
ORIGINAL RESEARCH ARTICLE
published: 01 July 2014

doi: 10.3389/fnins.2014.00168

Brain state-dependent abnormal LFP activity in the
auditory cortex of a schizophrenia mouse model
Kazuhito Nakao1,2 and Kazu Nakazawa1,2*

1 Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
2 Unit on Genetics of Cognition and Behavior, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health,

Bethesda, MD, USA

Edited by:

Yukiko Kikuchi, Newcastle University
Medical School, UK

Reviewed by:

Piia Astikainen, University of
Jyväskylä, Finland
Huan Luo, Chinese Academy of
Sciences, China

*Correspondence:

Kazu Nakazawa, Department of
Psychiatry and Behavioral
Neurobiology, University of Alabama
at Birmingham, Shelby Building
1105, 1825 University Boulevard,
Birmingham, AL 35294, USA
e-mail: nakazawk@uab.edu

In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired,
which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory
activity also appears to be abnormal. It has been debated whether the evoked
ASSR impairments are due to the possible increase in baseline power. GABAergic
interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some
behavioral and pathophysiological aspects of schizophrenia. To determine the presence
and extent of sensory deficits in these mutant mice, we recorded spontaneous local
field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex
of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus
period before application of the first click trains was augmented at a wide range of
frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged
spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant
mice became indistinguishable from the levels of control mice. Nonetheless, the evoked
40-Hz ASSR power and their phase locking to click trains were robustly impaired in the
mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These
results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two
brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase
in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in
the evoked ASSR power and its phase-locking despite of normal baseline LFP power
magnitude during the repetitive auditory stimuli. The “paradoxically” high spontaneous
LFP activity of the primary auditory cortex in the absence of external stimuli may possibly
contribute to the emergence of schizophrenia-related aberrant auditory perception.
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INTRODUCTION
Neural oscillation and synchronization abnormalities have been
suggested to play a role in the information and sensory process-
ing deficits commonly seen in schizophrenia (Ford and Mathalon,
2008; Uhlhaas and Singer, 2010; Gandal et al., 2012a). Periodic
auditory stimulation entrains the electro-encephalogram (EEG)
to a specific phase and frequency, often referred to as the audi-
tory steady-state response (ASSR). In both human and animal
models, the ASSR has been used to assess the functional integrity
of neural circuits that support synchronization (Picton et al.,
2003; Brenner et al., 2009; O’Donnell et al., 2013). In schizophre-
nia, reduced ASSR power (magnitude) and phase locking (phase
consistency across trials), particularly at 40 Hz, are observed in
EEG (Kwon et al., 1999; Brenner et al., 2003; Light et al., 2006;
Spencer et al., 2008, 2009; Vierling-Claassen et al., 2008; Krishnan
et al., 2009) as well as in magneto-encephalogram (MEG) (Teale
et al., 2008; Maharajh et al., 2010; Tsuchimoto et al., 2011)
studies. Since cortical parvalbumin (PV)-positive fast-spiking
interneurons have an intrinsic resonance near this range (Tateno
et al., 2004; Golomb et al., 2007), the reduction in 40-Hz ASSRs

may reflect functional deficits of these fast-spiking neurons in
schizophrenia.

Earlier studies of gamma synchrony deficits in schizophre-
nia reported the relative changes in gamma band activity in
response to task stimuli, by assessing stimulus-evoked responses
in synchrony compared with a pre-stimulus baseline (Kwon et al.,
1999; Haig et al., 2000; Lee et al., 2003). Thus, in these stud-
ies relatively less evoked gamma synchrony could be a reflection
of greater baseline spontaneous gamma phase synchrony under
pre-stimulus conditions. However, in schizophrenia the evidence
regarding baseline gamma activity abnormalities is inconsistent.
Both increases (Jalili et al., 2007; Venables et al., 2009; Kikuchi
et al., 2011; Spencer, 2012) and decreases (Yeragani et al., 2006;
Rutter et al., 2009) in baseline spontaneous gamma power dur-
ing pre-stimulus period or “resting state” have been reported. The
reason for these contradictory results has yet to be clarified.

To measure the baseline spontaneous gamma band power with
high precision, it would be useful to directly record local field
potentials (LFPs), necessitating the use of animal models. To
that end, we recorded LFPs directly from the primary auditory
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(A1) cortex of GABAergic interneuron-specific NMDA recep-
tor (NMDAR) hypofunction mice (Ppp1r2-cre/fGluN1 KO mice).
Previous studies using this mutant mouse revealed that the selec-
tive deletion of GluN1, an indispensable subunit of NMDARs,
in cortical and hippocampal interneurons during early postnatal
development recapitulates several schizophrenia-like behavioral
and pathophysiological phenotypes (Belforte et al., 2010; Jiang
et al., 2013). In the present study, we subjected these mutant mice
to the ASSR paradigm, similar to the one used in human studies
(Krishnan et al., 2009). We assessed the auditory click train-
evoked ASSRs and baseline LFP fluctuations in pre/post-stimulus
period and at baseline (i.e., between stimulus presentations).

