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Workload estimation from electroencephalographic signals (EEG) offers a highly sensitive
tool to adapt the human–computer interaction to the user state. To create systems that
reliably work in the complexity of the real world, a robustness against contextual changes
(e.g., mood), has to be achieved. To study the resilience of state-of-the-art EEG-based
workload classification against stress we devise a novel experimental protocol, in which
we manipulated the affective context (stressful/non-stressful) while the participant solved
a task with two workload levels. We recorded self-ratings, behavior, and physiology from
24 participants to validate the protocol. We test the capability of different, subject-specific
workload classifiers using either frequency-domain, time-domain, or both feature varieties
to generalize across contexts. We show that the classifiers are able to transfer between
affective contexts, though performance suffers independent of the used feature domain.
However, cross-context training is a simple and powerful remedy allowing the extraction
of features in all studied feature varieties that are more resilient to task-unrelated variations
in signal characteristics. Especially for frequency-domain features, across-context training
is leading to a performance comparable to within-context training and testing. We discuss
the significance of the result for neurophysiology-based workload detection in particular
and for the construction of reliable passive brain–computer interfaces in general.
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INTRODUCTION
The increasing complexity and autonomy of information sys-
tems rapidly approaches the limits of human capability. To avoid
overload of the users in highly demanding situations, a dynamic
and automatic adaptation of the system to the user state is nec-
essary. Reliable knowledge about the user state, especially his
workload, is a key requirement for a timely and adequate system
adaptation (Erp et al., 2010). Examples are systems support-
ing air traffic control, pilots, as well as medical and emergency
applications.

Conventional means of workload assessment, such as self-
assessment and behavior, are intrusive or limited in their sensitiv-
ity, respectively (Erp et al., 2010). Physiological sensors, assessing
for example the galvanic skin response (GSR) or elecrocardio-
graphic activity (ECG), offer an unobtrusive and continuous
measure that has been found sensitive to workload (Verwey and
Veltman, 1984; Boucsein, 1992). In the last two decades, neuro-
physiological activity became popular as a modality for the mea-
surement of mental states in general and of workload in specific.
So-called “passive brain-computer interfaces” (pBCI, Zander and
Kothe, 2011) are able to measure neuronal activity in terms of
the electrophysiological activity of neuron populations as in the
case of EEG or the oxygination of the cerebral blood flow as for
functional near-infrared spectroscopy (fNIRS). Both approaches
have been found informative regarding the detection of cognitive
load (Brouwer et al., 2012; Solovey et al., 2012), and there is evi-
dence for a partially superior sensitivity of neural measurements

compared to other physiological sensors (Mathan et al., 2007) or
self-report (Peck et al., 2013).

Most experiments on passive BCI use a very controlled
approach, which naturally limits the range of real-world con-
ditions they reflect. While this control is necessary to ensure
the psychophysiological validity of the mental state detection,
their results lack a certain ecological validity, they can not be
generalized to other contexts. This might be one of the most
impeding problems for the creations of passive BCI systems that
work in the real world, since daily life is characterized by the
variability of the conditions we function under. A prominent
example are changes of affect while working, for example work-
ing under the pressure of an impending evaluation vs. work
without pressure. A system that is supposed to work in such
contexts needs to be calibrated and tested in them. Previous
research in the domain of pBCI largely ignored the problem. To
shed light on the interaction of mental state classification and
change of affective context, we devised a protocol that recre-
ates conditions of work, requiring different effort, during relaxed
conditions and under psychosocial stress in a controlled envi-
ronment. To study the resilience of a state-of-the art workload
detection system to changes in affective context, we train subject-
specific classifiers in either stressed or non-stressed context and
test their performance within the same and in the other con-
text.

In summary, the contributions of this paper for the study of
the effect of affective context on workload classification are:
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1. The creation and validation of a novel protocol to test interac-
tions of workload classifier performance and affect1.

2. The design and evaluation of a workload classifier generalizing
across affective contexts.

3. Quantifying the impact across affective context generaliza-
tion on classification performance, with and without across
context-training.

Below, we will give the reader some background to
neurophysiology-based detection of workload under vary-
ing (affective) user states and its potential interactions with stress
responses. Then, we will introduce the employed approaches
to manipulate the user’s mental state, the used devices, and
the applied signal processing and classification algorithms. We
will then report the nature of the found effects, discuss their
relevance, and conclude with the general consequences and
limitations of the presented findings.

RELATED WORK
DETECTION OF WORKLOAD FROM NEUROPHYSIOLOGY
Mental workload can be defined as (perceived) relationship
between the amount of mental processing capability and the
amount required by the task (Hart and Staveland, 1988). The
closer the requirements are to the actual capabilities, the higher
is the (perceived) workload. Therefore, a general strategy for
workload manipulation is the manipulation of task demand or
difficulty (Gevins et al., 1998; Grimes et al., 2008; Brouwer et al.,
2012), though alternative strategies, such as the manipulation
of feedback or participant motivation (Fairclough and Roberts,
2011), exist.

Already in 1998, Gevins et al. (1998) showed that EEG is a
viable source of information regarding the workload of a per-
son, enabling 95% accuracy when using about 30 s of signal.
However, there are many factors that can affect the performance
of classification algorithms, such as the number of training data
available, their distribution, their separability between classes, the
data signal-to-noise ratio, the similarity (in terms of data distri-
bution) of the training data and testing data, etc. (Duda et al.,
2001). The estimation of these performances also depends on the
number of testing data available (Müller-Putz et al., 2008), and
the way they are estimated (cross-validation, independent test
set). Finally, more BCI-specific factors affect the performances,
such as whether the classification is subject-specific or subject-
independent (see, e.g., Lotte et al., 2009), which subjects are used
(there is a huge between-subject variability), whether the train-
ing and testing data are from the same session (e.g., same day)
or not, etc. (Lotte et al., 2007). In this regard, Grimes et al.
(2008) showed that a number of factors, such as the numbers
of channels, amount of training data, or length of trials, have a
strong influence on classification performance of workload clas-
sifiers. For example, reducing the length of the signal from 30 to
2 s reduces the classification performance on two workload lev-
els from almost 92% to about 75%. Similar tradeoffs between
optimal and practical signal processing settings are reported for

1The validation of the administered stress-induction protocol was presented
at the PhyCS 2014 conference (see Jeunet et al., 2014 for more details).

channel number and training time. Another work, by Brouwer
et al. (2012), studied in a similar setup the feasibility of different
types of features (i.e., from the time- and frequency-domain, and
combined) to differentiate workload levels, finding that the differ-
ent feature types work comparably well with accuracies of about
85% after 30 s. Reducing the signal length to 2 s reduced the accu-
racy to about 65%. Zarjam et al. (2013) showed that workload
manipulated by an arithmetic task can be classified with a per-
formance of 83% for seven workload levels. Walter et al. (2013)
tested the generalization of workload classifier from simple tasks,
such as go/no-go, reading span, n-back tasks, to complex tasks
involving diagram and algebra problems. While they were able
to train well-performing classifiers for the simple tasks, reaching
performances of about 96% for two classes on signals of a few
seconds length, a cross-testing of a workload classifier trained on
a simple task to a complex task did not succeed. However, since
in both studies the order of workload levels was not random-
ized, a temporal trend present in the features could have biased
the results toward a higher accuracy. Overall, these studies show
that the workload level can be classified from neurophysiological
activity. Indeed, it has also been suggested that neurophysiological
information is more sensitive than information from other phys-
iological signals (Mathan et al., 2007). Most importantly, these
studies show that different factors, mainly methodological differ-
ences in workload induction, signal acquisition and processing,
can have significant influences on the classification results.

