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During postnatal development, adverse early life experiences affect the formation of
neuronal networks and exert long-lasting effects on neural function. Many studies have
shown that daily repeated maternal separation (MS), an animal model of early life stress,
can regulate the hypothalamic-pituitary-adrenal axis (HPA axis) and affect subsequent brain
function and behavior during adulthood. However, the molecular basis of the long-lasting
effects of early life stress on brain function has not been fully elucidated. In this mini
review, we present various cases of MS in rodents and illustrate the alterations in HPA
axis activity by focusing on corticosterone (CORT). We then show a characterization of the
brain regions affected by various patterns of MS, including repeated MS and single time
MS at various stages before weaning, by investigating c-Fos expression. These CORT
and c-Fos studies suggest that repeated early life stress may affect neuronal function
in region- and temporal-specific manners, indicating a critical period for habituation to
early life stress. Next, we introduce how early life stress can impact behavior, namely
by inducing depression, anxiety or eating disorders, and alterations in gene expression in

adult mice subjected to MS.
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INTRODUCTION
As our contemporary society changes rapidly, changes in family
structure can have a large influence on the mother—child rela-
tionship, as well as on other social environmental factors. In
adult patients with various neuropsychiatric disorders, childhood
abuse including sexual and/or physical abuse and neglect, is one
of the most serious causes (Bremne and Vermetten, 2001; Heim
and Nemeroff, 2001; Teicher et al., 2006). Adverse experiences
occurring during critical periods of development, such as peri-
natal life, harmfully influence behavior, and physiological func-
tions, including growth, metabolism, reproduction, and immune
responses. Stressful environments in early life may induce per-
manent rather than transient consequences in animals. Previous
studies have indicated that early unfavorable events augment the
risk of behavioral disorders in adulthood, including neuropsy-
chiatric disorders, such as depression (Kendler et al., 2002) and
psychosis (Morgan et al., 2007). In rodent and primate mod-
els, adverse environments during the neonatal periods seem to
play a critical role in developing the brain systems important
to regulate behavior and stress responsiveness. In particular, the
responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis
can be deteriorated by interrupting usual mother-pup interac-
tions, which may induce persistent changes in the neurobiology,
physiology, and emotional behavior in adult animals (Ellenbroek
et al., 1998; Lyons et al., 1998; Pryce et al., 2005; Enthoven et al.,
2008; Nishi et al., 2013).

In this mini review, we will focus on the response of corti-
costerone (CORT), an end product of the HPA axis in rodents,
and c-Fos expression for examining the activated brain regions

induced by maternal separation (MS), a model of rodent early life
stress. Furthermore, we will also present alterations of behavioral
aspects and alterations in gene expression.

EARLY MS

The inventive studies of Levine and colleagues, and consequently
of Meaney, Plotsky, and their collaborators have demonstrated
that changes in rodents’ early postnatal experiences can induce
profound long-lasting effects on emotionality and stress response
(Levine, 1967; Meaney, 2001; Plotsky et al., 2005), which have
spurred the employment of the rodent MS for investigating early
life stress. This early life stress model is based on the evidence that
unfavorable events in early life cause the vulnerability for devel-
oping various kinds of diseases in later life. In this type of study,
MS should be carefully discussed in comparison to the appropri-
ate control group, which may or may not be undisturbed from
mother.

The procedure of MS showed a variety of the duration (e.g.,
60 min—24h) and the number of days (e.g., 1-14 days, 15-21
days) for the separation experiences among laboratories (Biagini
et al., 1998; Caldji et al., 2000; Barreau et al., 2004; Arborelius
and Eklund, 2007; Carrera et al., 2009; Tjong et al., 2010). In MS
paradigm, many experiments, but certainly not all, have demon-
strated that separation of pups from their mothers during the
early postnatal period permanently increased anxiety-like behav-
iors in adulthood (Francis et al., 1999; Huot et al., 2001, 2004;
Menard et al., 2004). As to the HPA axis activity, the response
to stress is relatively low during early postnatal life (Walker
et al., 1991; Levine, 2005), while MS could lead to life-long
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hyperactivity of the HPA axis (Holmes et al., 2005; Lippmann
et al., 2007; Aisa et al., 2008; Marais et al., 2008). In contrast,
short-term disturbance (e.g., 15min), which has been called
“handling,” appeared to reduce anxiety-like behaviors, decrease
HPA axis tone and reduce the response to stress in adulthood
(Levine, 2005; Plotsky et al., 2005). The process of handling may
imitate natural mice rearing, whereby the mother leaves her pups
for short periods of time to collect foods. Thus, the short-term
MS, handling, might be considered a more natural event.

