameter is assumed to
be proportional to the stimulus salience. The parameter σ is the
diffusion coefficient and specifies the amount of noise in the
samples. The process dB specifies the increments of a zero-mean
Gaussian process.

Consider the random-dot kinematogram task explained in
section 2. The corresponding independent race model of this task
consists of two accumulators that one of them accumulates infor-
mation favoring the “right” response while the other accumulates
information favoring the “left” response. Each of these accu-
mulators is a diffusion process with one decision threshold (see
Figure 2). Thus, the parameters of the model are the drift coeffi-
cients μi, the diffusion coefficients σi and the decision thresholds
ai, where the subscript i = 1, 2 denotes the ith accumulator. For
sake of simplicity, we assume that σ1 = σ2 = σ and a1 = a2 = a.
In this paper, we do not distinguish between the right and left
responses, and instead assume that accumulator 1 corresponds to
the correct response and accumulator 2 corresponds to the incor-
rect response. The probability of giving a correct response, as well
as the probability density functions for the correct and incorrect
reaction times, are expressed in Supplementary Material. These
functions specify the relationship between the average reward rate
function in Equation1 and the decision thresholds in the differ-
ent conditions, and so all parameters being fixed, one can plot
R̄ as a function of the decision thresholds. Several examples are
investigated in the next section.

3.3. SOME EXAMPLES
In this section, we investigate the properties of the average reward
rate function in Equation1 with three examples. In the first
example, we consider an experiment similar to the experimen-
tal design used previously (Simen et al., 2009; Balci et al., 2011).
As explained above, in this case the subject has to set only one
decision threshold for each block. The average reward rate R̄ as a
function of the decision threshold for the task parameters given in
Table 2 and different values of TRSI is shown in Figure 3. As can
be seen in this figure, for all values of TRSI there is one value of
the decision threshold a that maximizes the average reward rate.
The properties of the average reward rate function for another
sequential sampling model, called the drift diffusion model, have
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FIGURE 2 | A sample path of the accumulated information in the two

accumulators of the race model. The black paths are the accumulated
information and the thick red lines are the decision thresholds. The
accumulated information in the accumulator 1 reaches the decision
threshold at about 1.8 s and before the accumulator 2 and so the response
1 will be selected.

Table 2 | Task parameters used in the first example.

Parameter μ1 μ2 σ T ND rC rI T DP

Value 0.1 0 0.05 0.5 5 −5 5

been investigated thoroughly before (Bogacz et al., 2006; Simen
et al., 2006, 2009; Balci et al., 2011). Specifically, it has been shown
that this function is uni-modal in the whole parameter space. Our
simulations, not reported here, showed that this is also the case for
the independent race model used here.

In the second example, we consider an experiment similar to
what was shown in Figure 1. In this experiment, each trial could
come from one of the two conditions with equal probability. The

task parameters are given in Table 3. In this table, μ
j
i is the drift

coefficient of accumulator j in condition i. As explained before, in
this experiment the subject can set separate decision thresholds
for different conditions. The average reward rate as a function of
the decision threshold in condition 1, a1, and condition 2, a2, is
shown in Figure 4. Although we do not prove it here, our simula-
tions suggest that this function is also uni-modal over the whole
parameter space and so there is one pair of the decision thresholds
that maximize it. In Figure 4, the average reward rate is maxi-
mized when a1 = 0.06 and a2 = 0.11. As can be seen in Table 3,
in both conditions, the reward for the correct response is rC

j = 2
but the punishments are different. In condition 2, the punishment
is greater and because of that, the subject might ponder more in

FIGURE 3 | The average reward rate in example 1. In this example, no
cue is presented at the beginning of trials and so it is assumed that the
subject sets one decision threshold for all trials. In this figure, the average
reward rate is plotted as a function of this decision threshold, (denoted as a
in the figure), and for different values of the parameter T RSI . Other
parameters are given in Table 2.

Table 3 | Task parameters used in the second example.

Parameter μ1
1 μ2

1 μ1
2 μ2

2 σ T ND rC
1 r I

1 rC
2 r I

2 T DP T RSI

Value 0.1 0 0.15 0 0.07 1 2 −1 2 −5 2 1

FIGURE 4 | The average reward rate in example 2. In this example, there
are two conditions and each trials starts with presentation of a cue
associated with these conditions. It is assumed that the subject sets
different decision thresholds for each condition. In this figure, the average
reward rate is plotted as a function of these decision thresholds. a1 denotes
the decision threshold in condition 1 and a2 denotes the decision threshold
in condition 2. The task parameters are given in Table 3.

those trials and so the optimal decision threshold for condition 2
is greater than condition 1.

In the last example of this section, we examine how the optimal
decision threshold in each condition varies when the difficulty
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of one of the conditions changes. Again, we consider an exper-
iment with two conditions. The task parameters are given in
Table 4. As can be seen in this table, all parameters of the two
conditions are the same except the reward after correct responses
which is 1 in condition 1 and 5 in condition 2. Here, we want
to see how the optimal values of the decision thresholds change
when the salience level of condition 1, μ1

1, changes. The opti-
mal value of the decision thresholds for several values of μ1

1 in
the interval [0.05, 0.2] is plotted in the top panel of Figure 5.
When the salience levels in the two conditions are equal, that is
μ1

1 = μ1
2 = 0.05 and μ2

1 = μ2
2 = 0, the optimal value of the deci-

sion threshold in condition 2 is larger than condition 1 (a
opt
1 =

0.033 and a
opt
2 = 0.083). This is because each correct response in

condition 2 leads to higher value of reward and so it is worth it
to set a higher decision threshold for this condition and so on
average spent more time on this condition than condition 1 and
make more correct responses. However, as the salience level of
condition 1 increases and this condition becomes easier than con-
dition 2, the optimal decision threshold in condition 1 increases
while it decreases for condition 2. To investigate this situation
more, the probability of giving a correct response and mean time
spent in each condition when the optimal decision thresholds are
recruited are shown in the left and right panels at the bottom of
Figure 5, respectively. As seen, by increasing μ1

1, the optimal deci-
sion thresholds change in a way that the probability of correct
response increases for condition 1 and decreases for condition 2.
The mean time spent in each condition shows a more complicated
pattern. In conclusion, even when the task parameters of only
one condition change, the subject should adjust her speed and
accuracy in all conditions to maximize the global average reward
rate.