However, to date there have only been few studies regarding
the influence of the mental state changes during training and test-
ing on the classifier performance. For active BCI, Reuderink and
colleagues studied the influence of frustration on left and right
hand movement classification during a computer game, using
freezing screens and button malfunctions as induction tools (see
Reuderink et al., 2013). The resulting loss of control (LOC) dur-
ing “frustrating” episodes, surprisingly led to higher classification
performance than during normal, relaxed game play (Reuderink
et al., 2011). Zander and Jatzev (2012) induced LOC in a sim-
ilar way during a simple behavioral task, the RLR paradigm,
which resulted in lower classification performance. For passive
BCI and specifically for workload level detection, only Roy et al.
(2012) tested the impact of fatigue on EEG signal character-
istics and workload classification performance. With increasing
fatigue, the differentiating signal characteristics diminished and,
consequently, the classification performance declined. This lack
of research on interactions between passive BCI and changes in
user state is problematic, since BCIs in general have been found
susceptible to changes in task-unrelated mental states during clas-
sification, such as attention, fatigue or mood. Specifically, it is
believed that variations in task-unrelated mental states are par-
tially responsible for what is called non-stationarities of the signal,
the change of its statistical properties over time, and thereby the
source of one of the most notorious problems for BCI (Krusienski
et al., 2011; van Erp et al., 2012).

In the next section, we will briefly introduce the concept of
stress, which is another possible contextual factor influencing
workload estimation that is occurring during daily life and work,
and thus might be a relevant source of variance for workload
detection devices.
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STRESS RESPONSES AND WORKLOAD
The psychophysiological concept of “stress,” was introduced in
1936 by Selye (1936) to describe “the non-specific response of
the body to any demand for change.” In that sense, it is an
organism’s response to an environmental situation or stimulus
perceived negatively—called a “stressor”—which can be real or
imagined, that taxes the capacities of the subject, and thus has
an impact on the body’s homeostasis (that is to say that the con-
stants of the internal environment are modified). To face the
demand (i.e., to restore homeostasis), two brain circuitries can
be activated during a “stress response cascade” (Sinha et al.,
2003; Dickerson and Kemeny, 2004; Taniguchi et al., 2009): the
sympatho-adrenomedullary axis (SAMa, also called the noraden-
ergic circuitry) and the hypothalamus-pituitary gland-adrenal
cortex axis (HPAa). On the one hand, the SAMa induces the
release of noradrenaline which allows immediate physical reac-
tions (such as increased heart rate and skin conductance, or
auditory and visual exclusion phenomena) associated with a
preparation for violent muscular action (Dickerson and Kemeny,
2004). On the other hand, the HPAa activation (which is lower)
results in the releasing of cortisol the purpose of which is to redis-
tribute energy in order to face the threat. Thus, more energy
is allocated to the organs that need it most (brain and heart),
while non-necessary organs for immediate survival (reproductive,
immune and digestive systems) are inhibited. This stress response
cascade ends when homeostasis is restored.

However, stress can be of different types, such as physical, psy-
chological or psychosocial (Dickerson and Kemeny, 2004), each
kind of stress being associated with a specific response. Indeed,
physical stress, induced by extreme temperatures or physical pain
for example, is associated with an increase of heart rate (Loggia
et al., 2011), skin conductance (Boucsein, 1992; Buchanan et al.,
2006) and subjective stress ratings but with only a weak corti-
sol response (Dickerson and Kemeny, 2004). These results suggest
that this kind of stress induces an activation of the SAMa but only
a weak activation of the HPAa. Psychological or mental stress,
associated with difficult cognitive tasks, uncontrollability or neg-
ative emotions is associated with a weak release of cortisol (weak
HPAa activation), but strong effects on heart rate and skin con-
ductance (strong SAMa activation) (Boucsein, 1992; Reinhardt
et al., 2012). Finally, psychosocial stress, triggered by a social eval-
uation threat (that is to say a situation in which the person’s own
estimated social value is likely to be degraded), and added to by a
feeling of uncontrollability (in particular during the Trier Social
Stress Task (TSST) Kirschbaum et al., 1993), has been shown to
induce a strong activation of both the SAMa (Hellhammer and
Schubert, 2012) and the HPAa (Dickerson and Kemeny, 2004).

Psychosocial stress and workload potentially can interact on
physiological, neurophysiological and behavioral levels. Since
workload can also be understood as the response to a particu-
lar type of psychological stressor, such as increased task demand,
both concepts are associated with the activation of the sympa-
thetic nervous system (see SAMa above). Furthermore, psychoso-
cial stress and workload share also neurophysiological responses.
From research in the neurosciences, and consistent with the
notion of neural response systems, we know that stress has
strong correlates in the EEG as well. One of the most prominent
correlates of anxiety, as induced by psychosocial stress, is found

in the alpha band, and specifically in brain asymmetry. Tops
et al. (2006) proposed that cortisol administration (which sim-
ulates a stress situation) leads to a global decrease of cortical
activity (except for the left frontal cortex in which activity is
increased). However, other studies (Lewis et al., 2007; Hewig et al.,
2008) showed that stress was associated with a higher activity in
the right hemisphere, and that the right hemisphere activation
was correlated with negative affect. For Crost et al. (2008), the
explanation of these conflicting results would be that an asso-
ciation between EEG-asymmetry and personality characteristics,
such as anxiousness, may only be observed in relevant situations
to the personality dimensions of interest. For workload, on the
other hand, we know that the alpha band plays a role in terms
of increased sensory processing leading to decreased occipito-
parietal alpha power (Gevins et al., 1998; Brouwer et al., 2012),
as well as for frontal alpha asymmetry covarying with changes
in engagement (Fairclough and Roberts, 2011). From a theo-
retical point of view, Eysenck and Derakshan (2011) suggested
that increasing anxiety, for example due to psychosocial stress,
has effects on different cognitive processes, leading to impaired
processing efficiency and performance effectiveness. Specifically
for workload-related processes, their “attentional control the-
ory” suggests that anxiety impairs efficient function of inhibition
and shifting mechanisms of the central executive, subsequently
decreasing attentional control and increasing distraction effects
of irrelevant stimuli. However, these deficits might not necessar-
ily lead to decreases of performance if they are compensated by
alternative strategies, such as enhanced effort.

Summarizing, increases in workload, as induced by higher task
demand, can be subsumed under the concept of psychological
stress and have been found to lead to increasing physiological and
neurophysiological activity that has also been found responsive to
anxiety as induced by psychosocial stress. Furthermore, cognitive
theories propose links between anxiety and pre-attentional and
attentional cognitive processes, which are expressed in behavior
and physiology. Due to these possible interactions of workload
and stress, it seems relevant to experimentally study the effect of
stress on workload detection.

RESEARCH QUESTIONS
The work on the effects of potential contextual factors, such as
moods or fatigue, on the stability of BCI performance, and the
physiological and psychological links between stress and cognitive
processes suggests that stress can be a relevant factor influencing
the classification of workload levels. In more general, the findings
of context-dependency of BCI performance make it seem impera-
tive to explore the effect of factors, such as mood, on brain signals
and classifier performance, to gain insight into the relevance of
task-unrelated mental states on classifier performance, and to find
ways to render classifiers robust against such changes. Specifically,
for the development of reliable passive BCIs in the wild, those
functioning robustly in private or work environments, the influ-
ence of contextual changes of mental states that are predominant
in the context of application have to be explored. That is why
we test the robustness of three workload classifiers, using features
from either frequency-, time-, or both domains, to the influence
of (psychosocial) stress. We let participants work under different
levels of workload, while either under the impression of being
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observed and validated, or while being relaxed and free from this
kind of pressure. We are interested in the effect of the contextual
manipulation of stress on the classifier performance and in testing
cross-context training as a simple and straightforward remedy to
the problem. Thus, we address the following questions:

Q1: Can we induce stress and workload in a controlled man-
ner? We validated stress and workload manipulation of our exper-
imental protocol using participants’ self-assessments, behavioral
performance, and physiological indicators of sympathetic ner-
vous system (SNS) activation (i.e., GSR, ECG). Stress is expected
to increase perceived anxiety and SNS activity, while workload
increase should be reflected in increased perceived arousal and
mental effort, decreased performance, as well as increased SNS
activity (Verwey and Veltman, 1984; Boucsein, 1992).