The effect of MS also varies depending upon whether pups are
separated in a group of littermates during MS or isolated singly.
Miyazaki and colleagues recently reported that rat pups isolated
singly from the mother during PND7 to PND11 presented distur-
bance of cortical function, whereas pups separated but gathered
from PND7 to PND11 showed no cortical disruption (Miyazaki
etal., 2012).

CHARACTERIZATION OF MATERNALLY SEPARATED
ANIMALS

SERUM LEVEL OF CORT

In rodents, there is an unique period during which the HPA
axis shows a rapid regression known as the stress hyporespon-
sive period (SHRP) (Levine, 2001). This period extends from
PND4 to PND14 in rats and from PND2 to PNDI12 in mice.
During the course of SHRP, ACTH in increased and baseline
plasma glucocorticoid levels are lower than normal (Rosenfeld
et al., 1991). Because, during ontogeny, the maintenance of low
and stable levels of CORT is necessary for normal growth and
development of the central nervous system (CNS), the SHRP is
hypothesized to be neuroprotective against stress-induced exces-
sive stimulation of glucocorticoid receptors (GRs) (Sapolsky and
Meaney, 1986; Sapolsky, 1996). In rodents, the presence of the
mother appears to suppress HPA axis activity, which primar-
ily preserves the SHRP. Indeed, even during the SHRP, MS is

a compelling inducer of a stress response. Meaney and his col-
leagues suggest that the quality of the mother-pup interactions,
such as increased maternal licking, grooming, and arched-back
nursing, is an important aspect for the preservation of this damp-
ened HPA axis activity (Francis et al., 1999). The disturbance of
SHRP induced by MS could cause an excessive exposure of the
brain to high concentrations of glucocorticoids and activation of
GRs, which may subsequently regulate brain and behavior in later
life. Enhanced secretion of stress-induced CORT was observed in
pups separated from their mothers for 1h on PND2 to PND9
(McCormick et al., 1998). Nevertheless, a recent study indicated
that repeated MS for 8 h daily from PND3 to PND5 rapidly desen-
sitized the HPA axis activity of neonatal mice (Enthoven et al.,
2008). We also reported that repeated MS for 3 h daily from PND1
to PND14 did not elevate a baseline level of CORT on PNDI14,
whereas a single-time MS for 3h at PND14 raised a baseline
CORT level (Figure 1) (Horii-Hayashi et al., 2013). In contrast to
the effects of MS on neonatal animals, repeated MS for 3 h daily
from PNDI1 to PND14 significantly raises a CORT level in adult-
hood, as reported by many studies (Ryu et al., 2008; Jahng et al.,
2010; Horii-Hayashi et al., 2013).

ACTIVATED BRAIN REGIONS ANALYZED BY c-FOS EXPRESSION

The expression of the immediate early gene product c-Fos is
a reliable molecular marker to investigate neuronal activation.
The examination of c-Fos expression has revealed that many
brain regions are activated by MS, which differs depending
on age and the type of stress. We recently analyzed the c-Fos
expression induced by repeated MS and single-time MS dur-
ing different developmental stages and time periods. Mice were
exposed to 3h repeated MS daily from PND1 to PND14 or
from PND14 to PND2I1, or to single-time MS at PND14 or
PND21 (Horii-Hayashi et al., 2013). We clarified that MS acti-
vated many brain regions and that c-Fos expression patterns
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FIGURE 1| Plasma CORT levels of repeated maternal separation
(RMS) and single-time maternal separation (SMS) mice on
PND14 and PND21 (Horii-Hayashi et al.,, 2013). The graphs show
plasma CORT concentrations of PND14 (A) and PND21 (B) (n=5-9
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for each group). Blood samples were collected before (pre-RMS)
and after (post-RMS) the final separation from RMS mice and after
the separation from SMS mice. *P < 0.05 vs. control, P <0.05 vs.
Pre-MS.
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changed developmentally (Figure 2). Single-time MS at both ages
activated many regions of the hypothalamus and limbic fore-
brain, while the pattern of c-Fos expression in the repeated MS
groups were significantly different on PND14 and PND21. In
repeated MS of PND14 mice, the c-Fos expression levels in many
regions were markedly increased compared with age-matched
controls, excepting the VMH, Arc, BST, DG, Ce, MePV, and
MePD. By contrast, in repeated MS on PND21 mice, c-Fos expres-
sion was reduced to control levels in all observed brain regions
except for the LS and CA3. These findings suggest that repe-
tition of a homotypic stimulus suppresses c-Fos expression by
PND21, but that such suppression is barely observed on PND14.
Moreover, in animals exposed to repeated homotypic stress dur-
ing the postnatal period, increase in adrenal CORT secretion
does not always associate with increased c-Fos expression in
the PVN. Such developmental differences in c-Fos expression
detected in the repeated MS groups may be associated with a
developmental critical period for stress responses involving the