4. A STOCHASTIC PROCESS MODEL OF THE EXPERIMENT
The main aim of this paper is to propose a computational model
of how subjects learn the optimal decision thresholds in the exper-
imental design explained before. The proposed model is based on
well-known reinforcement learning algorithms previously used
to model optimal action selection and decision making in ani-
mals and humans (Barto, 1995; Montague et al., 1996; Schultz
et al., 1997; Sutton and Barto, 1998). In these algorithms, the
learning problem is formulated as an optimal control problem
in a stochastic environment. One critical step in modeling in
this framework is to specify the environment corresponding to
the problem in hand. In this section, we show how our exper-
imental design can be modeled as a stochastic process called a
semi-Markov decision process. In what follows, we first explain
Markov decision processes and then discuss how semi-Markov
decision processes generalize them to continuous time problems.
Finally, we show how our problem can be cast as a semi-Markov
decision process.

Table 4 | Task parameters used in the third example.

Parameter μ2
1 μ1

2 μ2
2 σ T ND rC

1 r I
1 rC

2 r I
2 T DP T RSI

Value 0 0.05 0 0.07 0.5 1 −2 5 −2 2 0.5

4.1. MARKOV DECISION PROCESS
In a Markov decision process an agent (e.g. an animal or a
robot) is interacting with a stochastic environment. The envi-
ronment consists of N states S = {

s1, · · · , sN
}

and at each

time step k it is in one of these states, say sk = si. At each
time step, the agent can choose an action from the set of
M possible actions A = {

a1, · · · , aM
}

. After taking action ak

the environment transfers to a new state sk+ 1 with prob-
ability Tu

ij(k) = Pr (sk+ 1 = sj|sk = si, ak = au) and the agent

receives a probabilistic reward rk = r with probability Ru
ij(r, k) =

Pr (rk = r|sk = si, sk+ 1 = sj, ak = au). The important aspect of
these functions is that they possess the Markov property. That
is, the transition probability Tu

ij and reward probability Ru
ij only

depend on the state at time k and the action ak and not the whole
history of states and actions

{
s1, a1, · · · , sk, ak

}
. More formally:

Pr
(

sk+ 1 = sj|sk, ak, · · · , s1, a1

)
= Pr

(
sk+ 1 = sj|sk, ak

)
(3)

Pr (rk = r|sk+ 1, sk, ak, · · · , s1, a1) = Pr (rk = r|sk+ 1, sk, ak)(4)

This structure is called a Markov decision process (MDP). In
short, an MDP consists of a 4-tuple 〈S, A, T, R〉 such that T and
R possess the Markov property. The state and action spaces in an
MDP can be continuous.

The agent’s goal in an MDP is to find the optimal policy. A
policy π : S× A→ [0, 1] is a function that maps a state-action
pair (s, a) to the probability of selecting action a in state s. To
define the optimal policy we need a notion of optimality. This
notion can be formalized based on the agent’s desire to maximize
a function of received rewards called return. One popular form of
the return function used in many applications of reinforcement

FIGURE 5 | Optimal decision thresholds, probability of correct and

mean reaction times in example 3. (A) The optimal value of the decision
threshold in condition 1, aopt

1 , and condition 2, aopt
2 , for different values of

the parameter μ1
1 in the interval [0.05, 0.2]. (B) The probability of a correct

response in condition 1 (denoted as PC
1 ) versus condition 2 (denoted as

PC
2 ). (C) The mean time spent on condition 1 (T̄1) and condition 2 (T̄2). In all

figures, the points corresponding to μ1
1 = 0.05, 0.1 and 0.2 are specified by

arrows.
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learning is expected discounted sum of future reward:

E

[ ∞∑
k= 0

γ krk

]
(5)

where the operator E denotes expectation over all trials. The
parameter γ is called the discounting factor and determines the
relative weighting of immediate versus later rewards. The opti-
mal policy will maximize this return. One reason for popularity
of this return in the literature of reinforcement learning is that, as
we will see in section 5.1, it will lead to a set of recursive equa-
tions for finding the optimal policy. Some of the psychologically
more plausible returns (e.g., hyperbolic discounting) do not pos-
sess this property (for a fuller discussion see Daw, 2003, section
2.1.4).

Based on this notion of return, the value of state si at time step
k under the policy π is defined as:

Vπ

(
si, k

)
= E

⎡
⎣ ∞∑

j= k

γ j− krj|sk = si, π

⎤
⎦ (6)

This function is called the state value function and is the expected
discounted sum of rewards that the agent expect to receive given
that the state at time step k is sk = si and the agent will choose
actions based on policy π afterwards. It is easy to show that an
optimal policy that maximizes the return 6 will also maximize the
state value functions for all time steps and states. Thus a policy π∗
is optimal if:

Vπ∗ (s, k) ≥ Vπ (s, k) for all s ∈ S and k and all policies π (7)

that is, if the state value functions under that policy are greater
than those under any other policy.

4.2. SEMI-MARKOV DECISION PROCESS
In an MDP the state transitions occur at discrete time steps.
Semi-Markov decision processes (SMDPs), generalize MDPs by
allowing the state transitions to occur in continuous irregular
times. In this framework, after the agent takes action a in state
s, the environment will remain in state s for time d and then tran-
sits to the next state and the agent receives the reward r. The dwell
time d is a random variable with probability density D(d; s, a). An
SMDP is specified by the 5-tuple 〈S, A, T, R, D〉where T, R and D
possess the Markov property. This process is called semi-Markov
because the transition from one state to another not only depends
on the current state and action but also on the time elapsed since
the action has been taken.

