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Resting state functional MRI (rsfMRI) connectivity patterns are not temporally stable, but
fluctuate in time at scales shorter than most common rest scan durations (5–10 min).
Consequently, connectivity patterns for two different portions of the same scan can
differ drastically. To better characterize this temporal variability and understand how
it is spatially distributed across the brain, we scanned subjects continuously for
60 min, at a temporal resolution of 1 s, while they rested inside the scanner. We then
computed connectivity matrices between functionally-defined regions of interest for
non-overlapping 1 min windows, and classified connections according to their strength,
polarity, and variability. We found that the most stable connections correspond primarily to
inter-hemispheric connections between left/right homologous ROIs. However, only 32%
of all within-network connections were classified as most stable. This shows that resting
state networks have some long-term stability, but confirms the flexible configuration
of these networks, particularly those related to higher order cognitive functions. The
most variable connections correspond primarily to inter-hemispheric, across-network
connections between non-homologous regions in occipital and frontal cortex. Finally we
found a series of connections with negative average correlation, but further analyses
revealed that such average negative correlations may be related to the removal of CSF
signals during pre-processing. Using the same dataset, we also evaluated how similarity of
within-subject whole-brain connectivity matrices changes as a function of window duration
(used here as a proxy for scan duration). Our results suggest scanning for a minimum of
10 min to optimize within-subject reproducibility of connectivity patterns across the entire
brain, rather than a few predefined networks.
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INTRODUCTION
In recent years, the functional magnetic resonance imaging
(fMRI) research community has undertaken a slow, yet con-
stant shift in attention from functional localization (where in
the brain a specific function resides) to functional connectivity
(how different brain regions interact with each other). Today,
it is well established that some brain regions are tuned pri-
marily to perform specific tasks (e.g., motor cortex controls the
movement of body parts, visual cortex analyzes incoming visual
stimuli, etc.) Still, this one-to-one relationship soon diffuses as
one moves beyond primary cortices into association cortex to
understand the neuronal correlates of higher cognitive func-
tions such as emotions, speech, or attention. Moreover, it is
increasingly common to discover variations in functional con-
nectivity, rather than in specific functional modules, that seem
to differentiate complex mental conditions (see Greicius, 2008
for a review) such as autism (Just et al., 2007; Gotts et al.,
2012), depression (Sheline et al., 2010), and Alzheimer’s Disease
(Wang et al., 2013a).

One well-known, non-invasive approach to the study of
functional connectivity in the human brain is resting state fMRI
(rsfMRI; Biswal et al., 1995). In this technique, the spatial co-
fluctuation of Blood Oxygenation Level Dependent (BOLD) sig-
nals is recorded while subjects rest quietly in the scanner in the
absence of any specific task demands, and these data are used to
explore patterns of functional connectivity at the system level (see
Lowe, 2010 for a historical review). More importantly, rsfMRI
is not only a powerful research tool, but it has great potential
for clinical applications given its experimental simplicity, short
scanning durations, richness of information, ease of sharing, and
low requirement for subject compliance. Nevertheless, for clini-
cians to be able to rely on rsfMRI-based biomarkers to diagnose
or intervene, several challenges with respect to reproducibility
and interpretation must be resolved (Castellanos et al., 2013).
Although overall patterns of rsfMRI-based functional connectiv-
ity have proven to be reliable across scans, subjects, and even
institutions, quantitative measures with the potential to become
biomarkers (e.g., the strength of a given connection) are not yet
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sufficiently reliable, as they depend on factors such as scan condi-
tion (e.g., eyes closed vs. eyes open Yan et al., 2009; Van Dijk et al.,
2010; McAvoy et al., 2012), scan duration (Birn et al., 2013), and
specific pre-processing steps used during the analysis (Murphy
et al., 2009; Power et al., 2012). Despite these dependences,
some rsfMRI connectivity metrics such as regional homogeneity
(ReHo; Zuo et al., 2013), amplitude of spontaneous low frequency
oscillations (Zuo et al., 2010), and several measures of centrality
(Zuo et al., 2012) have been shown to have encouraging test–
retest reliability. Nevertheless, one additional factor that poses
interesting questions regarding how to best record and quantify
rsfMRI-based metrics is the recently observed dynamic behavior
of rsfMRI connectivity patterns (Chang and Glover, 2010).

Several recent studies have shown how patterns of rsfMRI con-
nectivity vary substantially even over the duration of a single scan
(Chang and Glover, 2010; Handwerker et al., 2012; Tagliazucchi
et al., 2012; Hutchison et al., 2013b), thereby calling into ques-
tion the assumption of temporal stationarity even over short
timescales (see Hutchison et al., 2013a for a review). Similarly,
other studies have explored how scan duration affects the repro-
ducibility of rsfMRI connectivity patterns (Van Dijk et al., 2010;
Birn et al., 2013). However, most of these studies have focused
their analysis on a handful of representative connections and
networks. Given the large variability of functional roles and con-
nection strengths across the human brain connectome, it can be
expected that optimal scan acquisition strategies and reliability
of biomarker measurements will depend greatly on the connec-
tions of interest. For example, Allen et al. (2014) recently reported
a series of rsfMRI networks, labeled the “Zone of Instability,”
that exhibit significantly greater temporal variability in functional
connectivity. These regions with the greatest instability corre-
spond primarily to dorsal attention areas, default mode regions,
and superior occipital areas. Still Allen and colleges’ exploration
of dynamic behavior was constrained by the duration of the rest-
ing scans (5 m and 4 s) and their temporal resolution (2 s), which
limit both the quality of functional connectivity estimates (given
the low number of available data points) and the domain of func-
tional connectivity configurations that occur during such short
scan periods.

The purpose of the current study is to further explore and
characterize rsfMRI connectivity dynamics, and in that manner
extend some of the findings of Allen et al. (2014) and others
(Tagliazucchi et al., 2012; Hutchison et al., 2013b). To over-
come the above-mentioned limitations resulting from short scan
durations, in this study rsfMRI data were collected in 12 partic-
ipants who were scanned continuously for 60 min at a temporal
resolution of 1 s. Using these data, we evaluated pair-wise con-
nections over the scale of minutes, investigating their polarity,
strength, and variability. We evaluated the spatial distribution of
three categories of connections (namely stable positive connec-
tions, variable positive connections, and negative connections)
and whether assignment of connections to these three groups was
consistent across subjects. Using a sliding window approach, we
found that most stable positive connections correspond mainly
to symmetric, inter-hemispheric, within- and across-network
connections; while most variable positive connections corre-
spond primarily to inter- and intra-hemispheric, across-network
connections between occipital and frontal regions. Negative

connections correspond primarily to those between two medial
subcortical regions and fronto-parietal regions. We also evalu-
ated how window length, a proxy for scan duration, affects the
degree of similarity in whole-brain, within-subject connectiv-
ity patterns. We found two regimes in terms of how similarity
changes with scan duration. For short scan durations (approxi-
mately less than 10 min) similarity of whole-brain connectivity
patterns decreases quickly as scan duration shortens. For longer
durations, although similarity increases with scan length, it does
so at a much lower rate.