Q2: Can we train a workload classifier based on the data collected
via this protocol? To ensure that we are using a state-of-the-art
workload classifier, we trained the classifier on all data, irrespec-
tive of context, as done in conventional studies. We expect a
performance of about 70% as shown by Grimes et al. (2008) and
Brouwer et al. (2012) under similar conditions.

Q3: Does the classifier generalize across affective contexts, and
if so, how well? To study the effect of different affective con-
texts on the classification performance, we compared the results
from classifiers trained in either stressful or non-stressful context
and applied it then to test data from the same (“within”) or the
other context (“across”). We expect a higher “within” compared
to “across” performance to indicate the difficulty of the classifier
to generalize.

Q4: Does training based on multiple context render the clas-
sifier resistant against changes in affective context,and if so, how
resistant? To test if the training with combined data from both
affective contexts is effecting the classifier’s capability to gener-
alize, we compare the performance depending on the training
context (“single,” that is training on only stress or non-stress con-
text, or “combined,” that is training over contexts) and expect
higher performance for a classifier trained on data from the
combined contexts.

MATERIALS AND METHODS
As mentioned before, we designed a protocol in which subjects
had to do cognitive tasks involving two levels of mental workload,
manipulated via task difficulty, while being exposed to two levels
of psychosocial stress. We used the EEG signals collected with this
protocol to design and assess a workload classifier across differ-
ent stress conditions. This section describes in details the subjects
involved, the protocol and the method to validate it, the EEG-
based workload classifier used and the evaluations performed
with it.

PARTICIPANTS
Twelve female and twelve male participants were recruited for our
experiment. The participants were between 18 and 54 years old,
with a mean age of 24.7 ± 7.9, and except four all were right-
handed. Educations varied between high school degree and Ph.D.,
with a mean education of 3.1 ± 2.4 years after high school. To
be admitted, people had to be at least 18 years, to speak the
local language and to sign an informed consent. Furthermore,

non-inclusion criteria were applied: bad vision, heart condition,
neurological or psychological diseases, and affective troubles.
Moreover, people were asked to select a time for the experiment
in which they would feel alert. Finally, we asked them not to drink
coffee and tea less than 2 h before the experiment.

MATERIAL
For our recordings, we used the following sensors:
ElectroEncephaloGram (EEG, 28 active electrodes in a 10/20
system without T7, T8, Fp1, and Fp2), ElectroCardioGram
(ECG, two active electrodes), facial ElectroMyoGram (EMG,
two active electrodes), ElectroOculoGram (EOG, four active
electrodes), breath belt (SleepSense), pulse (g.PULSEsensor), and
a galvanic skin response sensor (g.GSRsensor). All sensors were
connected and amplified with three synchronized g.USBAmp
amplifiers (g.tec, Austria). The workload task was designed in the
Presentation software (Neurobehavioral Systems, www.neurobs.
com/presentation) and EEG signals were recorded and visually
inspected with Open ViBE (Renard et al., 2010). Figure 1 shows a
participant sitting fully-wired in the experimental environment.

Subjects were first asked to sign an informed consent and to
fill out three questionnaires: one assessing personal characteristics
(such as gender, age and education) and form Y-A (anxiety state)
and Y-B (anxiety trait) of the State-Trait Anxiety Inventory (STAI)
(Spielberger et al., 1970) (see below for details). Then, all the sen-
sors were installed and a 3 min baseline recorded. To avoid order
effects, we counterbalanced the order of stress and relax condition
(affective context) and 0-back and 2-back task (workload blocks),
resulting in four scenarios (see Figure 2A). Each scenario was
composed of 12 workload blocks in the stressful and 12 workload
blocks in the relaxed context. The scenarios therefore begin with
either relaxation or stress induction, and the workload blocks
either start with the low workload (0-back) or high workload (2-
back) condition. In each affective context, the subject performs, in
alternating order, six times each workload condition (low/high)
(6 × 2 × 2 = 24 min per block), with a short break after six tasks
(i.e., after about 12 min). After each context was absolved, that is

FIGURE 1 | A fully wired participant in the experimental environment

during the relaxation induction period.
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FIGURE 2 | The experimental protocol (A) with four scenarios,

used for counterbalancing the order of conditions: the easy

(0-back task) and difficult (2-back) workload tasks that follow

the (R)elax and (S)tress induction procedures. “RS02” means

that relaxation context is followed by stress context and that the
interleaved workload blocks start with the 0-back condition. The
N-back task (B) requires responses to target and non-target
characters.

after the induction phase and the 12 workload blocks, the STAI
form Y-A questionnaire was administered again to assess the anx-
iety state. Finally, the sensors were removed and the participant
was debriefed about the aim of the experiment.

Stress and relaxation inductions
In order to manipulate stress, we used a stress-induction protocol
based on the Trier Social Stress Task (TSST) (Kirschbaum et al.,
1993) and a relaxation condition using a resting phase, music
and/or videos. The stress-induction protocol is composed of three
parts lasting together about 15 min and it requires the participa-
tion of three people, “the committee,” who are presented as being
body language experts. In the first part, a member of the commit-
tee asks the subject to prepare, during 5 min, a fake job interview
for a position fitting the professional profile of the subject. During
the second part, the committee asks the person to do this job
interview and to speak about himself for 5 min. They tell the sub-
ject that he is filmed for a future behavioral analysis and take notes
during the whole interview. The committee acts as being serious
and neutral/unresponsive toward the subject. The third part is a
3 min long arithmetic task (the subject has to count from 2083 to
0 by steps of 13) and to begin again at any mistake or hesitation.
At the end of this protocol, in order to keep the stress level high,
the committee tells the subject he will be filmed during the work-
load tasks and that he will have to do another interview, which
will be longer, and a self-evaluation based on the recorded film
material after it. Furthermore, during the experiment, partici-
pants are receiving visual feedback about their performance in the
workload tasks. During the stress condition, these feedbacks have
been modified to display a performance 5–10% below their actual
performance. Thereby, this protocol includes psychosocial stress
and uncontrollability in order to maximize the chance to trigger
a stress response for all the participants (Dickerson and Kemeny,
2004). On the other hand, the goal of the relaxation induction was
to create a condition (referred to as “relax” condition) in which
participants would be able to relax and thus execute the work-
load task without the influence of additional psychosocial and
psychological stressors. To allow for an effective relaxation, partic-
ipants were allowed to choose between resting in silence or select

music/videos that would help them to feel calm (Krout, 2007). In
order to measure the level of anxiety of the subjects and thereby
to validate the stress/relax manipulation, the “State Trait Anxiety
Inventory” (Spielberger et al., 1970) is used. It is composed of two
scales of 20 propositions each: STAI form Y-A and STAI form Y-B.
STAI form Y-A score measures anxiety state and is increased when
the person currently experiences psychological stress. A college
student (female/male) has a mean state anxiety index of 35/36,
while values higher than 39/40 have been suggested to detect
clinically significant symptoms (see Julian, 2011).