MATERIALS AND METHODS
All experimental procedures were in accordance with National
Research Council guidelines for the care and use of labora-
tory animals, and were approved by the National Institute of
Mental Health Animal Care and Use Committee. Data analysis
was conducted at the University of Alabama at Birmingham.

ANIMAL
Ppp1r2-cre(+/−)/fGluN1(f/f) mice (henceforth referred to as KO
mice or mutants) were generated as previously described (Belforte
et al., 2010). Briefly, the protein phosphatase 1, regulatory subunit
2 (Ppp1r2)-cre line and a floxed-GluN1 (fGluN1) line were used
to delete exons 9 and 10 of GluN1 gene from the postnatal second
week in a subset of cortical and hippocampal Ppp1r2-cre posi-
tive interneurons, the majority of which are PV-positive. Female
mutant mice were bred to homozygously fGluN1 male mice to
generate the same mutant and fGluN1 control mice with a 50%
probability. In the present study, 65 male mice received chronic
survival surgery for the microwire array implantation. After suc-
cessful detection of the auditory-evoked potentials 1 week after
the surgery, 7 fGluN1 control (13–16 week-old, 30.6 ± 0.65 g
body weight) and 6 mutant (12–14 week-old, 28.1 ± 0.8 g) mice
were subjected to in-depth analysis of ASSRs, as described in
Result section.

SURGICAL PROCEDURES
Animals were anesthetized with isoflurane to surgical levels and
were mounted in a stereotaxic instrument with non-rupture ear
bars (Zygoma ear cups, David Kopf Instruments). A custom-
made plastic headpost was secured to the occipital bone at the
midline with superglue and dental acrylic, and was used to fix
the animal’s skull to the stereotaxic instrument. This was done to
prevent physical occlusion of the external ear canals by stereotaxic
ear bars in order to obtain tone-evoked LFP responses. A unilat-
eral craniotomy was made over the right temporal bone from 1.5
to 3.5 mm posterior to bregma and from 3.5 to 4.5 mm lateral
to midline. The vasculature was inspected. The microwire multi-
electrode array consisted of six tetrodes, which were custom-
configured in a 2 × 3 matrix with inter-electrode distance of
∼200 µm, covering 0.6 × 0.8 mm2. The impedance of each elec-
trode was between 0.2 and 0.3 M�. The microwire array was
inserted into the superficial layers of A1 cortex with the aid of cor-
tical vascular patterns, and two stainless steel screws in the frontal
cortex which served as ground and reference electrodes. After the

dosage of isoflurane was reduced to 1%, a single white noise pulse
(1 ms, duration; 80 dB, SPL) was applied to activate the A1 corti-
cal area. In order to allow for the tone-evoke responses it is critical
to maintain the isoflurane concentration at 1% (Santarelli et al.,
2003). The animal was held in place with adhesive tape to pre-
vent head twitching or grooming. An analgesia (buprenorphine,
0.1 mg/kg s.c.) was given to diminish pain sensation during the
surgery. If single-tone evoked potentials (over 0.1 mV magnitude)
were detected in at least one electrode of the microwire array,
the electrodes were inserted further until maximal responses were
obtained. The anesthetic dose was then returned back to surgical
levels, and the microwire array was fixed to the skull with dental
acrylic.

IN VIVO RECORDING
Seven days after surgery, LFP recording was performed from A1
cortex of awake, head-restrained mice. The mice were briefly
anesthetized with 1% isoflurane to hold the animal head fixed to
the stereotaxic instrument using the headpost, and the body was
covered with adhesive paper tape to limit body movements. The
micro-array electrodes were directly connected, via an EIB-27-
Micro headstage pre-amplifier, to a Cheetah-64 recording system
(Neuralynx Inc.), where LFP signals were filtered (bandwidth
from 0.1 to 475 Hz), digitized, and acquired at a sampling rate
of 1.56 kHz per channel. Thirty minutes after the cessation of
anesthesia, LFP recording began from A1 cortex of awake, head-
restrained mice in a custom-made auditory isolation chamber
(background sound level, 40 dB SPL).

In the first session, spontaneous LFP activity during a pre-
stimulus period was recorded from A1 cortex for 2–25 min.
Subsequently, in the second session, 500-ms long click trains
consisting of 80 dB white-noise pulses presented at 40 Hz (40-
Hz ASSR stimuli) were applied 50 times with an inter-stimulus
interval of 20 s, which mimics the ASSR protocol used in human
studies (Krishnan et al., 2009). Auditory click stimuli, consisting
of white noise pulses (1 ms, duration; 80 dB, SPL), were gener-
ated in Labview (National Instruments Inc.), and presented using
a speaker with a 35 Hz–20 kHz frequency response (Z3, Logitech
Inc.) placed 30 cm above the mouse head. In the third session,
which began 10 min after cessation of the second session, 1000-
ms long click trains consisting of 80 dB white-noise presented at
20 Hz (20-Hz ASSR stimuli) were applied 50 times with an inter-
stimulus interval of 20 s. In the last session, spontaneous LFP
activity was recorded for 25 min as a post-stimulus period. When
no auditory evoked LFP responses were detected in any channels
during the second session, the experiment was terminated and the
animal was euthanized.