Since D is a function of action a, the dwell time in each state
depends on the agent’s policy. This means that in an SMDP, in
addition to the total reward, the total time to achieve that reward
depends on the policy. Thus, it is reasonable to define the opti-
mal policy based on a return that takes both reward and dwell
time into account. This makes the average reward rate an appeal-
ing choice for the return in an SMDP. Assuming that the rewards
are delivered only after each transition (and not during the dwell

time) the average reward rate of an SMDP starting at state si under
the policy π is defined as follows (Das et al., 1999):

R̄π
(

si
)
= lim

N→∞
E

[∑N
k= 0 rk|s0 = si, π

]
E

[∑N
k= 0 dk|s0 = si, π

] (8)

The state value functions are defined accordingly. The optimal
policy of an SMDP, then, maximizes the average reward rate.

4.3. AN SMDP MODEL OF THE EXPERIMENT
In this section, we show how the experimental design explained
in section 2 can be modeled as an SMDP. Each SMDP is specified
by the five-tuple 〈S, A, T, R, D〉 and so to explain our model we
should show how these functions correspond to different com-
ponents of the experiment and mechanisms of subjects’ decision
making. Before formally defining each of the components of the
model, we explain them using the examples in section 3.3. The
SMDP corresponding to the second example in section 3.3 is
shown in Figure 6. There are two conditions in this example.
In our model, we assume that each condition corresponds to
one state of the environment and so for this example the corre-
sponding SMDP has two states. After presentation of each cue
at the beginning of each trial, the environment transits to one
of these states. The dwell time in an SMDP is defined as the
time between the transition from one state to another. Since the
state transitions in the model occur at the beginning of each
trial (by the presentation of the cue), the dwell time is the time
between the presentation of a cue in one trial and the time of
the presentation of the cue in the next trial. The critical aspect
of the model is the way that we define actions in the corre-
sponding SMDP. In our experimental design, the main concern
is the relationship between the decision threshold in each con-
dition and the average reward rate. On the other hand, in an
SMDP in each state the agent tries to take actions that maxi-
mize the average reward rate. This suggests a plausible choice for
actions in the corresponding SMDP: the action in each state is

FIGURE 6 | The SMDP corresponding to the second example in

section 3.3. In the example each trial could come from one of two
conditions and so the corresponding SMDP has two states. The states are
shown by circles. The arrows show transitions between states. The
probability of each transition and the reward that the agent receives after
each transition are written on the arrows.
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the decision threshold of the information accumulators. In this
way, by learning the optimal policy in the SMDP, the subject
is actually learning the optimal value of the decision thresh-
old for each condition. The decision threshold affects both the
reaction time and the accuracy and so in the corresponding
SMDP, actions affect both the reward probabilities and the dwell
times. Since the decision thresholds can be any positive value, the
action space in each state is the continuous space of all positive
numbers.

The transition from one state to another is determined by
the probability that a trial comes from a specific condition. In
the example we are considering here, this probability is 0.5 for
each condition. The reward that subject receives after each correct
and incorrect response depends on the condition. In Figure 6,
these quantities are shown on the arrows that indicate transitions
between states.

Based on this description, the functions 〈S, A, T, R, D〉 can be
specified as follows:

The state space S: the state space is the discrete set of all possible
conditions in the experiment, that is S = {C1, · · · , CNc }.

The transition probability function T: For sake of simplicity, in
this paper we only consider experiments in which the probability
of each trial coming from a specific condition does not depend on
either subject’s response or the condition presented in the previ-
ous trial. As we explained, this probability is instead determined
by the experimenter. Thus, the transition probability function is
defined as follows:

Tu
ij(k) = Pr

(
sk+ 1 = Cj|sk = Ci, ak = au) = Pr

(
sk+ 1 = Cj

) = Pj

(9)
where Cj denotes the jth condition which corresponds to the jth

state of the environment.
The reward probability function R: As it was explained before,

the reward that subject receives after responding in each trial,
depends on the condition and the subject’s response. Specifically,
in condition i the subject receives reward rC

i for each correct
response and rI

i for each incorrect response. Therefore, the prob-
ability of receiving a reward r in each condition depends on
subject’s accuracy and so her decision threshold in that con-
dition. Formally, the reward probability function is defined as
follows:

Ru
ij(r, k) = Pr

(
rk = r|sk = Ci, sk+ 1 = Cj, ak = au)

=
⎧⎨
⎩

PC
i if r = rC

i ,

1− PC
i if r = rI

i ,

0 otherwise

(10)

The dwell time probability density function D: The dwell time
in an SMDP is the time that it takes between transition from
one state to another. In our model, this time is the sum of four
parts: non-decision time, response time, delay penalty and RSI.
The response time is the time between the presentation of the
stimulus and the time that the first accumulator hits its decision
threshold. The delay penalty depends on the subject’s response
and the trial condition. The probability density of the dwell time
for each condition is a function of the subject’s decision threshold

and the task parameters in that condition. The mean dwell time
in condition i is:

E[d] = T̄C
i · PC

i +
(
T̄I

i + TDP
i

) · (1− PC
i

)+ TRSI
i + TND (11)

The action space A: As it was explained above, the action space
in each state is the space of all positive real numbers. The
policy π(sk = Ci, ak = a) is the probability density function
that specifies the likelihood of setting the value a as the deci-
sion threshold when the cue associated with condition Ci is
presented.