HPA axis, during which animals are more susceptible to MS and
other environments. In rodents, the critical period is the first
two postnatal weeks. Thus, in early life, a repeated stress will be
unlikely to suppress c-Fos expression. In turn, inappropriately
activated c-Fos target genes may drastically alter how neurons
function in critical neural circuits. Indeed, the suppression of
increased c-Fos expression in repeated MS of PND14 mice was
observed in specific regions (BST, Ce, MePD, and MePV) that
form anatomical neural connections. These regions are referred to
as an extended amygdala, which are closely associated with anxi-
ety, fear, and psychiatric disorders (Davis et al., 2010). Therefore,
even at PNDI14, repeated homotypic stress may reduce neural
activity in the circuit of the extended amygdala. Moreover, in
the SFO, where neurons are influenced by osmolality, calcium,
and sodium concentrations in the systemic circulation (Smith
and Ferguson, 2010), c-Fos expression was increased in both
repeated and single-time MS mice, as compared to controls, on
PND14. However, there were no changes in any of the groups
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FIGURE 2 | c-Fos expression in the hypothalamus and limbic forebrain
after MS (Horii-Hayashi et al., 2013). The graphs show the numbers of
c-Fos-positive cells on PND14 (A) and PND21 (B) in non-separated control
(white bar), RMS (gray bar), and SMS (black bar) mice (n = 4-5 for each
group). In both RMS and SMS, the sampling point is just after MS
procedure. *P < 0.05 vs. control; #P < 0.05 vs. RMS. MPO, medial
preoptic area; PVN, paraventricular nucleus; SFO, subfornical organ; DM,
dorsomedial hypothalamic nucleus; VMH, ventromedial hypothalamic
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nucleus; PrL, prelimbic cortex; MO, medial orbital cortex; LS, lateral
septum; Cg, cingulate cortex; BST, bed nucleus of stria terminalis; CA1,
hippocampal area CA1; CA3, hippocampal area CA3; DG, dentate gyrus;
RSG, retrosplenial granular cortex; La, lateral amygdaloid nucleus; BLA,
anterior part of the basolateral amygdaloid nucleus; Ce, central amygdaloid
nucleus; MePD, posterodorsal part of the medial amygdaloid nucleus;
MePV, posteroventral part of the medial amygdaloid nucleus; Pir, piriform
cortex.
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on PND21. This difference may reflect the increased resistance of
physical growth to the hyperosmolality induced by deprivation of
lactation.

BEHAVIORAL CHANGES INDUCED BY MS IN RODENTS

Early life adverse experiences including MS is one of the great-
est contributing factors for mental health problems across life
stages (Levine, 2005), relating not only to risk for mental health
disorders but also to transdiagnostic features common in many
psychological disorders (Glaser et al., 2006). I will introduce some
of the behavioral aspects observed in animal model of MS.

Depression- and anxiety-like behaviors

Numerous studies have demonstrated a strong relationship
between traumatic events during early life and development of
behavioral abnormalities later in life. Early life adversity, such
as that induced by MS, child physical, sexual, and emotional
abuse, and general neglect has been linked to serious psychiatric
impairment in adulthood (MacMillan et al., 2001). Particularly, a
stressful life event such as early parental loss is associated with
unipolar and bipolar depression, as well as anxiety disorders,
beyond familial or genetic factors (Kendler et al., 1992; Agid
et al., 1999; Furukawa et al., 1999; Heim and Nemeroff, 2001).
Many human studies have reported that major depression and
anxiety disorders are frequent in adults with a history of child-
hood abuse (Stein et al., 1996; Felitti et al., 1998). There have
been numerous reports of the behavioral changes induced by
MS in animal studies. Neonatal MS induces permanent alter-
ations in the characteristics of the HPA response to stress in
the offspring later in life (Ladd et al., 1996; Vazquez et al,
2000). Many studies of repeated MS during the first 2 weeks of
neonatal life showed depression- and anxiety-like behaviors in
adulthood (Newport et al., 2002; Daniels et al., 2004; Lee et al.,
2007; Ryu et al., 2009). In these studies, ambulation and rear-
ing decreased, immobility during a forced swim test increased,
and time spent in the closed arms of an elevated plus maze
increased.