LFP ANALYSIS
Only the channel data in which the amplitude of initial N1
response in the 40 Hz-ASSRs was more than 0.1 mV (∼4 times
the standard deviation), were used for subsequent analyses.
Neuralynx LFP files were first converted to Spike2 format to
visually inspect the raw data. Next, LFP voltage values in the
Neuralynx files were converted to Matlab (Mathworks) files,
and these values were normalized to the z-scores by subtract-
ing the mean and dividing by the standard deviation of the LFP
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voltages during entire recording epoch (∼20 min). The Matlab
files with the z-scores were then converted to NeuroExplorer (Nex
Technologies) files to calculate the power.

In order to assess the oscillatory component of evoked ASSRs,
z-score normalized LFPs during the last 200-ms of each ASSR
were analyzed with a fast Fourier transform (FFT) algorithm in
the range of 0–100 Hz using 256 frequency bins and presented
as total ASSR power (e.g., Figure 1C). Relative power amplitudes
were calculated by subtracting a baseline spontaneous power,
which was from the 200-ms inter-stimulus segment 10 s prior to
each click-train onset, from the total ASSR power (see Figure 1E).

For spontaneous LFP power during a pre-stimulus period, LFP
data (200-ms bin) during the last 10 s prior to the first click-train
administration were analyzed with FFT algorithm in the range
of 0–200 Hz using 256 frequency bins (Figure 3). To compare
the baseline power magnitudes in-between ASSR sessions with
the spontaneous power during the pre- or post-stimulus period,
z-score normalized LFP from 5 to 15 s (200-ms bin) after 1st
stimuli, 25th stimuli, and 50th stimuli were analyzed with FFT
algorithm in the range of 0–100 Hz using 256 frequency bins.
For the pre-stimulus period, the baseline spontaneous power dur-
ing last 10 s before click train onset was analyzed in the range of
0–100 Hz using 256 frequency bins. For power spectral analysis
during the post-stimulus period, LFP data obtained from a 10-s
period (200-ms bin) 20 min after the cessation of all ASSR stimuli
were analyzed with FFT algorithm in the range of 0–100 Hz using
256 frequency bins (see Figure 4A).

To calculate phase locking to auditory click- trains, phase lock-
ing was performed in a frequency range 0–100 Hz with a 60%
overlapping window after applying Hanning tapering of normal-
ized LFP data, which was further analyzed with FFT algorithm.
To plot a scalogram (wavelet spectrogram), Matlab z-score files of
LFP were wavelet transformed using a Complex Gaussian wavelet
from Matlab wavelet toolbox.

STATISTICS
Given that between-animal variability may be larger than within-
animal variability in per-channel (i.e., per electrode) design, we
mainly presented the data with per-animal design in the Figures
and some data with per-channel design in the Supplemental
Figures (see Lazic and Essioux, 2013). Differences between groups
were assessed for normally distributed data using a Student’s t-
test (Statcel 2nd ed., OMS, Tokyo, Japan). The effect size was
assessed as Cohen’s d. For the graph data in Figures 4, 5, differ-
ences were assessed by repeated measures of ANOVAs followed by
Bonferroni post-hoc analysis (SPSS, IBM). Data were presented as
mean ± s.e.m.

RESULTS
ROBUST REDUCTION OF 40-Hz AUDITORY STEADY-STATE RESPONSES
(ASSRs)
Seven days after surgery, 40-Hz click train-evoked initial N1
responses (i.e., the transient auditory evoked potentials to click
train onset, more than 0.1 mV) were detected in A1 cortex from13
mice (7 fGluN1 control and 6 mutant mice), out of a total of
65 animals in which the click-train-evoked responses had been
detected during the electrode implantation surgery. The relative

high number of animals that displayed no evoked LFPs was
mostly likely to be due to a shift of or damage to the electrode
microarray placed on the temporal bone. Thirty-one LFP record-
ings from 7 control mice [animal #1: 2 (number of recording sites
to be analyzed)/6 (total channel number), #2: 6/6, #3: 3/6, #4: 6/6,
#5: 6/6, #6: 3/6, #7: 5/6], and 26 LFP recordings from 6 mutant
mice (animal #1: 5/6, #2: 4/6, #3: 6/6, #4: 5/6, #5: 3/6, #6: 3/6)
were subjected to subsequent LFP in-depth analysis.