MATERIALS AND METHODS
DATA ACQUISITION
Twelve healthy volunteers (7 males; age: 30.17 ± 10.22 years)
participated in this study after providing written consent in agree-
ment with a protocol approved by the NIH Protocol Review
Board. Subjects were scanned continuously in a General Electric
3T MRI scanner for 60 min while relaxing with their eyes closed.
A 32-channel receive-only head coil was used. The resting scans
were acquired using a gradient-recalled echo-planar imaging
(EPI) sequence (TR = 1 s, TE = 27 ms, FOV = 24/21 cm, image
matrix = 64 × 64/72 × 72, slice thickness = 4.0 mm, slice spac-
ing = 0.0 mm, flip angle = 60◦, number of slices = 23, number
of acquisitions = 3600, ASSET Acceleration = 2). In addition,
a high-resolution T1 spoiled gradient echo (SPGR) scan was
acquired for alignment and presentation purposes (sagittal pre-
scription, number of slices per slab = 176, slice thickness = 1 mm,
FOV = 256 mm, image matrix = 256 × 256) in each subject.

Respiration and cardiac traces were also collected during the
resting scans using a respiration belt and a pulse oximeter, in all
subjects except one. Both physiological traces were acquired with
a sampling rate of 50 Hz.

In order to achieve a temporal resolution of 1 s, it was neces-
sary to restrict our spatial coverage. In particular, with the current
data, we cannot draw any conclusions regarding connections
involving the cerebellum, temporal poles, or ventral temporal
regions. New technological developments, such as multi-slice
acquisition techniques (Feinberg and Setsompop, 2013), may
soon be able to eliminate this limitation (Smith et al., 2012).

DATA PRE-PROCESSING
Data pre-processing was conducted with the AFNI software pack-
age (Cox, 1996). Pre-processing steps include: discarding of initial
10 volumes to allow for magnetic homogenization; despiking
(with AFNI 3dDespike); physiological noise correction (in all sub-
jects but one) including regressors for the RETROICOR (Glover
et al., 2000), RVT (Birn et al., 2006), and RHR (Chang et al.,
2009) models; slice time correction (AFNI program 3dTshift);
head motion correction (AFNI program 3dvolreg) and transfor-
mation into MNI space (AFNI program @auto_tlrc) in a single
interpolation step; and spatial smoothing (FWHM = 6 mm).
In addition, mean, linear trends, signal from local white matter
(WM), signal from the lateral ventricles (CSF), motion esti-
mates, the first derivative of motion estimates, and a series of
sine and cosine functions to remove all frequencies outside the
range (0.01–0.25 Hz) were regressed out in a single regression
step (AFNI program 3dTproject). This last regression step permits
us to account for potential hardware instabilities and remaining
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physiological noise (ANATICOR; Jo et al., 2010, 2013; Gotts
et al., 2013). During this regression step, time points with motion
greater than 0.4 mm were removed from the data (scrubbing) and
replaced by values obtained via linear interpolation in time. On
average, 1649 degrees of freedom (DOF) remain after the above-
mentioned regression and censoring steps (Table 1 shows motion,
number of interpolated volumes, and remaining DOFs for each
subject).

Spatial transformation matrices to go back and forth between
the original EPI space, T1-anatomical space, and MNI standard
space were also computed for each subject using AFNI programs
3dAllineate and @auto_tlrc. These matrices were subsequently
used for presentation purposes and to bring publicly available
atlases into each subject’s functional data space (see below).

BRAIN PARCELLATION
In order to parcellate the brain into a limited number of spa-
tially contiguous, functionally homogeneous, non-overlapping
regions of interest (ROIs), we used the publicly available tem-
plate of 150 ROIs associated with the Craddock Atlas (Craddock
et al., 2012) (Figure 1A). An ROI-based approach was selected
over a voxel-wise approach to help with interpretation, minimize
the contribution of small errors in alignment to between-subject
comparisons, and ease computational load. Nevertheless, despite
using a functionally-based atlas with relatively small ROIs, some
level of functional inhomogeneity should be expected when com-
bining voxels into a single time-series (Zuo et al., 2013).

For each subject, we first brought this MNI atlas template
into each subject’s EPI space. Subsequently, we removed ROIs (20
ROIs from cerebellum, midbrain, and lower temporal cortex) that

Table 1 | Motion, number of censored time points, and remaining

DOFs after bandpass filtering, regression of nuisance signals, and

censoring in each subject.

Max. absolute Max. relative # Data points Remaining

displacement displacement interpolated DOF

(mm) (mm)

SBJ01 5.07 0.92 13 1694

SBJ02 5.16 1.10 14 1693

SBJ03 4.12 0.65 40 1667

SBJ04 5.73 0.50 2 1705

SBJ05 1.97 0.31 0 1707

SBJ06 1.99 0.30 0 1707

SBJ07 4.52 0.68 2 1705

SBJ08 2.59 0.24 0 1707

SBJ09 2.91 0.47 452 1255

SBJ10 6.62 0.80 82 1625

SBJ11 3.60 0.26 0 1707

SBJ12 3.71 1.05 88 1619

Mean 4.00 0.61 57.75 1,649.25

Participant SBJ09 was excluded from all sliding window analyses due to the

large number of data points that required interpolation due to head movement

according to the criteria set during pre-processing.

did not have at least 10 voxels within the imaged field of view for
all 12 subjects (Figure 1B).

In order to group the remaining 130 non-overlapping ROIs
into functionally relevant networks, we used the functional net-
work taxonomy published by Laird et al. (2011), excluding two
artifactual networks (ICNs 19 and 20 identified as artifactual by
Laird and colleagues) and two networks not covered by our scan-
ning FOV (ICNs 5 and 14). Each ROI was assigned to one of
the 16 remaining networks described by Laird and colleagues
by identifying the network with maximal spatial overlap with
that ROI (Figure 1C). Within each network, ROIs in connectivity
matrices appear sorted according to decreasing degree of overlap
with that network. Table 2 shows detailed information regarding
which Laird et al. (2011) networks were used, the labeling scheme
used in the remainder of this paper, how many ROIs were assigned
to each of these networks, and the color assigned to the nodes of
each network in the result figures.

ROI REPRESENTATIVE TIME SERIES EXTRACTION
For each ROI, the principal singular vector (computed with AFNI
program 3dmaskSVD) across all voxels in the ROI was used as
the representative time series. This resulted in 130 time series
of interest with 3590 time points in each subject. The average
and standard deviation of the Pearson’s correlation between each
ROI’s representative time series and all voxels in the ROI, across
all subjects and all ROIs, was 0.61 ± 0.08.