5. MODEL
So far, we have shown how our experimental design can be
modeled as an SMDP. Following Gold and Shadlen (2002) we
speculated that a rational subject learns to balance her speed and
accuracy in each condition such that the average reward rate is
maximized. The question, then, is how the subject learns this
optimal behavior. In this section, we propose a normative model
of learning the optimal SAT in our experimental design. In the
SMDP framework proposed above, the problem of optimal SAT
is equivalent to the problem of learning the optimal policy that
maximizes the average reward rate. Fortunately, the problem of
learning the optimal policy in an MDP and SMDP has been
investigated thoroughly in the machine learning and computer
science literature. Specifically, the reinforcement learning (RL)
algorithms provide a mechanism for learning the optimal policy
without any knowledge about the dynamic of the environment
and only by experiencing it (Bertsekas and Tsitsiklis, 1996; Sutton
and Barto, 1998). In an SMDP, the dynamic of the environment
is determined by the functions R, T and D. The RL algorithms
assume that the agent does not know these functions and can
only observe noisy samples from them. This property makes these
algorithms appropriate for our problem: here, the subject can
only observe the reward, reaction time and condition in each
trial and she should learn the optimal value of decision threshold
based on these observations. Another appealing feature of these
algorithms is that they provide a biologically plausible account
of learning. It has been shown that the pattern of fluctuations in
the firing of dopaminergic neurons in ventral tegmental area and
surrounding neurons in tasks that involve prediction of reward,
resembles a signal called the temporal difference error, which plays
a central role in the RL algorithms (Montague et al., 1996; Schultz
et al., 1997).

In this section, we first explain the temporal difference learning
method and then propose a model that uses this method to solve
the optimal SAT problem.

5.1. TEMPORAL DIFFERENCE LEARNING
As we explained before, the optimal policy in MDPs and SMDPs is
defined as the policy that maximizes the state values for all states
(see inequality 7). Therefore, to find the optimal policy a learn-
ing algorithm should be able to compute the state values for a
given policy. For return function 5, the state values are defined in
Equation 6. This equation can be written in a recursive form:

Vπ (sk) = E [rk + γ Vπ (sk+ 1)] (12)
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This equation is known as the Bellman equation. The expecta-
tion on the right hand side of this equation is taken with respect
to all possible actions and states and so depends on the func-
tions T and R. Notice that the Bellman equation provides one
equation for each state in the state space and so can be con-
sidered as a system of equations. If the functions T and R are
known, dynamic programming methods can be used to solve this
system of equations efficiently (Bertsekas and Tsitsiklis, 1996).
However, in many situations (including our problem) the agent
does not know these functions. The temporal difference (TD)
leaning method provides a simple and efficient solution to this
problem. In its simplest form, the TD learning method uses an
estimate of the difference between the two sides of Bellman equa-
tion 12 to learn the state value functions. This estimate is called
the temporal difference error and is defined as follows:

δk = rk + γ V̂k
π (sj)− V̂k

π (si) (13)

where V̂k
π (s) is the agent’s estimate of the value of state s at time

step k, si and sj are the state of the environment at steps k and
k+ 1 and rk is the one step reward that the agent earned by going
from si to sj. The agent then updates its estimate of the value of
state si using this error signal:

V̂k+ 1
π (si) = V̂k

π (si)+ αc . δk (14)

where αc is the learning rate.
Das et al. (1999) showed that for an SMDP with the average

reward rate return defined in Equation 8, the TD error signal
should be computed as follows:

δk = rk − ρ̂k · dk + V̂k
π (sj)− V̂k

π (si) (15)

where ρ̂k is an estimate of the average reward rate defined in
Equation 8 at time step k (in the next section, we explain how
this estimate can be computed).

Equation 15 together with the update Equation 14 provide an
algorithm for learning the state values for a given policy π in an
SMDP. However, they do not specify how the optimal policy can
be learned. In the next section, we explain a method for learning
the optimal policy based on the TD learning algorithm.

5.2. A MODEL OF LEARNING OPTIMAL DECISION THRESHOLDS
In this section, we propose a model for learning the optimal
decision thresholds. This model is based on the TD learning algo-
rithm. The schematics of the model is shown in Figure 7. The
frames shown on the left of this figure as the inputs to different
parts of the model, are exactly those that were shown in Figure 1
(these are the frames shown in one trial of the task).

The model consists of two units: an information accumulation
unit and an actor-critic unit. The information accumulation unit
is responsible for processing the stimulus and selecting the appro-
priate response in each trial. The stimulus presented in each trial
is considered as the input to this unit and the selected response
(denoted as R in the figure) is the output of the unit. This unit
is an independent race model. As we discussed in section 3.2, in
the independent race model, the correct and incorrect responses

FIGURE 7 | Schematics of the proposed model of learning the optimal

decision thresholds. All frames of a trial in Figure 1 are shown here as the
input to different components of the model. The cue presented at the
beginning of the trial (the red cross-hair here) determines the current state,
sk , and acts as the input to the actor. Based on sk and the current policy the
actor chooses a value a for the decision thresholds of the information
accumulators. The arrows from the output of the actor to the threshold
units in the accumulators (denoted as TH in the figure) show that the
decision thresholds are set by the actor. The noisy information
accumulation is represented in the figure by two channels in which the
noise N is added to the signals μi and passed through integrators. This
noisy accumulated information is sent to the threshold units and finally to
the response unit (RU in the figure) that determines which accumulator has
finished processing first. After responding, the model receives the
feedback which is the inputs to the critic. Other inputs of the critic are the
cue presented in the next trial (which determines the next state sk +1) and
the estimate of the average reward rate. The ARE unit in the figure receives
the reward as its input and computes an estimate of the average reward
rate using equation 19. Finally, the critic computes the TD error signal
through equation 17 and uses it to update both the estimate of state values
and the policy.

each have a separate accumulator (modeled as a diffusion process)
and assumes that whenever the accumulated information reaches
one of the thresholds (TH in the figure), the subject will respond.
The unit named RU in the figure, simply determines which of the
accumulators has won the race and so determines the response.