Fifty 40-Hz click trains (duration, 500 ms) were delivered
to click train-naïve animals with an inter-stimulus interval of
20 s. Figure 1A depicts representative examples of the averaged
ASSRs (middle) and scalogram (wavelet spectrogram, bottom)
evoked by 40 Hz stimulation (upper) in the floxed-control (left)
and mutant mouse (right). Robust click train-evoked N1 poten-
tials were elicited within the first 100 ms after click-train onset
in both genotypes, and there were no differences in the aver-
aged N1 amplitudes between genotypes per animal (Figure 1B).
However, the N1 amplitudes averaged per channel were lower
in the mutants compared to the floxed-control mice (p < 0.05,
Student’s t-test, Supplemental Figure 1A). To assess the subse-
quent ASSRs coherent to the 40-Hz click trains without any
impact of evoked N1 potentials on the steady-state responses,
LFP data (z-score) during last 200 ms before click-train cessa-
tion (a dashed line period in Figure 1A) were analyzed with
an FFT algorithm. We found that the amplitudes of 40-Hz
ASSRs were smaller in the mutants compared to the controls
per animal [Figure 1C, t(11) = 2.8, p < 0.05, Cohen’s d = 1.60
(large effect size)] and per channel [Supplemental Figure 1B,
t(55) = 5.23, p < 0.01, d = 1.43 (large effect size)]. Difference in
evoked ASSR power from baseline spontaneous power during
inter-stimulus intervals, which were obtained by subtracting the
spontaneous power amplitudes in-between ASSR stimuli from
total ASSR power (Figure 1E), also peaked at 40 Hz and, to the
lessor degree, at 30 Hz in the controls. Conversely, only small
differences were detected in the mutant mice (Figure 1D and
Supplemental Figure 1C). Figure 1F and Supplemental Figure 1D
showed power spectrum density difference from the baseline at
35–44 Hz for each animal [n = 7 controls, n = 6 mutants, t(11) =
4.57, p < 0.01, d = 2.64 (large effect size)] and for each chan-
nel [n = 31 sites from 7 controls, n = 26 sites from 6 mutants,
t(55) = 7.79, p < 0.01, d = 2.14 (large effect size)], indicating
that average low gamma power for the evoked ASSRs was lower
in the mutants compared to the controls. In addition, phase lock-
ing analysis of the 40-Hz ASSRs (z-score) revealed two peaks
at 40 Hz (35–44 Hz) and at 80 Hz (75–84 Hz) for both controls
and mutants (Figure 1G), but only phase locking at 40 Hz in the
mutants was lower in comparison to controls for each animal
[Figure 1H, t(11) = 4.93, p < 0.01, d = 2.75 (large effect size)]
and for each channel [Supplement Figure 1E, t(55) = 9.42, p <

0.01, d = 2.47 (large effect size)]. These findings suggest that
mutants are severely impaired in 40-Hz ASSR for both amplitude
and phase locking, both of which are reminiscent of ASSR deficits
in schizophrenia patients.

DIMINISHED 20-Hz ASSR POWER AND PHASE-LOCKING
We next examined 20-Hz ASSRs (duration, 1000 ms) to explore
whether ASSR deficits are specific to 40-Hz stimuli. Figure 2A
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FIGURE 1 | Robust reduction in power and phase-locking of 40-Hz ASSRs.

(A) Representative examples of the averaged 40-Hz ASSR (middle, z-score) and
spectrogram (bottom) in response to 40-Hz click trains (upper; 80 dB intensity,
500 ms duration). Time 0 is tone onset. (B) No difference in the averaged N1
amplitudes (z-score) evoked by 40-Hz click trains between genotypes (blue for
7 fGluN1 control mice; red for 6 mutant mice). p = 0.11, unpaired Student’s
t-test (C) Evoked ASSR power (z-score) at 35–44 Hz frequency range during
40-Hz click train stimulation in mutants (red) was lower than controls (blue).
∗p < 0.05, unpaired Student’s t-test. (D) The mean difference (A.U.) from
baseline spontaneous power during inter-stimulus interval (ISIs; green square
in Panel E) in click train-evoked ASSR power during last 200 ms before cessation
of 40-Hz click trains (red square in Panels A,E). Dotted lines: mean ± s.e.m. (E)

Schematic diagram indicates the analysis periods of baseline LFP power
(green, ISI spontaneous power) and the evoked ASSR power (red). Relative
ASSR power amplitudes shown in Panel (D) were calculated by subtracting an
ISI power (in green) from the evoked ASSR power (in red) for each channel, and
averaged per animal. (F) The difference in the magnitude between 35 and
44 Hz spectral power (arrowheads in Panel D) and the baseline for 40-Hz
ASSRs in mutants (red) was lower than controls (blue). ∗∗p < 0.01, unpaired
Student’s t-test. (G) Phase locking to 40-Hz steady-state tone stimuli in control
(blue) and mutant (red) mice. Dotted lines: mean ± s.e.m. (H) Magnitude of
35–44 Hz phase locking for 40-Hz ASSRs (arrowheads in Panel G) in mutants
(red) was lower than controls (blue). ∗∗p < 0.01, unpaired Student’s t-test. Each
dot represents individual animals. Dotted lines in Panels (D,G) are s.e.m.
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FIGURE 2 | Diminished power and phase-locking of 20-Hz ASSRs.