Workload tasks
We used the n-back task (Kirchner, 1958) as workload task (see
Figure 2B), as it is easy to modify workload while keeping visual
stimulation and behavioral motor requirements the same. Similar
to Grimes et al. (2008) and Brouwer et al. (2012), we decided
for a manipulation of task-difficulty to manipulate workload.
Specifically, we used 0-back (low workload) and 2-back (high
workload) varieties of the n-back task, which were presented in
blocks of 2 min each. In both tasks, a stream of 60 white let-
ters appears on a black background on the screen. Each letter is
presented for 500 ms, followed by an inter-stimulus interval of
1500 ms. Among these letters, 25% are targets. In both tasks, when
a letter appears, the subject is asked to perform a left mouse click if
this is a target letter, and a right mouse click otherwise. For the 0-
back task, the low workload condition, the target is the letter “X”:
each time an “X” appears, the subject has to do a left click, and in
all the other cases he has to do a right click. For the 2-back task,
the high workload condition, the subject has to do a left click if the
letter that appears is the same as the one preceding the last letter.
For example, if the sequence “C A C” appeared, the second “C”
would be a target. At the end of each 2-min block, the subject has
to report his level of arousal (on a scale from 1 to 9) (Bradley and
Lang, 1994) and the perceived effort necessary to perform the task
(Rating Scale of Mental Effort—RSME, Zijlstra, 1993). Finally, a
screen with his performance during the block (see section 4.3.2)
appears. As mentioned before, during the stressful condition, this
displayed performance is lower than the actual performance to
induce additional uncertainty.
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PROTOCOL VALIDATION METHODS
Self-assessment data
To investigate the effect of the psychosocial stress induction on
the STAI score, we computed an ANOVA with this score in
the three factor-levels “baseline,” “after relaxation,” and “after
stress induction.” To assess the effect of both stress and workload
manipulation, we conducted 2 (stress) × 2 (workload) ANOVAs
for the averaged-over-blocks ratings on the arousal scale of the
SAM and on the RMSE.

Behavioral data
To investigate the effects of the experimental manipulations on
behavior, we calculated the performance per block based on the
number of true positive (TP), true negative (TN), false nega-
tive (FN), and false positive (FP) responses resulting from the
button presses within the n-back task (left click for targets,
right click for non-targets) using the following equation: Per f =

(TP+TN)
(TP+TN+FP+FN) . As for ratings, we analyzed the data in a 2 (stress)
× 2 (workload) ANOVA.

Physiological data
Physiological responses were analyzed with respect to heart rate
(HR) and galvanic skin response (GSR). Before applying statis-
tical methods, the GSR data was pre-processed by extracting the

mean GSR value (μS) for each block and then averaging these val-
ues over blocks as described above. The ECG signal was band-pass
filtered between 5 and 200 Hz, applying a notch-filter 48–52 Hz to
reduce power line noise, before mean HR for each of the blocks
was extracted. As for the former analyses, we analyzed the data
with a 2 (stress) × 2 (workload) ANOVA. We are reporting data
as significant if p < 0.05 and as trend if p < 0.1. For all ANOVAs
partial eta squared values (ηp

2) are calculated as a measure of
effect size.

EEG SIGNAL PROCESSING
Our system aims at estimating the level of mental workload of the
user from its EEG signals. To do so, we employed a machine learn-
ing approach based on state-of-the-art algorithms developed for
Brain-Computer Interfaces (BCI) technologies (Lotte et al., 2007;
Blankertz et al., 2008; Ang et al., 2012). This section describes
the way EEG signals were preprocessed and segmented into trials,
the machine learning algorithms used as well as the approach fol-
lowed for the evaluating our method (see Figure 3 for a schematic
overview of these procedures).

EEG preprocessing and segmentation
We first cleaned signals from eye movements (EOG) contami-
nation using the automatic method proposed in Schlögl et al.
(2007). The EEG signals from each 2 min n-back task were

FIGURE 3 | Machine learning approach to workload level classification

from EEG signals. Top: training set, aiming at identifying the relevant
frequency bands (i.e., spectral filters) and channels (i.e., spatial filters), using
the Filter Bank CSP and REFSF approach. Bottom: testing set, using the

optimized spectral and spatial filter to estimate the workload level from an
unknown EEG trial. (CSP, Common Spatial Patterns; REFSF, regularized Fisher
spatial filter; mRMR, maximum Relevance Minimum Redundancy; LDA,
Linear Discriminant Analysis).
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then divided into 60 EEG trials, i.e., one EEG trial per let-
ter appearance. More precisely, each EEG trial was defined as
starting at a letter appearance onset and ending 2 s later, i.e.,
just before the next letter appearance. This resulted in 60 EEG
trials per task, i.e., 720 trials per workload level (360 trials
in the stressful condition, 360 in the non-stressful condition).
Among them, trials corresponding to target letters were dis-
carded in order to avoid confounding and interfering effects
that may result from Event Related Potentials (ERP—notably a
P300) likely to be triggered by target identification. This left
540 trials per workload levels (270 trials per psychosocial stress
condition).

Machine Learning algorithms
In order to estimate workload levels from EEG signals, we inves-
tigated two different types of neurophysiological information: (1)
oscillatory activity and (2) Event Related Potentials (ERP), both
of which having been shown to be useful for such a task (Brouwer
et al., 2012). We set up state-of-the-art signal processing pipelines
in order to estimate workload using these two types of informa-
tion, both individually and in combination (see Figure 3). They
are described below:

Oscillatory activity. To classify low mental workload vs. high
mental workload in EEG signals based on oscillatory activity,
we used a variant of the Filter Bank Common Spatial Patterns
(FBCSP) algorithm (Ang et al., 2012) in order to learn optimal
spatial and spectral features, i.e., EEG frequency bands and chan-
nels. The FBCSP is one of the most efficient algorithms to extract
spatio-spectral features from EEG signals. It was indeed the algo-
rithm used by the winners of the last BCI competition on all EEG
data sets (Ang et al., 2012; Tangermann et al., 2012), showing the
superiority of this method over other approaches. The FBCSP-
based approach we employed works as follows. The first step—the
training step—consists in identifying the most relevant frequency
bands (i.e., spectral filters) and EEG channels (i.e., spatial filters),
using examples of EEG signals from the high and low workload
conditions (see below for details on the definition of the training
sets). To do so, we first filter each training EEG trial into multi-
ple frequency bands using a bank of band-pass filters. Here we
used band-pass filters in the following frequency bands, which
correspond to classical EEG rhythms: δ (1–4 Hz), θ (4–8 Hz), α

(8–12 Hz), β (12–30 Hz), γ (30–47 Hz), and high γ (53–90 Hz).
Then for each of these bands, the band-pass filtered EEG tri-
als are used to optimize spatial filters, i.e., linear combinations
of the original EEG channels. These spatial filters are optimized
using the Common Spatial Pattern (CSP) algorithm (Blankertz
et al., 2008), which finds the optimal channel combination such
that the power of the resulting spatially filtered signals is max-
imally discriminant between the two conditions (here, low and
high workload). We optimize 12 (6 pairs) such CSP filters for
each frequency band. Then, the power of the spectrally and spa-
tially filtered EEG signals is used as features, resulting in each EEG
trial being described by 72 features (12 CSP filters × 6 frequency
bands). From these 72 features, the 18 most relevant ones are
selected using the maximum Relevance Minimum Redundancy
(mRMR) feature selection algorithm (Peng et al., 2005). This

amounts to selecting the 18 most relevant pairs of spectral and
spatial filters. Finally, the 18 selected power features are used to
train a shrinkage Linear Discriminant Analysis (LDA) classifier
(Blankertz et al., 2010; Lotte and Guan, 2010) to discriminate low
workload EEG trials from high workload ones. This concludes
the training step. For testing, i.e., to predict the workload level
of a given EEG trial, the EEG signals are first filtered using the 18
selected pairs of spectral and spatial filters, then the power of the
resulting signals is computing and given as input to the previously
trained LDA classifier whose output indicates the workload level
(high or low).