The speed and accuracy are controlled by the value of the deci-
sion threshold in the information accumulation unit. The value of
this parameter is set by the other unit of the model, the actor-critic
unit (in the figure, the arrows from the output of the actor-critic
unit to the threshold units are intended to show this) and so this
unit is responsible for learning to solve the optimal SAT prob-
lem. Actor-critic architecture is one the most popular TD learning
algorithms. Specifically, among several TD based algorithms pro-
posed in the RL literature, the actor-critic algorithm has received
significant attention in the computational neuroscience litera-
ture. This is because different components of this model mapped
nicely to the anatomy of basal ganglia, a brain circuit know to
be involved in many motor and cognitive functions (Barto, 1995;
Doya, 2000; Frank, 2005, 2006; Bogacz and Larsen, 2011).

The actor-critic architecture, as its name suggests, consists of
two units: an actor unit and a critic unit. The actor unit has
a representation of the current policy and in each state selects
an action based on this policy. In the SMDP model of our
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experimental design, the state is determined by the cue presented
at the beginning of a trial and the action is the value of the deci-
sion threshold for that trial. Thus, in our model the cue presented
at the beginning of a trial is the input to the actor unit while its
output is the decision threshold for that trial (see Figure 7). In
each trial, after the presentation of the cue the actor sets the deci-
sion thresholds of the information accumulation units. After the
presentation of the stimulus, the information accumulation unit
selects a response based on which of its accumulators has reached
its threshold sooner. Based on the selected response and the trial
condition, a reward is presented to the subject and the next trial
starts after a while.

At the moment that the cue of the next trial is presented, the
critic unit plays its role. The role of this unit, as its name implies,
is to criticize the action taken by the actor in a trial. In our model,
the critic evaluates if the chosen decision threshold in a trial leads
to better or worse than expected performance in that trial. The
critic does this by computing the TD error in that trial. To see
how the TD error can be employed to evaluate the actions taken
by the actor, let us consider an experimental design with only one
condition (like the first example in section 3.3). In this situation,
sj = si = C1 and so the terms V̂k

π (sj) and V̂k
π (si) in Equation 15

cancel out each other and the TD error is reduced to δk = rk −
ρ̂k · dk. If the TD error δk is positive for a trial, it means that the
amount of reward received in that trial, rk, exceeded the cost spent
on that trial which is ρ̂k · dk. The term ρ̂k · dk is considered as the
cost spent on the trial because when the subject is spending time
dk to receive the reward rk, she is actually losing the opportunity
of spending this time on other trials that on average lead to ρ̂k of
reward per unit of time. Thus, if the actor has chosen a value for
the decision threshold for a trial and the TD error for that trial
is positive, it means that decision threshold has led to better than
expected performance. Similarly, negative TD error means worse
than expected performance. In actor-critic algorithm, this feature
of the TD error is used to improve the policy: if in a trial the actor
takes an action that leads to positive TD error, the probability of
taking that action next time increases. Similarly, the probability of
taking actions that lead to negative TD error decreases. This way
the policy is improved (at least probabilistically) after each trial
till it finally converges to the optimal policy.

In the general experimental design in which there could be
more than one condition, to compute the TD error, the critic
needs to have an estimate of the state values. Thus, in addition
to improving the policy, the TD error computed by the critic is
used to estimate these values using Equation 14 (in Figure 7 the
arrow that goes from the output of the critic back to it is intended
to show this).

In sum, in our model, after the presentation of the cue in the
next trial [which is equivalent to transition to the new state in the
corresponding SMDP (see section 4.3)], the critic computes the
TD error which is used both to improve the policy and estimate
the state values.

To calculate the TD error using Equation 15, the critic needs to
know the current state si, the next state sj, the reward rk, the dwell
time dk and the estimate of the average reward rate ρ̂k. Thus, in
Figure 7 the frames corresponding to the current trial (the red
cross-hair), the reward, the next trial (the blue cross-hair) and

also the output of the average reward rate estimator unit (ARE in
the figure) are shown as the inputs to the critic unit.

So far, we have explained the role of different units of the
model in processing the stimulus and selecting response, setting
the decision thresholds and improving the policy. To complete the
model, three issues should be addressed and the rest of this sec-
tion is devoted to them: first, how the policy is represented in the
actor, second, how the policy can be improved using the TD error
and third, how the average reward rate can be estimated.

The first two problems are tightly related and so we explained
them first. When the actor-critic algorithm is used in discrete
action space problems, the policy can be represented as a proba-
bility mass function with one probability value for each action in
the action space. When an action is taken by the actor, the prob-
ability of taking it in the next trial will be increased or decreased
proportional to the TD error, and the probability of taking other
actions will be normalized accordingly. However, when the action
space is continuous (as is the case in our model), the policy takes
the form of a probability density function, and so updating it
using the method for discrete action spaces is not feasible any-
more. Another problem associated with continuous action spaces
is action selection: even if we are able to fully specify the policy
π( · ), then how should the actions be selected? Several methods
have been proposed to address these problems. The comparison
between these methods is outside the scope of this paper. Here,
we use a slight modification of a simple algorithm proposed by
Gullapalli (1990). In this algorithm, the policy is represented by
a Gaussian distribution. For a 1-dimensional action space the
policy takes the following form:

π
(

sk = si, ak = a
)
= 1√

2π · νi
· exp

(
− (a−mi)2

2(νi)2

)
(16)

where π(sk = si, ak = a) specifies the likelihood of choosing the
value a as the action in state si, and mi and νi are the mean and
standard deviation of the Gaussian distribution representing the
policy in state si. An advantage of representing the policy as a
parametric distribution is that during learning, we just need to
update the parameters. In other words, the problem of updating
the policy reduces to the problem of updating its parameters. The
Gaussian distribution in Equation 16 has only two parameters: m
and ν. Gullapalli (1990) suggested the following updating rule for
the parameter m:

mi(k+ 1)← mi(k)+ αm ·	mi(k)

	mi(k) = δk ·
(

ak −mi(k)
(νi(k))2

) (17)

In Gullapalli’s algorithm ν is also updated but for sake of sim-
plicity we do not consider updating it here (ν remains constant
during learning).