CONNECTIVITY MATRIX BASED ON WHOLE TIME SERIES: STATIONARY
ANALYSIS
For each subject, we computed an overall correlation matrix
(130 × 130) under the assumption of temporal stationarity, using
all available 3590 time points. In these matrices, connectivity
between two given ROIs is measured in terms of their Pearson’s
correlation (r). These matrices are symmetric, with r = 1 along
the diagonal. All information is therefore contained in the 8385
values that form the upper triangular region. In the remainder of
this manuscript we use the term “connectivity snapshot” to refer
to a vector that contains only these uniquely informative values.

Binarized (connected/not-connected) versions of these con-
nectivity matrices were also obtained using the following criteria:
a cell in the matrix is given a value of 1 (connected) only if the
corresponding correlation value for that cell is statistically signifi-
cant at p < 0.05 corrected for multiple comparisons according to
the Bonferroni criteria, taking into account the number of unique
connections in the matrix (i.e., p < 0.05/8385). Otherwise, the
cell is given a zero (not-connected) in these binary matrices. Even
though the correct DOFs (Table 1) were used when computing
the significance of the correlations prior to the multiple compar-
ison correction, the significance level is approximate due to the
unknown relationship between signal and noise in rsfMRI.

SELECTION OF CONNECTIONS OF INTEREST FOR SLIDING WINDOW
ANALYSIS
For our exploratory analysis of rsfMRI dynamics, we studied
connections that showed significant correlation values in the
stationary analysis for at least seven participants (half of the
sample plus one). This selection step reduced the number of
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FIGURE 1 | (A) Depiction of the 150-ROI Craddock Atlas on top of five sagittal
slices in the MNI stereotaxic space. (B) Depiction of the remaining 130 ROIs
from the atlas considered in this study. ROIs eliminated from the original atlas

correspond mainly to the cerebellum and inferior temporal regions that were
not part of the imaging FOV for all 12 participants. (C) Grouping of the remaining
ROIs according to the Laird et al. (2011) functional network templates.

pairwise connections under study from the original 8385 to 5232
connections (see Figure 3).

WHOLE-BRAIN, WITHIN-SUBJECT CONNECTIVITY MATRIX
SIMILARITY vs. WINDOW DURATION
In order to evaluate how the within-subject similarity of whole-
brain connectivity patterns changes as a function of window
length, we segmented our 60 min of data (minus the first 10 dis-
carded seconds) into temporally non-overlapping windows with
durations ranging from 30 s to 19.5 min in steps of 30 s. The
number of available non-overlapping windows decreases with
increasing window duration. A maximum duration of 19.5 min
was chosen so that at least three different windows were available
for the analysis in each individual.

For each subject and window duration, we first computed con-
nectivity matrices for each non-overlapping window. We then

computed the average correlation between all available matrices
for a given duration and subject. This average number permits us
to describe within-subject similarity between connectivity matri-
ces for a given duration. We finally computed an average value
across all subjects, for each window duration, to obtain an aggre-
gate measure of within-subject similarity for our population of
subjects (Figure 4).

CONNECTION STABILITY ANALYSIS
For each subject, we computed sliding window correlations with
a window length of 60 s and a window step of 60 s (to avoid
overlap). There are two reasons for choosing this 60 s window
duration: (1) to have a sufficiently large number of data points
per window to compute meaningful correlation values; and (2)
because recent studies have shown that functional connectivity is
related to both cognition (Shirer et al., 2012) and electrocortical
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Table 2 | Summary of correspondence between Craddock Atlas ROIs and Laird Network Templates.

Original network ID New network ID Number of ROIs Description Node color

(Laird et al., 2011)

ICN01 EI4 7 Emotion/Interoception network #4 Cyan

ICN02 EI3 10 Emotion/Interoception network #3 Aqua

ICN03 EI2 6 Emotion/Interoception network #2 Light blue

ICN04 EI1 8 Emotion/Interoception network #1 Dark blue

ICN06 MV1 8 Motor/Visuospatial network #1 Dark green

ICN07 MV2 8 Motor/Visuospatial network #2 Light green

ICN08 MV3 5 Motor/Visuospatial network #3 Green

ICN09 MV4 4 Motor/Visuospatial network #4 Olive green

ICN10 VS1 9 Visual network #1 White

ICN11 VS2 5 Visual network #2 Dark yellow

ICN12 VS3 11 Visual network #3 Yellow

ICN13 DMN 12 Default mode network Red

ICN15 FPR 13 Right fronto-parietal network Orange

ICN16 AUD 11 Auditory network Pink

ICN17 SPP 7 Speech production network Gray

ICN18 FPL 6 Left fronto-parietal network Brown

measures (Tagliazucchi et al., 2012) at similar temporal scales.
Nevertheless, to evaluate the extensibility of these results to other
window durations, we also performed the same analysis using
non-overlapping windows of 120 and 180 s durations.

A 20% tapering of the time series was performed prior to com-
putation of the correlation. For 60 s windows, the sliding window
analysis produced for each participant (s) a matrix Cs (connec-
tion, window) with 5032 connections X 59 windows (not 60 due
to the 10 s discarded at the beginning of the scan) that contains
information about the evolution of connectivity strength over
time for all connections under scrutiny (Figure 2A).

Most stable/variable connections
Subsequently, for each row of this matrix, we computed the
coefficient of variation (CVAR) as follows:

CVAR (i,s) = stdev (Cs(i,:))/mean (Cs(i,:)) (1)

where s is a given subject and i is a given connection (Figure 2A).
In order to compute this summary metric we transformed cor-
relation values into Fisher’s Z-scores, computed the summary
statistics, and then transformed these back from Fisher’s Z-scores
into correlation values.

In addition, the median and standard deviation of CVAR
values across all subjects and connections was computed, and
connections whose CVAR was outside one standard deviation
of this median were removed from further analyses (Figure 2B).
This threshold condition eliminated 9 ± 5 (mean ± standard
deviation) connections per subject. After removal of outlier con-
nections, the Cs matrices were sorted according to their CVAR
values (Figure 2C). We then classified all remaining connections
into one of three groups (Figure 2D). First, we divided the pool
of connections into those with positive or negative CVAR. Then,
within the pool of connections with positive CVAR, we further

subdivided these into two subgroups: 50% of the positive CVAR
connections with the highest CVAR values went into one sub-
group (most variable), and the remaining half went into the other
subgroup (most stable). In summary, this process forces every
non-outlier connection to be part of one these three groups:

• Negative Connections (blue): connections with negative CVAR,
which is the result of a negative average Pearson’s correlation
across time.

• Most Stable Positive Connections (green): connections in the
lowest half of positive CVAR values.

• Most Variable Positive Connections (red): connections in the
highest half of positive CVAR values.