Event related potentials. To classifiy low mental workload vs. high
mental workload in EEG signals based on ERP, we first band-
pass filtered the signals between 0.5 and 16 Hz, and downsampled
them to 36 Hz, to reduce the signal dimensionality. We only used
the first second of EEG signals from each trial (i.e., the first sec-
ond after letter presentation in the N-back task) to analyse ERP,
i.e., 36 samples per channels. Then, based on these 1-second of
EEG signals from the training set, we learned optimal spatial fil-
ters for the discrimination of ERP based on EEG samples, by
using the Fisher Spatial Filters (FSF) proposed by Hoffmann et al.
(2006). We extracted 6 such spatial filters, which resulted in 216
features (6 filters × 36 EEG samples per filter), using a regular-
ization parameter λ = 0.4 for optimizing the FSF for all subjects.
We finally selected 18 features (i.e., 18 EEG samples) out of these
216 initial ones, using mRMR feature selection. These 18 selected
features were used to train a shrinkage LDA. For testing, the EEG
signals were preprocessed in the same way (i.e., band-pass filtered
in 0.5–16 Hz and downsampled to 36 Hz), spatially filtered using
the 6 Fisher Spatial Filters optimized during training, and the 18
resulting selected features were used as input to the previously
trained LDA classifier whose output indicates the workload level
(high or low).

Combination of oscillatory activity and ERP. In order to com-
bine both oscillatory activity and ERP information, we extracted
18 FBCSP features as described above and 18 ERP features, as
described above as well, from each trial. These 36 features were
concatenated into a single feature vector, which was used as input
to a shrinkage LDA classifier.

Evaluation scheme
The performance of our workload-level estimator was assessed
using sixfold stratified Cross-Validation (CV), separately for each
subject. This means the data from each subject was divided
into six parts, each part containing the same number of trials
from each class (high/low workload). Five of these parts were
used for training, i.e., to identify the relevant spectral and spa-
tial filters, as well as to train the LDA classifier. The 6th part
was used for testing the resulting workload-level estimator for
that subject. This process was repeated six times, with each part
used exactly once as the testing set. For three subjects we used
only three- and fourfold CV due to missing blocks in the end
of the recording. The performance, here the classification accu-
racy (i.e., rate of trials with correctly estimated workload-level),
hence obtained on each testing part are then averaged to give
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a final performance of the workload-level estimator for that
subject.

The goal of our work is to design a generic workload-level
estimator, usable in practice, i.e., that can work across different
affective contexts (here, different psychosocial stress levels). To do
so, we performed different evaluations to estimate (1) the general
performance of our system, independently of the affective con-
text; (2) how it behaves within a given affective context; (3) how
it behaves across different affective contexts, i.e., can a workload-
level estimator calibrated on data from a given affective context
(e.g., a relaxed condition) be used to estimate workload in another
affective context (e.g., a stressful condition), (4) if effects of time
can explain across-context classification performance loss, and
(5) whether calibrating our system with data from different affec-
tive contexts makes the system better or worse, even if used in a
single affective context. Different sub-parts of the data were thus
used for training and testing within our CV scheme, in particular:

1. General performance estimation: This is the overall eval-
uation, in which we used all the data, from both affective
contexts, i.e., with EEG trials from both the relaxed and the
stressful conditions. Therefore, within each fold of the CV, 20
blocks (i.e., 900 trials) were available for training, and 4 blocks
(i.e., 180 trials) were available for testing. The number of tri-
als from each workload-level (high/low) and each psychosocial
stress (relaxed/stressful) was balanced in both the training and
testing set.

2. Within affective context performance estimation: This eval-
uation assessed the performance of our system when calibrated
on a single affective context and tested on the same affective
context. This is the evaluation generally performed in previ-
ous works, in which a single affective context is considered.
Therefore, in each fold of the cross-validation, 10 blocks (i.e.,
450 trials) were available for training, all coming from the
relaxed (resp. stressful) condition, and 2 blocks (i.e., 90 tri-
als) were available for testing, all coming as well from the
relaxed (resp. stressful) condition. The number of trials from
each workload-level was balanced in both the training and
testing set.

3. Across affective context performance estimation: This eval-
uation assessed the performance of our system when cali-
brated on a given affective context and tested on a different
affective context. This evaluation is usually ignored in cur-
rent workload-level estimation works. Previous works indeed
implicitly considered that the user was always in the same
affective state, which is very unlikely in practice and can thus
compromise the usability of the system. Therefore, in each
fold of the cross-validation, 10 blocks (i.e., 450 trials) were
available for training, all coming from the relaxed (resp. stress-
ful) condition, and 2 blocks (i.e., 90 trials) were available for
testing, all coming from the other affective context i.e., the
stressful (resp. relaxed) condition. The number of trials from
each workload-level was balanced in both the training and
testing set.

4. Investigation of time effects on classifier performance: To
rule out that a difference between within-context and across-
context training is merely caused by the time passing between

affective contexts, we devised an analysis similar to the above
two analyses, but with first and second half of each context
instead of relax and stress context. Therefore, we trained our
classifiers on the data of 4 blocks and tested them on 2 blocks
from either the same or the other half of the context. This
was done in a threefold cross-validation scheme and resulted
in two within and two across classification performance val-
ues (one from 1st half to second half, and one backwards) for
each affective context. These were averaged over the affective
contexts and yielded one value for the workload classifica-
tion accuracy for within- and across-context (i.e., “half”) per
participant per half2. For a genuine effect of affective context
instead of an effect of simply the time passing between both
contexts, the “within vs. across halfs” performance loss for a
classifier that was only trained on one half should be smaller
compared to the loss between “within vs. across affective con-
text” performance loss for a classifier that was only trained on
one affective context.

5. Calibration across affective context performance estima-
tion: When considering different affective contexts, an inter-
esting question is whether using data from different contexts
to calibrate the workload-level estimator will make it better
or worse, notably as compared to the within affective con-
text evaluation. Indeed, on the one hand, using data from
different contexts can force the machine learning approach
to identify workload indices that are invariant to the affective
context, thus improving the system, but on the other hand it
adds more noise and variability to the data, which can impede
the machine learning process. Therefore, with this evaluation,
in each fold of the cross-validation, 20 blocks were available
for training, coming from both the relaxed and stressful con-
dition, and 2 blocks were available for testing, coming from
either the stressful or the relaxed condition (but not both). To
ensure that the comparison of this approach with the within-
context approach is fair, we had to use the same number of
training trials for each approach. Indeed, using all the trials
available in the 20 training blocks would mean using more
training trials than in the within-context evaluation, which
could result in higher performance simply due to a larger
number of training trials. Therefore, for this last evaluation,
we randomly selected 6 blocks from each context for train-
ing, from 4 of which all trials were used, while we selected
every other trial from the remaining 2 blocks to keep the work-
load classes balanced within context. Further two blocks were
selected from each context for testing. This procedure was
repeated six times for a cross-validation comparable to the
within-/across context evaluation.