(A) Representative examples of the averaged 20-Hz ASSR (middle,
z-score) and spectrogram (bottom), in response to 20-Hz click trains
(upper; 80 dB intensity, 1000 ms duration). Time 0 is tone onset. (B) No
difference in the averaged N1 amplitudes (z-score) evoked by 20-Hz click
trains between genotypes (blue for 7 fGluN1 control mice; red for 6
mutant mice). p = 0.54, unpaired Student’s t-test. (C) The mean
difference (A.U.) from ISI spontaneous power in click train-evoked ASSR
power during last 200 ms before cessation of 20-Hz click trains (red

square in A) (blue for 7 fGluN1 controls; red for 6 mutants). Dotted lines:
mean ± s.e.m. (D) The difference in the magnitude between 15 and
24 Hz power (arrowheads in C) from ISI spontaneous power for 20-Hz
ASSRs was lower in mutant mice (red). ∗p < 0.05, unpaired Student’s
t-test. (E) Phase locking to 20-Hz ASSR stimuli in control (blue) and
mutant (red) mice. Dotted lines: mean ± s.e.m. (F) Magnitude of
15–24 Hz phase locking for 20-Hz ASSRs (arrowheads in E) was lower in
mutant mice (red). ∗p < 0.05 unpaired Student’s t-test. Each dot
represents individual animals. Dotted lines in (C,E) are s.e.m.
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depicts a representative example of the averaged evoked potentials
(middle) and spectrogram (bottom) evoked by 20-Hz click trains
(upper) in control (left) and mutant mice (right). First, we
found no difference in the averaged N1 amplitudes between
genotypes analyzed per animal (Figure 2B) or analyzed per chan-
nel (Supplemental Figure 2A). The difference in the evoked
ASSR power, which were obtained by subtracting the sponta-
neous power amplitudes in between ASSR stimuli from the total
ASSR power during last 200 ms before cessation of click-trains
(dashed period in Figure 2A), also peaked at 20 Hz with a smaller
peak at the 40 Hz harmonic in both genotypes (Figure 2C and
Supplemental Figure 2B). However, the relative power of the
dominant peak at 20 Hz (15–24 Hz) was lower in the mutants
compared to controls per animal [Figure 2D, t(11) = 2.59, p <

0.05, d = 1.47 (large effect size)] and in per-channel design
[Supplemental Figure 2C, t(55) = 4.58, p < 0.01, d = 1.25 (large
effect size)]. Furthermore, phase locking of the 20-Hz ASSR
consisted of a dominant peak at 20 Hz with several spectral
peaks at harmonics of 20 Hz (Figure 2E and Supplemental Figure
2D). The dominant peak of phase locking factor at 15–24 Hz
in the mutants was lower than the controls analyzed per ani-
mal [Figure 2F, t(11) = 2.29, p < 0.05, d = 1.3 (large effect size)]
and analyzed per channel [Supplemental Figure 2E, t(55) = 3.77,
p < 0.01, d = 1.01 (large effect size)], but other spectral peaks
in the mutants were similar to those in controls per animal (p =
0.63 for 35–44 Hz, p = 0.37 for 55–64 Hz, p = 0.40 for 75–84 Hz,
unpaired Student’s t-test) and per channel (p = 0.44 for 35–
44 Hz, p = 0.27 for 55–64 Hz, p = 0.50 for 75–84 Hz, unpaired
Student’s t-test). These results indicate both ASSR and phase-
locking evoked by 20-Hz ASSR stimuli are also diminished in the
mutant mice, while the magnitudes of auditory-evoked potentials
triggered by 20-Hz stimuli are largely unaffected.

ENHANCED SPONTANEOUS LFP POWER IN AWAKE QUIESCENT
PERIOD
To systematically explore the levels of spontaneous power
throughout the periods of inter-ASSR stimulus intervals and the
post-ASSR period, we further assessed the transition of sponta-
neous LFP power (z-score) from the pre-stimulus period to the
inter-stimulus periods post to the first, 25th and 50th 40-Hz click-
train administration, and the post-stimulus period 20 min after
the cessation of last (50th) 40-Hz click-train (Figure 3A). First,
we assessed the power spectra of z-score normalized LFPs during
the pre-stimulus period from awake head-restrained animals. We
found that baseline spontaneous power during the last 10-s pre-
stimulus period prior to the first click-train administration was
augmented in the mutants compared to the controls regardless of
the spectral frequency found in both per-animal (Figure 3B) and
per-channel (Supplemental Figure 3A) design. The intensities of
averaged power for baseline LFPs at low gamma (30–50 Hz) and
high gamma (50–100 Hz) range were both higher in the mutant
mice compared to the controls per animal [Figure 3C, t(11) =
3.00, p < 0.01, d = 1.67 for low gamma; t(11) = 3.13, p < 0.01,
d = 1.74 for high gamma] and per channel [Supplemental Figure
3B, t(55) = 6.41, p < 0.01, d = 1.66 for low gamma; t(55) = 5.56,
p < 0.01, d = 1.46 for high gamma]. This elevation of LFP fluc-
tuation continued even at super gamma frequency (100–120 Hz)
per animal [t(11) = 2.41, p < 0.05, d = 1.33 (large effect size)]

and per channel [t(55) = 4.68, p < 0.01, d = 1.24 (large effect
size)], suggesting a broadband LFP power increase in the mutant
animals during the awake quiescent period.