In the actor-critic implementation of this algorithm, in each
state the actor draws a sample from the distribution Equation 16
and takes it as the action. After receiving reward the critic com-
putes the TD error signal. This signal is then used to update
the policy parameter using Equation 17. For appropriate choice
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of learning rates, this algorithm will eventually converge to the
optimal policy.

The parameter ν can be considered as the exploration-
exploitation parameter. For small values of this parameter, the
Gaussian distribution is highly concentrated around its mean, m,
and so most of the actions (which are random samples from this
distribution) will be close to the mean. In this case, the algorithm
cannot explore the action space enough. On the other hand, for
large values of ν, many of the actions will be exploratory. In this
case, even if the algorithm finds the optimal value of m, many of
the selected actions will still be suboptimal. One way to balance
between exploration and exploitation is to start the algorithm
with large values of ν and decrease its value gradually during
learning.

Now, we turn to the third problem mentioned above. In
Equation 15, ρ̂k is the estimate of the global average reward rate.
This signal is estimated by a linear filter named ARE in Figure 7.
Before explaining how this unit works, we should clarify a point.
Both the actor and the critic units work at discrete time steps.
Specifically, although we can implement them as continuous time
systems, they only do their computations at either the beginning
or at the end of a trial. Therefore, all signals computed in these
two units are indexed by the discrete index k. However, to esti-
mate the average reward rate, the ARE unit needs to work in
continuous time and so its input and output are functions of
time t. Specifically, the input to this unit is the signal U(t) =∑

k rk · δ(t − tk) where δ( · ) is the Dirac delta function, rk is the
reward received in the kth trial and tk is the time at which this
reward was received. It is assumed that the rewards are delivered at
the time of state transitions and so tk =∑k

j= 1 dj with dj being the

dwell time in the jth trial. The signal U(t) is the train of impulses
created by delivery of rewards. The ARE unit acts as a linear filter
on its input and so its output is computed as follows:

dρ̂(t)

dt
= −αρ̂ · ρ̂(t)+ U(t) (18)

The signal ρ̂(t) is the estimate of the average reward rate at time
t. To compute the TD error, the critic uses the value of this signal
at the end of each trial, that is at times tk. It is easy to show that:

ρ̂k = ρ̂(tk) = (
ρ̂k− 1 + αρ̂ · rk− 1

) · e−αρ̂ · dk (19)

In sum, in one trial of the experiment different components of the
model work in the following way: after the presentation of the cue,
the actor draws a random sample from the Gaussian distribution
in Eqaution 16 and sets the thresholds of the accumulators equal
to this value. After the presentation of the stimulus, the accu-
mulators race till one of them reaches its threshold and selects a
response. Based on the response and the trial condition a reward
is delivered and the next trial starts. After the presentation of the
cue at the beginning of the next trial, the critic computes the TD
error using Equation 15. This error signal is then used to update
both the estimate of state values (using Equation 14) and the pol-
icy (using Equation 17). The actor then selects a new threshold
for the new trial based on the presented cue.

6. SIMULATION RESULTS
In this section, we analyze the performance of the proposed model
in two simulations. The first simulation corresponds to the first
example given in section 3.3 in which no cue is presented at
the beginning of trials and so there is only one state in the cor-
responding SMDP. The second simulation corresponds to the
second example in that section in which there are two trial condi-
tions and each of them is associated with a specific cue presented
at the beginning of each trial and so the corresponding SMDP has
two states.

6.1. SIMULATION 1: ONE CONDITION WITH NO CUE
In the experimental design considered in this simulation, no cue
is presented at the beginning of trials. There could be one or more
than one conditions in the task but all conditions are intermixed
and the subject does not know the number of conditions in the
task. As explained before, because there is no cue, the subject will
treat all the conditions the same and so even if there are more
than one condition she will set one decision threshold for all trials.
For this simulation, we use the parameters values given in Table 2
with TRSI = 0.

We use the Gaussian policy specified in Equation 16 with
ν2 = 2.25× 10−4. All other parameters being fixed, the average
reward rate will be only a function of the mean of the Gaussian, m.
The average reward rate as a function of m is shown in Figure 8.
Supplementary Material explains how this function is computed.

The maximum reward rate is equal to RRmax = 2.5812 which
is obtained when m = 0.095. Here, we investigate the perfor-
mance of the model in learning this optimal value of m.

The results of 20 simulations of the model are captured in
Figure 9. The learning rates for these simulations are: αm =
0.0002, αρ̂ = 0.001. In the top panels of this figure, thin gray lines
correspond to the performance in different simulations and the
dark thick line is the average among all simulations. The thick
red lines show the optimal values. The left top panel shows the

FIGURE 8 | The average reward rate in the experiment considered in

simulation 1, as a function of m, the mean of the Gaussian policy. This
function is computed using the method described in Supplementary
Material.
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FIGURE 9 | Results of simulation 1. Top left: the value of the parameter
m as a function of trial number during learning. Top right: the estimated
average reward rate, ρ̂k , as a function of trial. In the top panels, the tick red
line shows the optimal value. Bottom left: the accuracy as a function of
block. Bottom right: the mean reaction time as a function of block. In the
bottom panels, a block is defined as 500 trials. As learning progresses, the
mean of the policy decreases and so the subject chooses lower decision
thresholds more often. This leads to lower accuracy but faster responses.

value of the parameter m as a function of trial and the right top
panel shows the estimated average reward rate (ρ̂k in Equation 19)
as a function of trial. The left and right bottom panels show the
accuracy and the mean reaction time averaged over all 20 simula-
tions, respectively, as functions of block number where a block is
defined arbitrarily as 500 trials.