RESULTS
In this section, we first present the validation analysis, suggest-
ing that our protocol indeed induced different levels of workload
and stress (Q1). Then the results of the EEG-based workload
classification over, within, and across affective contexts are pre-
sented, showing that a state-of-the-art subject-specific workload

2For three subjects, the averaging only contained data from the stress context
due to missing blocks in the 2nd half of the relax context.
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classifier (Q2) has difficulty generalizing over affective contexts
(Q3), but can be rendered less context-sensitive by calibration
across affective contexts (Q4).

VALIDATION OF THE PROTOCOL
Subjective indicators
Each subject filled in three “STAI form Y-A” (state) question-
naires: one at the beginning (STAIBL) of the experiment and one
in the end of each affective context, that is after performing the
n-back tasks under stress or relax condition (stress: STAIS; relax:
STAIR) (see Figure 4A). Three data sets were excluded due to
incompleteness. A repeated-measures ANOVA (N = 21) with the
factor levels “baseline,” “stress,” and “relax” showed a significant
difference of perceived anxiety between the conditions [F(2, 20) =
3.6225, p < 0.05, ηp

2 = 0.108]. We conducted a post hoc anal-
yses using paired t-tests with the hypothesis that subjectively
perceived anxiety increases due to the stress induction proce-
dure relative to baseline and relaxation condition. The results
suggest that the stress-induction protocol indeed increases anx-
iety compared to baseline and relaxation condition, and keeps
it significantly higher until measured in the end of the affective
context (see Figure 4A): STAIS scores (mean = 37.5 ± 12.6) are
significantly higher [t(20) = 2.87, p = 0.01] than STAIBL scores
(mean = 30.1 ± 4.6) and they are significantly higher [t(20) =
2.37, p = 0.028] than STAIR scores (mean = 32.2 ± 8.6). This
increased anxiety seems mainly due to the interview and the
apprehension of a final evaluation, rather than due to the n-back
task as such: we found no difference between STAIR and STAIBL

[t(20) = 1.27, p = 0.22], that is when they performed the n-back
tasks knowing that there would be no evaluation.

We furthermore asked the subjects after each block to rate their
arousal on the respective scale of the Self-Assessment Maneken
(see Figure 4B) and to rate the mental effort on the Rating Scale
Mental Effort (see Figure 4C). Two data sets were excluded due
to incompleteness. We submitted the data of each scale to a 2
(stress) × 2 (workload) repeated-measures ANOVA. Regarding
the subjectively perceived arousal, we only found a main effect

of the workload manipulation [F(1, 21) = 4.444, p = 0.047, ηp
2 =

0.175] with higher perceived arousal for the 2-back task (mean =
4.7 ± 1.4) compared to the 0-back task (mean = 4.3 ± 1.7).
Regarding the subjectively perceived workload, we only found
a main effect of the workload manipulation [F(1, 21) = 63.216,
p < 0.0001, ηp

2 = 0.751] with higher perceived effort for the 2-
back task (mean = 48.1 ± 11.5) compared to the 0-back task
(mean = 28.6 ± 12.9).

Objective indicators
For the analysis of the objective indicator of behavioral perfor-
mance, we logged all responses and computed the task accuracy
for each task block (see Figure 5A). Two data sets were excluded
due to incompleteness. We submitted the accuracy to a 2 (stress)
× 2 (workload) repeated-measures ANOVA. As for the subjective
indicators of perceived arousal and effort, we found a main effect
of the workload manipulation [F(1, 21) = 65.251, p < 0.0001,
ηp

2 = 0.757] with higher accuracy for the simple 0-back task
(mean = 97.3 ± 2.0) compared to the hard 2-back task (mean
= 91.1 ± 4.8).

As a further objective indicator, we computed skin conduc-
tance level and heart rate. Four data sets were excluded due
to incompleteness. For heart rate analysis a further data set
was excluded due to malfunctioning sensors. We submitted the
data of the physiological signals to a 2 (stress) × 2 (workload)
repeated-measures ANOVA. For GSR (see Figure 5B), we found
an increase of the skin conductance level [F(1, 19) = 4.4806, p =
0.048, ηp

2 = 0.191], indicating higher sympathetic arousal dur-
ing the stress condition (mean = 3.83 ± 2.05) compared to the
relax condition (mean = 3.52 ± 2.07). Skin conductance level
increased for high compared to low workload condition as well,
however, not significantly. For HR (see Figure 5C), we found a
trend toward an increase of the heart rate [F(1, 18) = 3.2123, p =
0.089, ηp

2 = 0.151], indicating higher sympathetic arousal dur-
ing the stress condition (mean = 79.41 ± 10.23) compared to the
relax condition (mean = 78.30 ± 10.08). More importantly, we
found a highly significant effect of the workload manipulation on

FIGURE 4 | Mean and standard error of mean of subjective stress level

assessments. (A) STAI form Y-A scores, (B) SAM arousal scale, and (C)

RSME. (A) Shows significant increase of perceived stress during the

stressful condition compared to the baseline and the relax condition. (B,C)

Show an increase of perceived arousal and mental effort for the 2-back
compared to 0-back task.
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FIGURE 5 | Mean and standard error of the task performance (A), showing the decreased performance in high vs. low workload conditions, and of GSR

response (B) and heart rate (C), indicating higher physiological activity in response to the psychosocial stress and workload manipulation, respectively.

HR [F(1, 18) = 36.1431, p < 0.0001, ηp
2 = 0.667], with a higher

HR for the more challenging 2-back task (mean = 80.4 ± 9.89)
compared with the relatively easy 0-back task (mean = 77.27 ±
10.19).

In summary, we found evidence for the validity of the stress
and workload induction (Q1) in both, the subjective (question-
naires) and objective (performance and physiological sensors)
measures. This ensures that calibrating and evaluating a workload
classifier on the EEG recorded with this protocol is meaningful.

CLASSIFICATION OF EEG
General performance estimation
In this section we report the general classification performance for
a training on the whole data set, showing that our setup is state-
of-the-art compared to similar studies hence positively answering
question Q2. Specifically, we obtained performances similar to
the best performances that were presented more recently with the
n-back task paradigm and with 2 s short trials by Grimes et al.
(2008) and Brouwer et al. (2012). The data of two participants
was excluded due to incompleteness and of another one due to
malfunctioning EEG sensors.

For the training and testing on the basis of all available data,
those trials recorded during stress and relax context, we achieved
an average classification accuracy of 76.1% when using only
frequency-domain features, with performances between 58.7%
and 95.4% (see Figure 6). According to Müller-Putz et al. (2008),
we determined the above chance-level performance via a bino-
mial test. For a two-class problem and given the number of 1080
trials used in our sixfold cross-validation scheme, the chance-level
is at 53.1% for p = 0.05. Consequently, the classification perfor-
mance was above chance for each subject, with a highly significant
better-than-random performance for the average result over all
subjects (p � 0.0001).

Subsequently, we tested the previously observed increase of
performance for increasing decision intervals, that is when more
data is available for testing (Grimes et al., 2008; Brouwer et al.,
2012). A majority vote over the classifier decisions for all 45 rele-
vant trials of a given block, using only frequency-domain features,

leads to an accuracy of 96%, well over the 71% chance-level result-
ing from a binomial test on the basis of 24 decisions (one per
block). For time-domain features, we observed an average accu-
racy of 74% for 2 s trials (of which only the first was used), and
96% for the judgement after 45 trials. For both feature varieties in
combination, the 2-second accuracy was the highest with 80.4%,
though the block-wise accuracy was only 94.4%. Since all accu-
racies are well over chance level the used classification schemes
enable for a solid classification performance for all feature vari-
eties with the combined frequency- and time-domain features
performing best for short estimation intervals and separate fea-
ture varieties performing best for the long decision intervals.