SPONTANEOUS LFP POWER RETURNS BACK TO NORMAL UPON ASSR
STIMULI
After the 40-Hz ASSR session began, we found a clear trend of a
gradual reduction in mutant spontaneous LFP power amplitudes
during inter-stimulus intervals with the increasing number of
ASSR stimuli (Figures 4A–C, 5A–C). For example, spontaneous
LFP power per animal was reduced in the inter-stimulus period
following the 25th ASSRs, compared to the pre-ASSR period
at 35–44 Hz [Figure 4B, F(1, 11) = 1.389, p = 0.263 for geno-
type, Bonferroni post-hoc test, p < 0.05]. In per-channel design,
spontaneous LFP power at 21–30 Hz [Figure 5A, F(1, 54) = 1.326,
p = 0.255 for genotype, Bonferroni post-hoc test, p < 0.05],
35–44 Hz [Figure 5B, F(1, 54) = 6.392, p = 0.014 for genotype,
Bonferroni post-hoc test, p < 0.05], and 71–80 Hz [Figure 5C,
F(1, 54) = 2.707, p = 0.106 for genotype, Bonferroni post-hoc test,
p < 0.05], were all decreased by the 25th ISI in the mutants. On
the other hand, the spontaneous LFP power in the control mice
tended to increase after the 1st ASSR stimuli, particularly in beta
frequency range (Figure 4A). This power increase upon ASSR
stimuli in the control mice was prominent in the per-channel
design (Figures 5A,B, p < 0.05, respectively). Consequently, no
genotypic difference was detected in spontaneous LFP power
magnitudes during 10-s inter-stimulus intervals (combined data
of first, 25th and 50th ISIs) at any power spectra examined per
animal (Figure 4D) and per channel (Figure 5D). Interestingly,
20-min after the last ASSR, the spontaneous LFP power in
the mutants was significantly augmented [Figure 4A, F(1, 11) =
1.104, p = 0.335 for genotype, Bonferroni post-hoc test, p <

0.05] to the level of pre-stimulus period. The elevation of LFP
power amplitudes was more prominent in per channel analysis
(Figures 5A–C, p < 0.05). These results suggest a brain state-
dependent abnormality of baseline spontaneous LFP power in the
mutant mice, i.e., an abnormally high spontaneous LFP power
in an awake quiescent period, which disappears upon receiving
external auditory stimuli. Our findings also strongly suggests that
the evoked ASSR deficit found in our mutants is not due to greater
baseline spontaneous gamma power, rather it is simply caused by
the deficits in evoking responses by external stimuli.

DISCUSSION
We demonstrated abnormal oscillatory LFP power and impaired
auditory-evoked LFP responses from the auditory cortex of
awake, head-restrained GABA neuron-specific NMDAR hypo-
function mice. Specifically, we found (1) a profound reduc-
tion of ASSR power and phase locking at 40-Hz, and to lesser
degree, at 20-Hz, and (2) a broadband increase in sponta-
neous LFP power during the pre-stimulus period, but not dur-
ing the inter-ASSR stimulus intervals. Interestingly, abnormal
elevation of baseline spontaneous LFP power during the pre-
stimulus period disappeared after the ASSR stimuli were pre-
sented. These finding suggest that NMDAR hypofunction in
cortical GABAergic interneurons leads to two temporally dis-
tinct, brain state-dependent LFP deficits in A1 cortex; (1) the
evoked ASSR deficits with normal level of spontaneous LFP
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FIGURE 3 | Broadband elevation of mutant spontaneous LFP power

during pre-stimulus period. (A) Schematic diagram indicates the analysis
periods of spontaneous LFP power during pre-stimulus period (Pre), following
the first ASSR stimuli [1st inter-stimulus interval (ISI)], following the 50th
ASSR stimuli (50th ISI), and during post-stimulus period (Post). For a
pre-stimulus period, z-score normalized LFPs (top line) during last 10 s (upper
left green square) before the first click train onset were analyzed with FFT
algorism with every 200-ms bin (each box). During ASSR sessions, LFP data
from 5 to 15 s (200-ms bin) after the 1st stimuli (upper right green square),
the 25th stimuli (not shown), and 50th stimuli (bottom left green square)

were analyzed with FFT algorithm. For a post-stimulus period, LFPs were
obtained from a 10-s period (bottom right green square) 20 min after
cessation of the last click trains were analyzed with FFT algorithm (200-ms
bin). (B) Z-score normalized spectral density power during pre-stimulus
period from control (blue) and mutant (red) mice (control: n = 7, mutant:
n = 6). Dotted lines: mean ± s.e.m. A 60-Hz bump in control LFP power
spectra was due to power line noise contamination. (C) Averaged
spontaneous LFP powers at low gamma (30–50 Hz), high gamma (50–100 Hz)
frequency range were higher in mutant (red) mice compared to control mice
(blue). ∗∗p < 0.01, unpaired Student’s t-test.