To aggregate results across subjects while giving maximum atten-
tion to connections with a similar pattern of correlation across
participants, we generated a new group-level classification matrix
in which a given connection was marked as being of one of the
three types mentioned above, if and only if, that connection was
classified in the same manner in all participants (Figure 2E—
Top). In addition, to examine the effect of this threshold, matrices
were also generated showing the number of subjects in which con-
nections were classified in each group (Figure 7). To evaluate the
presence of patterns of interest in the spatial distribution of these
three types of connections, we used AFNI program SUMA (Saad
and Reynolds, 2012) to visualize each of these three groups in a
3D brain space (Figure 2E—Bottom).

Permutation analysis for group-level connection identification
In order to determine the probability that results of the connec-
tion grouping procedure described above would occur due to
chance, we conducted a permutation test in which the labels of
all connections in each subject were randomly shuffled. Using the
same group sizes for each subject from the real data, the connec-
tions for each group were then selected within that subject. The
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FIGURE 2 | Sliding-Window methods. (A) Example running window
connectivity matrix for one representative subject on the left, and its
associated vector of CVAR values on the right. The thresholds used to
discard connections on the basis of excessive CVAR are depicted as red
dashed lines. Eight connections that were discarded for this particular
subject are marked as red dots. (B) Sliding window connectivity matrix
and CVAR vector after removal of outlier connections. Now there are
5023 connections, instead of 5032, for this representative subject. (C)

Sliding window connectivity matrix and CVAR vector after sorting
connections according to their CVAR. Connections with negative CVAR
are at the bottom of the graph, while connections with positive CVAR are
on the top. The further a connection is from the horizontal axis where

CVAR is the closest to zero (black dashed line), the more variable the
strength of that connection across time. (D) Classification of connections
in three possible groups for three other representative subjects, shown
both as sorted sliding window connectivity matrices (left) and in a single
matrix form (right) where the color of the cell for a connection denotes
its group assignment according to our criteria. The three groups are:
connections with negative CVAR (blue); lowest positive CVAR/most stable
connections (green); largest positive CVAR/least stable connections (red).
(E) Aggregated results across subjects. We do this by only selecting
connections classified the same way across all 11 participants that were
included in the sliding window analysis. Connections of the three types
are shown both in matrix view (top) and in brain space (bottom).

number of connections classified in the same group across all sub-
jects was then counted. This procedure was repeated 5000 times to
obtain a distribution of the number of connections that would be
classified in the same group in all subjects based only on chance.

RESULTS
STATIONARY ANALYSES RESULTS
Figure 3A shows the static connectivity matrices for four rep-
resentative subjects computed using the complete time series
(3590 time points). Although there is some degree of simi-
larity in the overall structure of the matrices across subjects
(e.g., within-network connections are stronger than between-
network connections in all subjects; connectivity between MV2
and VS3 is also stronger in many subjects), there are clear

differences in terms of the strength of many individual con-
nections. From a quantitative point of view, the average cor-
relation between the different subjects’ connectivity snapshots
(upper top triangle of the matrix excluding the diagonal) is
r = 0.53 ± 0.07.

Figure 3B shows binarized (connected/unconnected) versions
of the connectivity matrices presented in Figure 3A. The average
and standard deviation number of statistically significant con-
nections for the current sample was 5198 ± 747 (out of 8385
possible connections). Figure 3C shows another matrix view of
the data where the value in each cell is the number of subjects for
which that particular connection is statistically significant under
the criteria described above. Finally, Figure 3D shows a bina-
rized version of this aggregate view (Figure 3C), by marking with
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FIGURE 3 | (A) Weighted connectivity matrices in terms of Pearson’s
correlation (r ) for four representative subjects when the complete time
series (3950 data points) enter the analysis. (B) Binary connectivity
matrices for the same four representative subjects after statistical

thresholding. (C) Matrix showing the number of subjects for which a
given connection was marked as statistically significant. (D) Matrix
showing connections that were marked as statistically significant in at
least seven subjects.

gray color only the connections that were classified as statistically
significant in at least seven (more than half of the study popula-
tion) subjects. There are a total of 5032 connections that pass this
group-level threshold. All remaining results, with the exception of
the whole-brain within-subject similarity vs. scan duration analy-
sis (section Similarity of Whole-Brain Connectivity as a Function
of Window Duration), were conducted using only this subset of
5032 connections.

SIMILARITY OF WHOLE-BRAIN CONNECTIVITY AS A FUNCTION OF
WINDOW DURATION
Figure 4 shows how within-subject similarity of connectivity pat-
terns across the whole brain decreases as a function of window
duration. For durations larger than 10 min, the rate of decrease
is relatively slow. It is for durations shorter than approximately
6 min that within-subject similarity decreases at a faster rate. This
behavior was consistent across subjects.
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FIGURE 4 | Similarity of whole-brain connectivity vs. window duration.

Data for individual subjects are shown as red dashed lines. Average across all
subjects is shown in black. The similarity of connectivity matrices clearly
decreases as a function of window duration. The decreasing rate is
particularly accentuated for durations below 10 min. As window duration

decreases, a larger number of windows enter the analysis for a given
duration. The number of windows contributing to each duration in each
subject is provided at the bottom of the graph. All window durations within
the same shaded region (white or gray) have the same number of windows
contributing to the computation of similarity.

HISTOGRAMS OF SLIDING-WINDOW CORRELATIONS
Figure 5A shows histograms of correlation values across time (bin
width = 0.25) for all connections in one representative subject
(SBJ01) as black traces. Visual inspection reveals no clear bound-
aries between different connection types, but a continuum of
behavior in which connections span a wide range of mean and
standard deviation values. Peaks can be observed at all centers
of histogram bins. This is not the result of individual histograms
having many peaks (temporal evolution of connectivity strength
following multimodal distributions), but due to the overlap of
approximately 5000 histograms with a wide range of means and
standard deviations. To show how individual histograms do not
present such sharp profiles, but are mostly uni-modal in shape, a
subset of 11 randomly selected histograms are highlighted with
dashed colored lines in Figure 5A. Figure 5B shows the same
histograms as Figure 5A, but this time histograms have been col-
ored according to their membership to one of the three groups
defined in terms of CVAR (blue = negative CVAR; red = most
variable positive CVAR; green = most stable positive CVAR).
Despite the lack of clear boundaries between histograms, the clas-
sification criteria based on the CVAR were able to generate three
compact groups of connections in all subjects (Figure 5C shows
a second representative subject). An additional observation is
that most stable positive connections, as defined with the CVAR
criteria, are connections with high mean connection strength
across time (green histograms peak primarily at the right of the
graphs).

MOST VARIABLE POSITIVE CONNECTIONS
Figures 6A,B show the 23 connections classified as most vari-
able in all participants for a window duration of 60 s. Table 3
summarizes the distribution of such connections across different
networks. All 23 connections correspond to connections between
ROIs from different networks (Table 3). Primarily, most variable
connections correspond to non-symmetric, inter-hemispheric
connections between occipital (visual networks) and frontal
regions (fronto-parietal networks). A similar general pattern
was observed for window durations of 2 (Figure 6C) and 3
(Figure 6D) min. The total number of connections in this pool
was 13 for 2 min windows, and 14 for 3 min windows.