From a scientific point of view it is necessary to know about
the source of the classification performance: is the information of
neural origin or is it derived from muscular activity that is known
to contaminate higher frequency bands of the EEG (Goncharova
et al., 2003)? Although this question is often eluded in previ-
ous works (Grimes et al., 2008), we tried to answer it by first
computing the percentage of the features selected from each fre-
quency band in the FBCSP algorithm. As Figure 6 indicates, the
majority (about 65%) of features selected with the mRMR fea-
ture selection algorithm employed came from lower frequency
bands (i.e., delta, theta, alpha). However, the remaining 35% orig-
inated in high frequency bands, those over 12 Hz (beta, gamma,
gamma2). To ensure that the classifier performance does rely on
neuronal sources and not on muscle activity, we repeated the
workload classifier evaluation excluding these potentially con-
taminated high frequency bands, both for training and testing. We
achieved a somewhat lower, but again much better-than-random
(p � 0.0001) classifier performance of 74.2%, with accuracies
between 53.9% and 88.2%. This suggests that our workload clas-
sifier does rely mostly on neural information from low frequency
bands.

Within- vs. across-context estimation
In this section we tested the generalization of the classifier to a
different affective context (question Q3). To evaluate the effects
of testing in dependence of training context, we conducted a 2
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(training context: relax, stress) × 2 (testing context: same-as-
training, different-from-training) repeated-measures ANOVA for
each feature type. Figures 7, 8 depict the average classifier per-
formance when tested within and across affective context and the
average loss of performance for the three used feature varieties
(and the loss for the specific frequency bands), respectively.

The main effect found for the testing context when using
frequency-domain features alone [F(1, 20) = 5.610, p = 0.028,
ηp

2 = 0.219] shows that the transfer from one context to another
is problematic and results in a decrease of classifier performance
(mean = 69.4 ± 9.7%) compared to testing on the same con-
text as for the training (mean = 72.4 ± 9.4%). An exploratory
analysis of the effect of context change on classifiers using only
specific frequency bands revealed a significant contribution of
the low frequency bands to the performance decline, while the

less relevant high frequency bands were not or only minimally
contributing (see Figure 8).

For time-domain features alone, the decrease of classifier
performance for across context is as well significant, though
stronger [F(1, 20) = 21.002, p < 0.001, ηp

2 = 0.512], with a lower
across-context classification performance (mean = 69.1 ± 5.5%)
compared to within-context classification performance (mean =
73.3 ± 5.1%).

For frequency- and time-domain features combined, the
decrease of classifier performance across-context (mean = 73.2 ±
8.8%) compared within-context (mean = 77.3 ± 7.9%) is as well
marked [F(1, 20) = 12.104, p = 0.002, ηp

2 = 0.377].
To rule out that the differences between within-context and

across-context training were caused by the time passing between
affective contexts, we divided each context into two parts (1st half,

FIGURE 6 | Mean and standard error of the workload classification

performance (sixfold cross-validation) per subject. The different colored
subdivisions within each bar represent the percentage (total bar height =
100%) of features selected from a specific frequency band (delta, theta,

alpha, beta, gamma, gamma2). For example, for subject 1 on average 9% of
the features were chosen from the delta range. The last bar represents the
mean classification accuracy over subjects and the average contribution from
the frequency bands over subjects.

FIGURE 7 | Mean and standard error of the mean of the classification

performance of a classifier trained in different training contexts (relax,

stress, combined) and tested on data from relax and stress context. The
differences between the testing performance for stress and relax context show

an interaction between training and test factor: the difficulty of the classifier to
generalize to another context. The higher performance for the combined
training set relative to the training on data from a single context indicates a gain
of the classifier in invariance and hence a protection against over-fitting.
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FIGURE 8 | Mean and standard error of the mean loss of the

classification performance of a classifier trained and tested in

different training contexts for the feature types from

frequency-domain (FB), time-domain (ERP), both (FB and ERP),

and for the individual frequency bands (FB α − γ 2). The stars

indicate the significance testing with the respective methods
mentioned in the text (∗p < 0.05, ∗∗p < 0.01). Only the low frequency
bands show significant effects of performance detoriation in the
phase of changing affective context, while the high frequency bands
seem relatively stable against changes in context.

2nd half) and trained and tested the classifiers in the same man-
ner as done for the within (e.g., training and test on 1st half)
and across affective context (e.g., training on 1st half and test
on 2nd half) tests. With the data averaged over affective con-
texts, we conducted a 2 (training context: 1st half, 2nd half)
× 2 (testing context: same-as-training, different-from-training)
repeated-measures ANOVA for each feature type. We did not find
the pattern of performance loss that we observed for within vs.
across affective context testing. Surprisingly, the only effect we
found was a increase of performance for across vs. within con-
text (half) testing for the frequency-domain only feature variety
[F(1, 20) = 5.142, p < 0.04, ηp

2 = 0.204] from 61.1% to 63.7%.
Summarizing, all feature varieties have been found suscep-

tible to changes in affective context. For the frequency-domain
features, only classifiers using the low frequency bands of delta,
theta and alpha are significantly declining in performance when
tested in an affective context different from the training context
(see Figure 8). However, as we showed, these frequency bands are
the most informative regarding the workload level. An additional
test of the within vs. across effects between the 1st and 2nd half
of the affective contexts on classifier performance showed that
the time effect alone does not lead to a consistent decrease of
performance.

Across-context calibration
To evaluate the use of a combined training context to increase
the capability of the classifier to generalize over affective con-
texts (question Q4), we conducted a 2 (training context: average
single, combined) × 2 (testing context: stress, relax) repeated-
measures ANOVA for each feature type. The specific effects of
across-context calibration in comparison to single context (stress
and relax) calibration are depicted in Figure 7.

The main effect of the training context for frequency-domain
features alone [F(1, 20) = 6.816, p = 0.017, ηp

2 = 0.254] indi-
cates a higher performance for training with combined (mean =

72.4 ± 9.5%) vs. with single affective context (mean = 70.9 ±
9.3%). There is no significant difference between testing on the
(optimal) same context vs. combined testing.

For time-domain features the increase of classifier perfor-
mance between single (mean = 71.2 ± 5.2%) and combined
context (mean = 72.1 ± 4.9%) training is as well significant
[F(1, 20) = 6.703, p = 0.017, ηp

2 = 0.251]. Despite the observed
increase due to training with combined data from both con-
texts, there is still a significant decrease of performance of about
1.2% relative to training and testing on the same context [t(20) =
−3.526, p < 0.01].

For frequency- and time-domain features combined, we
observed an increase of classifier performance between single
(mean = 76.7 ± 7.6%) and combined context training (mean
= 75.2 ± 8.1%) with [F(1, 20) = 6.306, p = 0.021, ηp

2 = 0.240].
There is no difference between testing on the (optimal) same
context vs. combined testing.

Summarizing, for those classifiers trained with frequency-
domain and combined frequency- and time-domain features,
training on combined contexts leads to an increase of perfor-
mance comparable with (optimal) same context training and
testing. For classifiers trained with time-domain features only, we
observe a significant increase of classification performance when
training on combined context, but there is still a loss of per-
formance compared to the (optimal) same context training and
testing. Since the number of trials for both conditions are kept
equal, this is evidence for a gain in resilience of the workload clas-
sifier against contextual changes, especially for classifiers based on
frequency-domain features.

DISCUSSION
If we want to create passive brain-computer interfaces that work
in the wild, we need to take the variability of such environments
into account. To test how well a workload classifier would be able
to cope with variability due to changes in affective context, we
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trained it on the data from a subject performing a task under the
evaluative pressure of an impending interview, the same subject
in a non-stressful setting, and from both contexts.