power and (2) abnormal broadband elevation of spontaneous
LFP power when no auditory stimuli are presented. Our study
also showed no obvious contribution to the evoked ASSR deficits
of augmented spontaneous LFP fluctuation following NMDAR
hypofunction in GABAergic interneurons.

POTENTIAL MECHANISMS UNDERLYING EVOKED ASSR DEFICITS
We demonstrated robust ASSR deficits in the mutant mice in
which NMDARs were selectively eliminated from 75 to 84% of
PV-containing interneurons in neocortex (Belforte et al., 2010).
This suggests that NMDARs in the PV-positive fast-spiking neu-
rons are crucial for emergence of ASSRs. Optogenetically evoked-
gamma oscillations have also been shown to be defective in mice
in which NMDARs are genetically ablated from all PV-positive
neurons (Carlén et al., 2012). The mechanism by which NMDAR
deletion from PV neurons results in the ASSR deficits in not fully
known. However, activation of cortical PV-positive interneurons

in the thalamorecipient circuit is known to enhance acoustic
information flow by feed-forward inhibition, which contributes
to improved signal-to-noise ratio (Hamilton et al., 2013). In par-
ticular, the firing rate of fast-spiking neurons, likely PV-positive,
appears to increase with increasing attention to external stimuli
(Mitchell et al., 2007; Chen et al., 2008). It is noted that although
selective genetic GluN1 deletion also occurs in ∼30% of Reelin-
positive interneurons in the mutant cortex, Reelin-positive neu-
rons are located mostly in the supra-granular layers. Therefore,
the most likely mechanism for our observation is a functional
deficit in the NMDAR-deleted PV neurons that receive thalam-
ocortical afferents. Presumed impairment in their feed-forward
inhibition in response to acoustic stimuli may attenuate the gen-
eration of auditory evoked potentials followed by gamma oscilla-
tions. Further research exploring whether NMDAR hypofunction
in cortical PV-neurons disturbs feedforward information flow
elicited by auditory stimuli in A1 cortex is warranted.
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FIGURE 4 | Normal magnitude of baseline LFP power during periods

of periodic ASSR stimuli, by per-animal design. (A) Transition of
z-score normalized spontaneous LFP powers per animal at 21–30 Hz
frequency in control (blue) and mutant (red) mice during Pre (pre-stimulus
period), 1st ISI (first inter-stimulus interval), 25th ISI, 50th ISI, and Post
(post-stimulus period). ∗p < 0.05. (B) Transition of spontaneous LFP
powers at 35–44 Hz in control (blue) and mutant (red) mice. ∗p < 0.05.
(C) Transition of spontaneous LFP powers at 71–80 Hz in control (blue)

and mutant (red) mice. ∗p < 0.05. Repeated-measures ANOVA followed
by post-hoc Bonferroni testing. (D) No differences in averaged
spontaneous LFP power amplitudes in the first, the 25th and the 50th
ISIs, across frequencies between control (blue, n = 7) and mutant (red,
n = 6) mice. The inset shows no difference in average LFP power
amplitudes at low gamma (30–50 Hz) and high gamma (50–100 Hz)
frequency. A 60-Hz bump in control LFP power spectra was due to
power line noise contamination. Dotted lines: mean ± s.e.m.

POTENTIAL MECHANISMS UNDERLYING THE ENHANCED BASELINE
LFP FLUCTUATION
We also observed elevated spontaneous LFP oscillatory power in
the pre-stimulus period before the animal attends to the audi-
tory stimuli. Since genetic ablation of NMDARs selectively from
PV neurons in awake mice also results in increased baseline
power (Korotkova et al., 2010; Carlén et al., 2012), this finding is
most likely due to NMDAR hypofunction in PV neurons. Similar
results were also obtained from GluN1 hypomorph mice (Dzirasa
et al., 2009; Gandal et al., 2012b) and from the acute administra-
tion of NMDAR antagonists (phencyclidine, ketamine, or MK-
801) to rodents (Leung, 1985; Ma and Leung, 2000, 2007; Pinault,
2008; Ehrlichman et al., 2009; Hakami et al., 2009; Páleníček et al.,
2011; Kulikova et al., 2012; Wood et al., 2012; Caixeta et al., 2013;
Molina et al., 2014), to humans (Maksimow et al., 2006; Hong
et al., 2010), and in in vitro slice preparation (McNally et al.,
2011). The most likely mechanistic explanation for these effects is
that cortical disinhibition elicited by NMDAR deletion from local
PV neurons render the cortical glutamatergic neurons hyper-
excitable (Olney and Farber, 1995; Homayoun and Moghaddam,
2007; Lisman et al., 2008; Nakazawa et al., 2012). However,
the NMDAR hypofunction-induced baseline power increase is