In addition, Figure 7A shows a non-thresholded version of
Figure 6B, where the color of each connection represents the
number of subjects for which that connection was classified as
most variable. Connections marked as most variable for seven
or more subjects are colored with different shades of red. These
connections still correspond primarily to inter-network connec-
tions. Moreover, they tend to correspond primarily to connec-
tions between occipital (visual networks) and fronto-parietal
networks, as well as connections between nodes of EI3 and all
other networks.

MOST STABLE POSITIVE CONNECTIONS
Figures 8A,B show the 364 connections classified as most stable
in all participants for a window duration of 60 s. Table 4 sum-
marizes the distribution of these connections within and across
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FIGURE 5 | (A) Distributions of correlation values across time for all the
connections in a representative subject are depicted in black. To highlight the
mostly uni-modal shape of individual histograms, 11 randomly selected
histograms are highlighted using dashed colored lines. (B) Same histograms
as in (A), but this time each histogram is colored according to the

membership of each connection to one of three groups: blue = negative
CVAR connection; red = most variable positive CVAR connection; green =
most stable positive CVAR connection. Grouping of connections show a
compact profile with all connections from the same group clustering
together. (C) Same as (B) for a second representative subject.

different networks. Roughly 40% of the connections, 148, cor-
respond to within-network connections and the remaining 216
to across-network connections. A large percentage of stable pos-
itive connections are symmetric, inter-hemispheric connections.
This pattern becomes more apparent if we restrict our analysis
only to connections in the bottom 25% and 12.5% of positive
CVAR values (Figure 9). When window duration was increased
to 2 (Figure 8C) and 3 (Figure 8D) min, a similar spatial pattern
arises. The total number of positive stable connections was 344
for 2 min windows, and 334 for 3 min windows.

In addition, Figure 7B shows a non-thresholded version
of Figure 8B, where connections classified as most stable
for seven or more subjects appear with different shades of
green. Most stable connections under these less stringent con-
ditions correspond primarily to within-network connections,
although several clusters of most stable connections can be
observed between the AUD and SPP networks, between the four
MV networks, and between MV3-4 and visual and auditory
regions.

Figure 10 shows a summary view of the matrix in Figure 8B.
For each square, we show the percentage of connections that fall
within the most stable positive pool. Therefore, squares in the
diagonal show the percentage of within-network connections that
were classified as most stable. For example, MV3 and VS2 are
the two most cohesive networks, with 100 and 70% of all pos-
sible within-network connections being consistently stable across
time. Squares outside the diagonal show the percentage of all pos-
sible connections between two given networks that fall within the
pool of most stable connections. We can see how MV1, MV3, and
MV4 (red dashed outlines) have a substantial number of stable
communication pathways among each other. The same is true for
the SPP and the AUD networks (green dashed outlines). All per-
centages in this figure have been corrected to take into account
only the 5032 connections that passed our stationary significant
criteria.

NEGATIVE CONNECTIONS
Figures 11A,B show the 32 connections with negative CVAR in all
participants for a window duration of 60 s. Table 5 summarizes
the distribution of such connections across different networks.
All negative connections correspond to across-network connec-
tions. In particular, 26 connections involve two regions from the
Emotion/Interoception network #2 (EI2). This pattern of nega-
tive CVAR connections primarily involving regions from the EI2
network is also very apparent in Figure 7C, where connections
marked as negative CVAR connections in seven or more subjects
appear marked in different shades of blue. When window dura-
tion was increased to 2 (Figure 11C) and 3 (Figure 11D) min a
similar connectivity map was also produced. The total number of
negative connections was 32 for 2 min windows, and 30 for 3 min
windows.

DISCUSSION
Using 60 min resting scans with a temporal resolution of 1 s
and a sliding window analysis approach, we divided functional
connections in our data into three groups based on similarity
of patterns of temporal variability across our study population.
Sorting and grouping of connections was done according to the
coefficient of variance (CVAR) of connectivity strength across
time. The CVAR is a common measure of spread for Gaussian-
like distributions that accounts for differences in the mean and
has a simple interpretation (i.e., the larger the CVAR, the big-
ger the spread of the distribution of values around the mean).
Connectivity strength histograms (Figure 5) showed distribu-
tions follow mostly uni-modal, bell-like shapes with different
levels of spread, suggesting that the use of CVAR is a valid first
approximation to estimate variability for the temporal evolution
of connection strength. To aggregate results at the group level, we
decided to focus our attention only on connections classified in
the same manner across all participants. A permutation analy-
sis (5000 repetitions) revealed that the number of connections
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FIGURE 6 | (A) Most variable positive connections for window
length = 60 s. Connections classified as most variable in all 11
participants are shown over 3D renderings of a brain surface. (B)

The same information shown as a 2D matrix. Colors corresponding

to networks on the axes of the matrix are used to color nodes
of that network in brain space. (C) Most variable connections for
window length = 120 s. (D) Most variable connections with window
length = 180 s.

Table 3 | Absolute (#) and relative (%) number of connections with positive high CVAR (most variable) for each network.

Most variable Network ID

DMN FPR FPL EI1 EI2 EI3 EI4 MV1 MV2 MV3 MV4 VS1 VS2 VS3 AUD SPP

Within
#

0
%

Across
# 4 9 1 1 1 3 3 2 0 3 0 5 3 7 1 3

% 0.47 1.09 0.21 0.16 0.37 0.49 0.68 0.31 0.00 0.79 0.00 0.77 1.06 0.90 0.12 0.56

Connection counts are divided in two groups: connections between two ROIs that are part of the same network (within) and connections between ROIs that are

part of different networks (across).

randomly found in any of the three groups, when following
the above-mentioned criteria to combine results across subjects,
is less than four connections. Finally, to evaluate the role that
regional differences in signal-to-noise ratios may have played in
our study, we also computed average temporal signal-to-noise
ratio (TSNR) across subjects for all ROIs entering the analysis.
We found no clear relationship between ROI TSNR values and

participation in connections of a given type (most variable, most
stable, or negative CVAR). These results suggest that the simple
criteria used in this study provide reasonable descriptions of the
patterns of temporal variability in resting state connectivity, and
that these results are reproducible across subjects and capture
true structure present in the data (i.e., not found by purely by
chance).
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FIGURE 7 | Number of subjects for which a given connection was

classified as most variable (A), most stable (B), and with negative CVAR

(C). Connections that were consistently classified in the same group for all 11
subjects are marked with a black outline. These are the same connections

shown in Figure 6 (most variable), Figure 8 (most stable), and Figure 11

(negative CVAR). Connections that were classified in the same group for
seven or more subjects appear in different shades of red (most variable),
green (most stable), or blue (negative CVAR) in the corresponding panel.