We validated the experimental protocol using subjective
and objective indicators of the psychophysiological activation
expected due to stress/relaxation induction and different work-
load levels. Though we did not see a significant difference in
the perceived arousal measure (SAM), higher values for the STAI
and increased sympathetic nervous system activity (as indicated
by significant differences for GSR and a trend for HR) support
a successful induction of anxiety in the stressful compared to
the non-stressful condition. Higher perceived arousal and mental
demand, higher sympathetic nervous system activity (as indexed
by HR) as well as lower behavioral performance for high com-
pared to low workload levels support the efficacy of the workload
induction paradigm.

We showed that workload can be classified on the basis of 2 s
of neurophysiological signals with an accuracy of 76.1%. This is
comparable to previously reported results for such short intervals
of data (Grimes et al., 2008; Brouwer et al., 2012). It was shown
that the accuracy can be increased using decision-level fusion over
the results of several trials (Brouwer et al., 2012) or simply by
using longer signal epochs (Grimes et al., 2008), however, with the
tradeoff of a less fine-grained, more discrete, and lagging measure
of workload. We observed a similar increase of classifier perfor-
mance to between 94.4% and 96% using a majority vote based on
the classifier outcome of the relevant 45 trials of a given block.

While the source of information measured via EEG, neuronal
or myographical, might seem of no immediate significance for
an application on able-bodied users, it seems relevant to us to
ensure that we indeed measure the neural activity implied by
pBCI. In this regard, it is noteworthy that the distribution of
relevant frequencies vary between subjects. While in general the
majority of features (65%) is selected from low frequency bands
(delta, theta, alpha), some subjects have a strong contribution of
high frequencies (beta, gamma, gamma2) up to 50%. Since these
higher frequency bands are notorious for their response to muscle
activity in addition to neuronal information (Goncharova et al.,
2003), we tested if the workload classification would suffer con-
siderably when excluding them from the feature pool. The average
performance did indeed decrease slightly to 74.2%. However,
the highly significant above-chance performance over all subjects
indicates an only marginal role of muscular activity in workload
estimation3. This is in line with other studies that suggest a rel-
evance of low frequency bands for workload (Jensen et al., 2002;
Jensen and Tesche, 2002) and its estimation (Zarjam et al., 2013).
Consequently, we showed that the trained classifier uses the neu-
ral correlates of workload to discern two workload levels with a
performance equaling that reported in similar studies.

Regarding the classifier generalization to different affective
contexts, we show that a classifier created in a non-stressful
context can generalize to a stressful context and vice versa.
However, the training context has a significant influence on
the classification performance, with decreasing performance

3Alternatively, the decrease might be due to the removal of relevant neural
information represented in beta or gamma bands.

for cross-context classification (i.e., from 72.4% to 69.4% for
frequency-domain features, from 73.3% to 69.1% for time-
domain features, and from 77.3% to 73.2% for features from both
domains). Interestingly, we found that a training which takes sev-
eral relevant contexts into account enables the generalization of
the classifier to a certain degree. Classifiers based on frequency-
domain and on combined frequency- and time-domain features
perform comparably well after training with data from both affec-
tive context (72.4% and 76.7%, respectively) as after being trained
and tested within a specific context. Classifiers based on time-
domain features profit as well from a training with data from both
affective contexts (72.1%), but still show a declined performance
relative to optimal, within-context training and testing.

The current study is limited in its generality by the use of a
stress induction paradigm which manipulates affective context
only once. We chose the TSST because it is a recognized standard
of social stress induction and a powerful elicitor that allows to
keep stimuli and task comparable during the workload session of
stressful and non-stressful condition. However, since we have only
two stress conditions and not several interleaved stress conditions,
the stress manipulation is synonymous with a change in time,
though with a counter-balanced order. Both affective contexts are
separated by at least 10 min and we can not exclude that signal
changes with time played a role for classifier performance. The
analysis of effects of time within the affective contexts, however,
did not reveal general performance decreases due to time pass-
ing and thus adds to the evidence of context-related performance
loss. Similarly, the spread of training blocks over a larger time
in combined compared to single testing contexts limits compa-
rability of both performance measures. To ensure that our results
hold for stress in specific, interleaved stress induction methods
can be used, though a viable experiment length, reliability of
stress induction, and comparability of stimuli and task need to
be guaranteed.

Another limitation of the paradigm can result from a potential
interaction of (psychosocial) stress and workload. For example,
impaired cognitive processes or increased engagement in the face
of evaluative pressure, could lead to differences in participant
performance between affective contexts (Eysenck and Derakshan,
2011). Despite the lack of such interaction effects in our analy-
sis, the possibility of participant’s performance-related differences
being reflected in brain activity is a general issue that needs
to be considered, since such changes in brain activity would
be only indirectly related to stress. Therefore, future research
needs to identify the processes that are responsible for the sig-
nal variability in the face of psychosocial stress. On a related
note, other stressors could be manipulated to identify the source
of the performance decrease, for example in terms of impaired
cognitive processes.

The result of our study suggests that classification perfor-
mance for passive BCIs can be increased using not only a larger
quantity of training data, but by introducing qualitative varia-
tions. Here, we varied the stress level of our participants during
the task performance. This manipulation is comparable to the
variation of the affective context of a task in real-world scenar-
ios, for example task performance under pressure vs. normal
task performance. Consequently, to create more reliable BCIs for
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workload detection, robust against alterations in contextual con-
ditions, such as affective factors (emotions, moods), the training
data should include data collected under the relevant contextual
conditions.

Zander and Jatzev (2012) found that certain metrics might
enable the identification of phases of changed contexts and there-
fore identify phases were additional calibration might be neces-
sary. One could then use transfer learning (Pan and Yang, 2010)
or other re-calibration strategies to enable an adaptation of the
transfer algorithm to the new context. However, the suggested
metric specifically enables the detection of LOC, which is use-
ful for the detection of perceived LOC and subsequent reliability
decrease of active BCIs when environmental and internal factors
of the user change. Passive BCIs are not directly related to a feel-
ing of control since they do not enable nor aim at the intentional
control of machines. Therefore, for passive BCI one needs other
indicators of reliability.

Currently, several groups are investigating the cognitive, affec-
tive, and demographic factors that influence active BCI perfor-
mance (see Lotte et al., 2013). We argue that a similar research
program would allow to build more robust passive BCIs by (1)
taking into account changes in relevant contextual factors (e.g.,
stress), (2) by exploring indicators of such changes or the subse-
quent loss of reliability, and (3) by the exploration of strategies
to update the classifier in face of the loss of reliability due to
contextual changes.

CONCLUSION
The current work has relevance for the development of pas-
sive brain-computer interfaces that are able to specifically classify
one psychophysiological construct (e.g., workload), while being
invariant to others (e.g., stress). We devised and validated a pro-
tocol to test the effect of stress on pBCI approaches. We showed
that a classifier has trouble transfering from stressful training data
to non-stressful test data and vice versa, indicating an influence of
affective task context on the performance of a workload classifier.
Moreover, we found that the classification profits from the train-
ing on a mix of the varied affective task contexts. Such classifiers
perform comparably well to those trained and tested on the same
affective context. More generally spoken, the results suggest that
the classification performance is not only dependent on quantita-
tive factors, such as the numbers of channels, amount of training
data, or length of trials, but also on qualitative factors, such as
the affective context. This underlines the need for studies that
identify such contextual factors and that elucidate ways to deal
with detrimental effects related to their influence. Future research
and development of workload classification systems using phys-
iological sensors needs to take the contextual factors into
account to increase the generality and ecological validity of the
system.
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