Fear response

Until recently, no one had investigated how early experiences
affected fear retention and extinction development, although
these forms of emotional learning could be critically involved
in the pathogenesis and treatment of mental health problems.
Recent several studies showed that the timing of the maturation
of fear learning is not set in static, but can be dynamically reg-
ulated by early experiences. Although the exact mechanisms are
still unknown, when rats are reared under stressful conditions
then they exhibit adult-like fear retention and extinction behav-
iors at an earlier stage of development (Callaghan et al., 2013).
Chocyk et al. reported that MS decreased freezing time in both
contextual and auditory fear conditioning in adolescent and adult
rats (Chocyk et al., 2014). These results suggest that early life
stress may permanently affect fear learning and memory.

Food intake and response to food deprivation

Previous studies showed that repeated MS during the first 2 weeks
after birth may not permanently affect food intake and body
weight gain of the offspring as long as the pups are reared in

a group (Iwasaki et al., 2000; Kalinichev et al., 2002; Ryu et al.,
2008). In contrast, post-weaning social isolation promotes food
intake and weight gain of adolescent MS pups, with impacts on
anxiety-like behaviors (Ryu et al., 2008). Anhedonia to palatable
food, one of the major symptoms of depression, was reported in
adolescent MS pups with disruption of the mesolimbic dopamin-
ergic activity in response to stress (Noh et al., 2008). Another
study showed that sustained hyperphagia observed in the MS
pups subjected to a fasting/re-feeding cycle repeated during ado-
lescent period of MS pups induced a binge-like eating disorder,
in which increased activity of the HPA axis responding to such
metabolic challenges appeared to play a role, at least partly, in
mediation with the hypothalamic neuro peptide Y (NPY) (Jahng,
2011).

GENE EXPRESSION

Many animal studies, including MS, have improved our
knowledge of gene-environment interactions and elucidated the
pathways that program an animal in response to its early life expe-
riences (Meaney and Szyf, 2005). Epigenetic mechanisms involv-
ing DNA methylation, post-translational modification of histone
proteins and non-coding RNAs (most notably micro-RNA) are
major candidates for regulating gene expression and integrating
intrinsic and environmental signals in the genome (Jaenisch and
Bird, 2003). Murgatroyd and colleagues showed that in the parvo-
cellular subdivision of the paraventricular nucleus of the hypotha-
lamus, MS in mice persistently upregulates Avp gene expression
associated with reduced DNA methylation of a region in the Avp
enhancer. This early life stress-responsive region serves as a bind-
ing site for the methyl-CpG binding protein 2, which in turn is
regulated through neuronal activity. They also found that the abil-
ity of methyl-CpG binding protein 2 to control transcription of
the Avp gene and induce DNA methylation occurred by recruit-
ing components of the epigenetic machinery (Murgatroyd et al.,
2009; Murgatroyd and Nephew, 2013). Other groups investigated
DNA methylation levels at a specific sequence motif upstream
of the GR gene (Nr3cl) in the hippocampus of offspring, and
found that subjecting pups to a single 24 h MS increases methy-
lation levels (Kember et al., 2012). The epigenetic alterations of
these genes suggest that the HPA axis could be dysregulated by
MS. Importantly, however, the DNA methylation differences were
also often strain specific (Kember et al., 2012). Taken together,
these findings demonstrate the importance of investigating envi-
ronmental effects on a range of genetic backgrounds, emphasizing
the need for the further examination of environmental, genetic,
and epigenetic interactions.

CONCLUSIONS

Adverse environments and experiences during the neonatal
period can dramatically affect the development of the HPA axis
that underlies adaptive behavioral responses. MS experiments, as
a model of early life stress, demonstrate that CORT levels and c-
Fos expression change depending upon the different experimental
conditions of MS, e.g., age at testing and frequency of repetition.
Furthermore, separation conditions (isolation with or without a
littermate) could also influence the results of the MS experiments.
MS can induce various behavioral changes manifested in later life,
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which could be caused, at least in part, by alterations in gene
expression, particularly through epigenetic mechanisms.
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