FIGURE 8 | (A) Most stable positive connections for window length = 60 s.
Connections classified as most stable in all 11 participants are shown over 3D
renderings of a brain surface. (B) The same information shown as a 2D matrix.

Colors corresponding to networks on the axes of the matrix are used to color
nodes of that network in brain space. (C) Most stable connections for window
length = 120 s. (D) Most stable connections with window length = 180 s.
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Table 4 | Absolute (#) and relative (%) number of connections with positive low CVAR (most stable) for each network.

Most stable Network ID

DMN FPR FPL EI1 EI2 EI3 EI4 MV1 MV2 MV3 MV4 VS1 VS2 VS3 AUD SPP

Within
# 23 9 6 9 2 8 3 7 5 5 6 4 7 26 25 3

% 44.23 12.50 40.00 37.50 28.57 22.86 15.00 26.92 17.86 50.00 100.00 11.76 70.00 47.27 50.00 14.29

Across
# 44 15 18 34 3 20 14 38 22 40 25 25 4 28 60 42

% 5.15 1.82 3.79 5.48 1.11 3.24 3.19 5.94 3.53 10.58 8.09 3.86 1.41 3.60 7.13 7.87

Connection counts are divided in two groups: connections between two ROIs in the network of interest (within) and connections between one ROI in the network

of interest and one ROI not in the network of interest (across).

FIGURE 9 | (A) Most stable positive connections when only
connections within the lowest 25% of CVAR values are selected in
each subject. (B) Most stable positive connections when only
connections within the lowest 12.5% of CVAR values are selected in

each subject. As the selection criterion becomes more stringent, a
smaller number of connections make it to the group level maps
presented here. When fewer connections are present, the symmetric
inter-hemispheric pattern becomes clearer.

The connections that reliably fall in each category have very
distinct spatial patterns when plotted in brain space. In partic-
ular, most temporally stable connections (low positive CVAR)
correspond mainly to symmetric, inter-hemispheric connec-
tions both within- and across-networks; most temporally vari-
able connections (high positive CVAR) correspond mainly to
non-symmetric, inter-hemispheric, across-network connections
between occipital and frontal regions; and connections with nega-
tive CVAR correspond mainly to connections between two medial
ventral subcortical regions and bilateral fronto-parietal regions.
These general patterns were observed for non-overlapping win-
dow durations ranging from 1 to 3 min. We discuss the findings
related to each of these categories in detail below.

MOST STABLE POSITIVE CONNECTIONS
Most stable positive connections is the largest of the three connec-
tion pools, with approximately one order of magnitude more con-
nections than the other two groups (364 most stable connections

vs. 23 and 32 in the other two groups). Moreover, most stable
connections are not only more consistent across subjects and fluc-
tuate less, but fluctuate around higher correlation values than
least stable connections (green histograms cluster on the right
hand side, which corresponds to stronger positive correlation
values; see Figures 5B,C). These two observations suggest that
while being classified as most variable or negative may depend
to a larger extent on subject-dependent factors (e.g., on-going
cognition, awareness levels, etc.), most stable connections are so
because of an underlying source largely independent of these fac-
tors. One such source could be anatomical connectivity. Several
studies have shown a good correspondence between BOLD rest-
ing state connectivity patterns and underlying direct anatomical
connections as measured in Diffusion Tensor Imaging (DTI)
(Greicius et al., 2009; Van Den Heuvel et al., 2009) and in primate
electrophysiology and tracer studies (Margulies et al., 2009; Wang
et al., 2013b). Additionally, computational modeling studies have
shown that structural connections provide robust predictions of
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FIGURE 10 | Percentage of within-network (diagonal) and across-network (non-diagonal) most stable positive connections. Two groups of networks with
high percentages of across-network connections being temporally stable are highlighted with red (MV1, MV2, and MV3) and green (AUD, SPP) dashed lines.

functional connectivity, although the reverse is not always true
(Honey et al., 2009; Deco et al., 2011). Relating to the current
study, Honey et al. (2009) observed that ROI pairs with direct
anatomical connectivity—as measured by diffusion spectrum
imaging tractography—had more stable functional connectivity
both within and across rsfMRI sessions. In agreement with their
findings, many of the most stable connections identified here
are symmetric, inter-hemispheric connections between left/right
homologous regions that are known to have direct connections
via the corpus callosum. However, it should also be noted that
stable functional connectivity patterns can also be supported
by indirect anatomical connections as well (Tyszka et al., 2011;
O’Reilly et al., 2013).

Approximately 40% of the most stable connections correspond
to those between two nodes of the same network (within-network
connections). Still, that accounts for only 32% of all within-
network connections, which confirms prior observations suggest-
ing that resting-state networks are not as temporally stable in their
configuration as originally assumed (Chang and Glover, 2010;
Handwerker et al., 2012; Smith et al., 2012; Tagliazucchi et al.,
2012; Hutchison et al., 2013b). Our data also shows that levels of
temporal cohesion vary substantially across networks. The four
most temporally cohesive networks were MV4 (100% of its 6
within-network connections fall in the most stable group), VS2

(70%), MV3 (50%), and AUD (50%) (Figure 10 and Table 4).
The MV4 network, which primarily covers bilateral dorsal pari-
etal cortex (BA5), has been shown to have a preference for motor
execution and learning (Laird et al., 2011). The MV3 network,
which sits laterally to MV4 and covers mainly primary and sup-
plementary motor cortex for upper extremities was found to be
strongly associated with tasks involving hand movement (Laird
et al., 2011). Additionally, networks VS2 (which covers posterior
and inferior portions of occipital cortex) and AUD (which cov-
ers the transverse temporal gyri) correspond to primary visual
and auditory cortices. Taken together, our results suggest that
primary sensory-motor networks are among the most tempo-
rally stable with respect to their internal connectivity patterns.
On the other end of the spectrum, VS1 (11.76%), FPR (12.50%),
SPP (14.20%), and EI4 (15%) were the networks with the lowest
percentage of within-network connections that were consistently
stable across all subjects. These networks span a wide range
of regions involved in complex higher-order functions such as
visual identification of complex visual stimuli (VS1), attention
control and reasoning (FPR), speech production (SPP), and emo-
tion discrimination (EI4). It may be that performance of these
more complex tasks relies on a broader and more dynamic set of
connectivity configurations, and that these tasks and their con-
figurations occur less often during rest. In agreement with these
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FIGURE 11 | (A) Negative CVAR connections for window length =
60 s. Connections with negative CVAR in all 11 participants are
shown over 3D renderings of a brain surface. (B) The same
information shown as a 2D matrix. Colors corresponding to networks

on the axes of the matrix are used to color nodes of that
network in brain space. (C) Negative CVAR connections for window
length = 120 s. (D) Negative CVAR connections with window
length = 180 s.

Table 5 | Absolute (#) and relative (%) number of connections with negative CVAR for each network.