At the beginning of learning, the value of the parameter m is
high and so high values of the decision threshold are chosen more
often. Thus, at this stage of learning the accuracy is high and the
mean reaction times are also high. In other words, the model is
too much conservative and so it cannot achieve the maximum
average reward rate. Throughout learning, the model gradually
learns to lower the value of the parameter m. Finally, at about trial
5800 or so the model finds the optimal value of this parameter. As
can be seen in the right top panel, the initial estimation of average
reward rate is zero and during learning it approaches the optimal
value and finally asymptotes at the optimal value.

The learning of the model may seem slow. This raises the ques-
tion of whether human subjects are also so slow or if they can
find the optimal threshold faster. In a recent study, Balci et al.
(2011) investigated human subjects’ performance in an experi-
mental design similar to what was used in simulation 1. Their
results show that, on average, subjects achieve the optimal per-
formance after about 10 sessions of training (Figures 3a and 8 of
Balci et al., 2011). Thus, the learning speed of our model is close
to human subjects. Then, the next question is why both the algo-
rithm and the subjects learn slowly. The main reason for this slow
learning is a high amount of noise in the function that the agent

FIGURE 10 | The average reward rate as a function of the mean of the

Gaussian policy in state 1,m1, and in state 2, m2. This function is
computed using the method described in Supplementary Materials.

is trying to maximize. For a single value of the decision threshold,
the variance of the reaction time could be high. Also, the accuracy
could be a value significantly less than one. Therefore, even if the
subject keeps her threshold at a fixed value for several trials, the
samples of the average reward rate obtained in each trial would be
very noisy and it takes a long time before the subject can achieve
a reliable estimate of it.

6.2. SIMULATION 2: TWO CONDITIONS WITH CUE
In this simulation, we analyze the performance of the model in
the experimental design explained in example 2 of section 3.3.
We used the parameters given in Table 3. The policy in each state
is represented by a Gaussian distribution with ν2

1 = ν2
2 = 0.015.

The average reward rate as a function of the means of these dis-
tributions is shown in Figure 10. We used the method explained
in Supplementary Material to plot this function. As we see in this
figure, the maximum reward rate equals RRmax = 1.43 which is
obtained when m1 = 0.07 and m2 = 0.12.

The model was simulated in this task for 20 times. The learn-
ing rate parameters in the model were αm = 0.0005, αc = 0.075
and αρ̂ = 0.001. We have chosen a larger learning rate for the
critic than the actor to make sure that the critic learns faster. This
is because the critic provides the TD error signal necessary for
updating both the critic and the actor and so the policy should
not be updated a lot before the critic learns the state values.

The simulation results are depicted in Figure 11. The panels in
this figure correspond to those in Figure 9. The top right panel
shows the estimated average reward as a function of trial number.
As seen, this function asymptotes in an optimal value after about
8000 trials or so. The top right panel shows the upper view of the
average reward rate function shown in Figure 10. The black tick
path superimposed on this figure shows the points (m1(k), m2(k))
averaged over 20 simulations, with k = 1, · · · , 15000 being the
trial number. This curve shows that at the beginning of learn-
ing the agent sets the mean of its policy in condition one and
two at m1 = 0.2 and m2 = 0.2, respectively ((m1(1), m2(1)) =
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FIGURE 11 | Results of simulation 2. Top left: the values of the
parameters m1 and m2 during learning averaged over 20 simulations
superimposed on the color map of the average reward rate. The initial point
of the path is

(
m1(1), m2(1)

) = (0.2, 0.2) and its end point is(
m1(15000), m2(15000)

) = (0.06, 0.11). The optimal value is indicated by the
two dash lines. Top right: the estimated average reward rate. The optimal
value is plotted as a red tick line. Bottom left: the accuracy as a function of
block number. Bottom right: the mean reaction time as a function of block
number.

(0.2, 0.2) is the starting point of the black path). With exten-
sive learning, the agent learns the optimal value of the thresholds
((m1(15000), m2(15000)) = (0.06, 0.11) is the end point of the
black path). An interesting point is that this curve shows that on
average the learning algorithm takes the shortest path from the
starting values to the optimal values of the parameters. Finally,
similar to simulation 1, the bottom panels show that the algo-
rithm learns to choose less conservative values of the decision
threshold which leads to less accurate but faster responses.

In the previous two simulations, the initial values of the thresh-
olds were higher than the optimal value. We also performed
another simulation with the same parameters as simulation 1
but with a lower than optimal initial value of the threshold.
Due to space limitation, we do not present the full details of
this simulation. It suffices to mention here that the model could
learn the optimal value of the threshold in this situation and its
performance was at the same level of simulation 1.

7. DISCUSSION
In this paper, we suggested a theoretical framework to answer the
question of how animals learn to set the decision threshold to
maximize the average reward rate. We considered an experimen-
tal design in which trials from different conditions are intermixed.
A cue associated with each condition is presented at the begin-
ning of each trial and indicates which condition this trial comes
from. We derived the expression for the average reward rate in
this experiment and investigated the properties of this function
and showed that to achieve the optimal average reward rate, the

subject has to set different decision thresholds for different con-
ditions. We, then, proposed an SMDP model of the experiment
in which each condition is modeled as a state of the environ-
ment, decision thresholds are actions and the time spent on each
trial is the dwell time in each state. In this way, the problem of
learning the optimal decision thresholds becomes the problem
of learning the optimal action in each state of the correspond-
ing SMDP. Finally, we proposed a model to solve this problem. In
the proposed model, an independent race architecture is respon-
sible for processing the stimulus and selecting responses while an
actor-critic architecture learns the optimal value of the decision
thresholds.