Negative Network ID

DMN FPR FPL EI1 EI2 EI3 EI4 MV1 MV2 MV3 MV4 VS1 VS2 VS3 AUD SPP

Within
#

0
%

Across
# 2 11 4 1 26 1 2 5 1 0 1 0 0 0 3 7

% 0.23 1.34 0.84 0.16 9.63 0.16 0.46 0.78 0.16 0.00 0.32 0.00 0.00 0.00 0.36 1.31

Connection counts are divided in two groups: connections between two ROIs in the network of interest (within) and connections between one ROI in the network

of interest and one ROI not in the network of interest (across).

findings, Mueller et al. (2013) found that inter-subject variability
in stationary patterns of global functional connectivity was lowest
in unimodal cortical areas similar to the sensory-motor systems
found to be most stable here.

Regarding most stable between-network connections, we
found two sets of networks to be the most stably intercon-
nected. The first group consists of networks MV1, MV3, and

MV4 (red outlines in Figure 10). The second group consists of
SPP and AUD (green outlines in Figure 10). These groups of
networks were found to be tightly connected in terms of their
functional role when matched against thousands of activity pat-
terns from task-based studies included in the BrainMap database
(Fox et al., 2005). MV1, MV3, and MV4 were found to consis-
tently participate in a variety of experiments related to motor and
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visuo-spatial integration and coordination (Laird et al., 2011).
Moreover, MV3 and MV4 (the two networks with the largest per-
centage of inter-network stable connections) failed to split into
two separate entities in a prior similar study that used a smaller
subsample of the BrainMap database (Smith et al., 2009). In the
case of the SPP and AUD networks, their functional relation-
ship was not as strong, but both networks heavily contribute to
language-related tasks. These reported agreements between net-
work groupings based on functionality (as measured by paradigm
and behavioral domain) and levels of stable inter-connectivity
suggest that networks that share a common functional space (e.g.,
motor-visual integration, language) also share stable communi-
cation pathways, despite appearing as separate entities in resting
state analyses that do not focus on the dynamic aspects of con-
nectivity. Nonetheless, it is worth noticing that the other two
multi-network functional spaces defined by Laird et al. (2011),
namely emotion/interoception and visual, did not show such a
clear pattern of stable interconnectivity between networks.

MOST VARIABLE POSITIVE CONNECTIONS
Most variable positive connections correspond primarily to inter-
network, inter-hemispheric connections involving nodes from
the fronto-parietal networks (FPR: 9 connections; FPL: 1 con-
nection) and the visual networks (VS3: 7 connections; VS2: 3
connections; VS1: 5 connections). It has been previously shown
that the fronto-parietal network is composed of flexible hub
regions that can reconfigure their functional connectivity rapidly
in order to adapt and participate in a great variety of exter-
nally driven tasks (Cole et al., 2013). Our results suggest that
such flexibility can also be observed during undirected cognition
while resting, and not solely in situations requiring highly adap-
tive task control. Moreover, a recent study showed that subjects
engage and transition between many different mental activities
while resting in the scanner (Delamillieure et al., 2010). The three
most common mental activities reported by this pool of 180
subjects were visual imagery, inner speech, and somatosensory
awareness. All but one across-network connections involving the
fronto-parietal network also involve nodes from the visual and
SPP networks, which are directly related to these mental activities
commonly reported by subjects after rest scans. Lastly, additional
connections belonging to this category outside the fronto-parietal
network correspond primarily to connections between occipital
regions and nodes from the DMN, motor/visuospatial networks,
and the emotion/interoception networks (as described by Laird
et al.). Some of these areas, in particular DMN and hetero-
modal occipital regions, overlap with areas described as part of
the “Zone of Instability” (regions with more temporally variable
connections between them) by Allen et al. (2014).

Although high temporal variability makes these connections
a difficult target for study, the fact that such high volatility was
consistent across all subjects in our pool suggests that these con-
nections may constitute good targets for some technical and
clinical applications. First, the pool of 23 connections identi-
fied as most variable across all subjects may constitute a good
set of “worse-case scenario” targets for reproducibility studies
and/or optimization of parameters such as scan duration. They
could help obtain conservative bound values for such parameters.

Moreover, the ability of certain regions to flexibly reconfigure
their connectivity patterns has been shown to be directly related
to the capacity to learn new motor skills (Bassett et al., 2011).
Finally, Mueller et al. (2013) recently showed that areas with
the largest levels of inter-subject variability in stationary global
connectivity patterns correspond primarily to heteromodal asso-
ciation cortex in lateral pre-frontal cortex, the temporal-parietal
junction, fronto-parietal control regions, and attention network
areas (as defined by Yeo et al., 2011). They also reported a
large degree of overlap between these regions of high functional
connectivity variability and a brain map obtained from a meta-
analysis of areas that predict individual differences in several
cognitive and behavioral domains (e.g., personality traits, intel-
ligence, memory performance, etc.) Many of the connections
classified as most variable in our study are between ROIs located
in the areas and networks of high variability reported by Mueller
and colleagues. This suggests that short-term temporal variabil-
ity in connectivity patterns (as observed here) may be partially
responsible for the inter-subject differences in functional connec-
tivity observed at longer temporal scales, which may in turn be
related to individual differences in cognition and behavior. Given
the consistently high temporal instability of these connections
across all our healthy subjects, it would be interesting to study
if temporal variability is somehow impaired or increased in pop-
ulations with some level of cognitive decline, and in that manner
evaluate the potential diagnostic power of the dynamic behavior
of rsfMRI connectivity.

NEGATIVE CONNECTIONS
Of the 32 connections with negative CVAR in all participants,
26 correspond to connections involving two medial ROIs that
are part of the EI2 network. The first ROI (with 21 negative
connections) spans a large range of small anatomical structures,
including the mammillary bodies, the hypothalamus, medial por-
tions of the caudate, the fornix, and the third ventricle. The
second ROI (with 5 negative connections) is located just poste-
rior to the first and covers large portions of the bilateral thalamus.
Correlation maps between each ROI’s representative time series
and all ROI voxels (Figure 12) show how the highest contribut-
ing voxels to the representative time series fall primarily within or
around the third ventricle. This is particularly true for the ROI
with 21 negative CVAR connections. This pattern suggests that
negative correlations between these ROIs and other brain regions
are not the result of anti-correlation between GM structures
within the ROIs and other brain regions, but a result of the regres-
sion of CSF signals during pre-processing (Saad et al., 2012). In
this study, the CSF signals may have been contaminated by sig-
nals from other neighboring tissues due to the relatively large
voxel size used in this study. In fact, when the removal of CSF sig-
nal is omitted from the analysis pipeline, only three connections
with negative CVAR remain, thereby supporting the potential
artifactual origin of the average negative behavior observed for
these connections. Conversely, the general patterns described for
the other two connection types (most stable and most variable)
remains consistent when CSF is not removed during the analysis.

It is also worth noting that while omitting the step concern-
ing the removal of CSF signals led to the disappearance of the

www.frontiersin.org June 2014 | Volume 8 | Article 138 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Gonzalez-Castillo et al. Temporal stability of fMRI connections

FIGURE 12 | Intra-ROI correlation maps to the ROI representative time-series for 2 ROIs of interest. Voxels with the highest correlation to the
representative time series (red color) are those in and around the third ventricle.

majority of connections with an average negative correlation (and
therefore negative CVAR), we nevertheless observed many con-
nections alternating between positive and negative connectivity
for short periods, regardless of CSF signal removal. This is in
agreement with prior observations of this phenomenon in studies
on functional connectivity dynamics (Chang and Glover, 2010;
Hutchison et al., 2013b).

STABILITY OF WITHIN-SUBJECT CONNECTIVITY PATTERNS vs.
WINDOW DURATION
In addition to classifying connections in the three above-
mentioned groups, we also evaluated how window length (used
here as a proxy for scan duration) affects the within-subject simi-
larity of whole-brain connectivity patterns. We found two general
regimes. For durations below approximately 6 min, similarity
of within-subject whole-brain connectivity matrices decreases
quickly as window length decreases. Conversely, for durations
above 10 min, the rate at which similarity increases with scan
duration is much slower. This result suggests that if stability is a
factor of interest (e.g., in longitudinal studies), using longer scans
is desirable, particularly above approximately 10 min. Most previ-
ous studies of rsfMRI reproducibility have used shorter scans and
focused on a handful of connections when evaluating the tem-
poral stability of rsfMRI as a function of scan duration. Van Dijk
et al. (2010) concluded that stable measures of connectivity can be
obtained with scans as short as 5 min. This conclusion was based
on how scan duration affected average within- and between-
network correlations for only three networks (default mode,
dorsal attention, and a reference network consisting of auditory,
motor, and visual regions). Nevertheless, Birn et al. (2013) more
recently concluded that increasing scan length from 5 to 13 min
greatly improved reproducibility. In this case, the authors stud-
ied all potential connections between 17 different ROIs. Using a
completely different approach, Anderson et al. (2011) found that
obtaining functional connectivity “fingerprints” that uniquely
identified each participant required a minimum of approximately
15 min of data. Despite differences in scanning and analytical
procedures, our results are in better agreement with those of

Anderson et al. (2011) and Birn et al. (2013), which are based
on larger samples of connections. This suggests that a minimum
of approximately 10 min is desirable for good reproducibility, and
that reproducibility keeps increasing at a lower rate for yet longer
scan durations. Collectively, these results also highlight how sug-
gested scan duration will depend on the target networks under
analysis.

LIMITATIONS OF THE STUDY
In this study we did not record any measure of vigilance (e.g.,
eye tracking system, concurrent EEG recordings). Given the dura-
tion of the scans and that subjects were instructed to keep their
eyes closed, it is very likely that our subjects went through some
periods of sleep or decreased vigilance during the 60 min scans,
despite being instructed to stay awake. Changes in vigilance or
sleep are known to affect connectivity patterns measured with
fMRI (Horovitz et al., 2009; Tagliazucchi et al., 2012). To par-
tially evaluate the effect of this potential confound, we performed
the analysis again using the first and last halves of the time series
separately, under the assumption that periods of drowsiness will
become more frequent as scanning progresses. When the data
was split in this manner, the spatial patterns of connectivity per
connection category and the bulk differences in number of con-
nections per category remain very similar to those reported for
the whole-run analysis (see Supplementary Figure 1). This sug-
gests that although the classification of specific connections may
be affected by this factor, the overall patterns discussed above
remain present. Nevertheless, a better-controlled experiment with
information about when these changes in vigilance occur may
help better elucidate the origin of the patterns observed here. Also,
restricting the analysis to periods of equal vigilance levels may
help increase the number of patterns found to be common across
subjects.

Another important factor to consider is how ROI and net-
work templates used during the analysis affect interpretation
of the data. We used a functionally-based atlas for the pur-
pose of aggregating voxels into functionally homogenous regions.
Functionally-based atlases have been proven to outperform
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anatomically-based atlases at reproducing functional connectiv-
ity patterns present at the voxel level (Craddock et al., 2012)
and when attempting to decode cognitive states based on mea-
sures of connectivity (Shirer et al., 2012). In particular, the 150
ROI atlas was selected because it provided a good compromise
between ROI size (sufficient functional homogeneity), computa-
tional tractability, and interpretability of the results. Using more
fine-grained ROIs may allow detection of additional patterns of
interest, and additional studies should be conducted to evaluate
the robustness of the results presented here against the use of
different parcellation schemes (Yeo et al., 2011; Shirer et al., 2012).

In a similar manner, the Laird et al. (2011) ICN templates were
chosen to aid with interpretation given their behavioral corre-
lates. Our discussion regarding the temporal stability of within-
and across-network communication pathways heavily relies on
the assignment of ROIs to these networks. Differences in network
definition, and subsequent distribution of ROIs across them, may
affect the conclusions. As of today, the fMRI community still
debates which is the most informative decomposition level, or
levels, to study resting state connectivity, as the configuration of
networks heavily depends on this parameter (Abou-Elseoud et al.,
2010). Moreover, there is an avid debate regarding the actual con-
figuration of the well-studied default mode network (Buckner
et al., 2008; Liu and Duyn, 2013). Comparative analyses between
measures of temporal stability, such as the ones presented here,
and network definitions obtained at different decomposition lev-
els may help determine the most appropriate levels of brain
parcellation.

CONCLUSIONS
We used a sliding window analysis to attempt a basic characteriza-
tion of BOLD resting state connectivity dynamics. We found three
well-differentiated sets of connections, whose temporal variability
patterns were reproducible across all participants and have dis-
tinct spatial patterns. First, most stable connections were found
to correspond primarily to symmetric, inter-hemispheric connec-
tions both within and across networks. We found that primary
sensory-motor networks seem to be more temporally stable in
their connectivity patterns than those more closely related to
higher order cognitive processes. Second, most variable connec-
tions were found to correspond primarily to non-symmetric,
inter-hemispheric, across-network connections between occipi-
tal and frontal regions. The number of connections consistently
among the most variable group across all subjects was much lower
than the number of connections among the most stable, suggest-
ing subject-dependent, ongoing cognitive variables have a strong
effect on the configuration of flexible connections in the brain.
Finally, a small set of connections was found to have negative aver-
age connectivity across time, though a large percentage of these
were identified as potential artifacts. All these general patterns
were present for window lengths ranging from 1 to 3 min.

We also used the current dataset to evaluate how whole-brain,
within-subject similarity of connectivity patterns varies as a func-
tion of window duration. This applies to studies where the focus
is not on the dynamic behavior of connections, but on overall
stable patterns that arise when full scans enter the analysis. Our
results suggest that in order to maximize similarity of overall

whole-brain connectivity, rest scans should last as long as pos-
sible, with clear stability benefits for 10 min rather than 5 min
scans.
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