In the first set of simulation, we considered an experiment in
which there is no cue at the beginning of each trial and so there
is only one state in the corresponding SMDP. Simen et al. (2006)
have proposed a model for learning the optimal decision thresh-
old in this situation. In their model, the decision threshold at
time t is a(t) = max Ą (0, amax − w · r(t)) where r(t) is the cur-
rent estimation of the reward rate. To assure that the algorithm
converges to the optimal value of a(t), the two constants amax

and w should be chosen such that the line amax − w · a passes
through the maximum of the function R(a), the reward rate as
a function of threshold a (see Figure 3 for an example of this
function). Notice that for each set of task parameters the function
R(a) would be different and so different values of amax and w will
assure the convergence of the algorithm. In the simulations, the
authors assumed that the subjects have learned the optimal values
of these parameters through practice under different trial con-
ditions. The model then predicts fast adaptation of the decision
threshold for a well-trained subject. The model proposed in this
paper explains slow learning of the optimal decision threshold for
an untrained subject. Further research is necessary to see how the
two approaches can be combined to develop a model of both slow
learning of untrained subjects and fast threshold adaptation of
well-trained subjects.

In our simulations, we assumed that the drift coefficients
remain constant during learning. As a result, when the thresh-
old decreases the accuracy also decreases [see bottom left panels
of Figures 9, 11]. However, this may not always be the case. For
example, in Balci et al. (2011) the estimated drift coefficient
increased with practice. The effect of this increase in drift coeffi-
cient and the decrease in the threshold was such that the subjects’
accuracy remained constant while the reaction time decreased
with practice. It would be interesting to investigate the behavior
of the proposed model in this situation and more generally when
the task parameters change during learning. It can be imagined,
though, that as long as the task parameters do not change very
quickly, the model will still be able to learn the optimal thresholds.

The SMDP framework has been utilized previously in the
animal learning literature to model the rate of responding in free-
operant tasks (Niv, 2007; Niv et al., 2007). A rat placed in an
operant chamber can choose to perform one of the several possi-
ble actions (nose poking, lever pressing, etc.). In addition, the rat
may choose to perform different actions at different rates. Faster
responding has the possible benefit of obtaining more reward but
it is also associated with higher costs (e.g., energy cost, cogni-
tive load and so on). Niv (2007); Niv et al. (2007) proposed a
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normative account of how fast each action should be taken to
achieve an optimal balance between the benefits of behaving fast
and its costs. In this model, taking each action incurs a rate-
dependent cost and it is assumed that the rat is trying to maximize
the average reward rate. Like Niv’s model, the model we proposed
in this paper learns to optimally balance between the benefits and
costs of acting fast. The benefit of acting fast in both models is
to be able to experience more trials. The cost in our framework,
however, is having less accuracy. This cost is due to the constraints
that the sequential sampling model imposes to the relationship
between the speed and accuracy which are in turn imposed by the
noise in the stimulus.

One feature of our model is that it suggests a way to integrate
the theories of perceptual decision making and reinforcement
learning. Traditionally, these theories have been developed sepa-
rately (see Bogacz and Gurney, 2007 and Bogacz and Larsen, 2011
for a discussion of this matter). Theories of perceptual decision
making deal with situations in which the subject should process
a noisy stimulus and select the appropriate response based on a
known stimulus-response mapping. The reinforcement learning
theories, on the other hand, deal with situations in which the
stimulus is easily detectable but the subject should learn to take
optimal actions in response to each stimulus. In our model, the
cue presented in each trial is the easily detectable stimulus for the
reinforcement learning (the actor-critic) unit. The role of this unit
is to learn the optimal mapping between the cues and the deci-
sion thresholds which form the action space in the corresponding
SMDP. The noisy stimulus in each trial, on the other hand, is pro-
cessed by the independent race unit. By this division of labor, the
model benefits from the strengths of both sets of theories.

In this respect, our model is in line with the recent effort in
integrating these two sets of theories (Bogacz and Gurney, 2007;
Dayan and Daw, 2008; Law and Gold, 2009; Rao, 2010; Bogacz
and Larsen, 2011; Shenoy and Yu, 2011; Ratcliff and Frank, 2012).
Bogacz and Larsen (2011) proposed a computational model of
basal ganglia that is capable of learning the optimal stimulus-
response mapping when the stimulus is noisy. This model is
basically an actor-critic architecture in which the actor is a variant
of the sequential sampling models. The critic, crudely speak-
ing, provides the error signal necessary for learning the weights
between the sensory units and the information accumulators in
the actor. By learning these weights, the model learns the cor-
rect stimulus-response mapping. However, because the model is
developed in the Markov decision process framework, it cannot
solve the problem of optimal balance between speed and accuracy.

Rao (2010) proposed a model in which the perceptual deci-
sion making problem was cast as action selection in a partially
observable Markov decision process (POMDP). In this model,
each stimulus is considered as a state of the environment. The
subject, however, does not know the state and instead can only
make noisy observations of it at discrete time steps. The subject
starts with a prior belief about the state and after each obser-
vation she updates her belief using the Bayes rule. At each time
step, based on her current belief about the state, the subject can
either choose one of the responses or make another observation.
Using temporal difference learning, the model learns the opti-
mal mapping between the current belief and these actions. Since

the model was not developed to solve the optimal speed-accuracy
problem, the cost of time is considered as an arbitrary constant in
the model (for example -1 for each time-step that the response is
not selected). In contrast, in our model the cost of time is propor-
tional to the average reward rate which in turn depends on the
task parameters in all conditions of the task. Further research is
needed to compare the two models.

One question that remains open is how the brain performs
average reward reinforcement learning. The essential part of this
algorithm is the computation of the temporal difference error and
this in turn needs an estimate of the average reward rate. Thus, the
important question is how the brain estimates the average reward
rate. Niv et al. (2007) suggested that the average reward rate is
coded as tonic dopamine in the brain. This suggestion is based
on the observation that higher levels of tonic dopamine is associ-
ated with higher response rate and vice versa (see e.g., Salamone
and Correa, 2002). One interesting future line of research, then,
would be to use model based fMRI technique to investigate the
relationship between the average reward rate signal computed
in our model and tonic activity (the activity before the deliv-
ery of reward) of brain areas previously associated with reward
prediction (e.g., striatum).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fnins.2014.

00101/abstract
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