unlikely to be caused by hyper-synchrony of spiking activity. A
recent in vivo unit/LFP recording study revealed that cortical dis-
inhibition elicited by MK-801, a NMDAR antagonist, evoked an
increase in the number of random spike trains of individual units
and consequently a reduced synchronized firing of action poten-
tials in mPFC of free-moving rats, despite a robust increase in
LFP power at gamma frequency (Molina et al., 2014). This finding
suggests a decoupling of gamma band LFP power from neu-
ronal spiking synchrony. Similarly, we also previously reported
in the same mutant mice used in this study there was a dis-
ruption in in vivo spike synchrony among pyramidal neurons in
somatosensory cortex (Belforte et al., 2010). Therefore, the spon-
taneous LFP power increase following cortical NMDAR hypo-
function may simply reflect a robust increase in synaptic inputs
with aberrant or “noisy” spike firing. It is also plausible that
NMDAR antagonism on GABAergic neurons in the basal ganglia
and/or thalamic reticular nucleus causes disinhibition of thala-
mocortical neurons, leading to massive stimulation of cortical
neurons at gamma frequency (Llinás and Ribary, 1993; Santana
et al., 2011). However, this is unlikely in our model because
the genetic manipulation is largely confined to the cortex and
hippocampus.
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FIGURE 5 | Normal magnitude of baseline LFP power during periods of

periodic ASSR stimuli, by per-channel design. (A) Mean normalized
powers in per channel design for 21–30 Hz frequency LFP fluctuation in
control (blue, n = 31 sites from 7 animals) and mutant (red, n = 26 sites from
6 animals) mice during Pre-ASSR, 1st ISI, 25th ISI, 50th ISI, and post-ASSR.
∗∗p < 0.01, repeated-measures ANOVA followed by post-hoc Bonferroni
testing. (B) Mean normalized powers for 35–44 Hz frequency LFP fluctuation
in control (blue) and mutant (red) mice during Pre-ASSR, 1st ISI, 25th ISI,
50th ISI, and Post-ASSR. ∗∗p < 0.01 and ∗p < 0.05, repeated-measures
ANOVA followed by post-hoc Bonferroni testing. (C) Mean normalized

powers for 71–80 Hz frequency LFP fluctuation in control (blue) and mutant
(red) mice during Pre-ASSR, 1st ISI, 25th ISI, 50th ISI, and Post-ASSR.
∗∗p < 0.01, ∗p < 0.05, repeated-measures ANOVA followed by post-hoc
Bonferroni testing. (D) No differences in averaged spontaneous LFP power
amplitudes in the first, the 25th and the 50th ISIs, across frequencies
between control mice (blue, n = 31 sites from 7 animals) and mutant mice
(red, n = 26 sites from 6 animals). The inset shows no difference in average
LFP power amplitudes at low gamma (30–50 Hz) and high gamma
(50–100 Hz) frequency. A 60-Hz bump in control LFP power spectra was due
to power line noise contamination. Dotted lines: mean ± s.e.m.

BRAIN STATE-DEPENDENT ELEVATION OF SPONTANEOUS LFP POWER
Unexpectedly, we found that spontaneous LFP power ampli-
tudes tends to decrease during the repeated ASSR stimuli; a
phenomenon which was more robust in per-channel design
(Figure 5). Accordingly, the broadband elevation of spontaneous
LFP power in the pre-stimulus period (Figure 3B) disappeared
during the inter-ASSR stimulus periods (Figure 4D). The struc-
ture of cortical spontaneous activity is known to vary with
cortical state or behavioral state (Steriade et al., 2001; Harris
and Thiele, 2011). During the slow-wave sleep period and awake
quiescent period, auditory cortex exhibits fluctuations of global
activity between “synchronized” states of larger low frequency
waves known as up and down state (Steriade et al., 1993;
Harris and Thiele, 2011). In active wakefulness during tone
presentation, these fluctuations are replaced by the “desynchro-
nized” state characterized by low amplitude, high frequency LFPs
(Castro-Alamancos, 2004). It has been reported that superfi-
cial pyramidal cells and putative fast-spiking neurons in rat A1
cortex dominate in awake quiescent period, and their activity
was largely suppressed during auditory stimuli-induced cortical

desynchronization (Sakata and Harris, 2012). The firing of fast-
spiking neurons in rat somatosensory cortex, which is highly
active during quiet wakefulness, is also dramatically suppressed
during active whisking behavior (Gentet et al., 2010). Considering
that the majority of cell-types in which NMDAR elimination
occurred in our mutant mice are PV-positive fast-spiking neu-
rons, it is conceivable that the state-dependent elevation of spon-
taneous LFP power reflects the dysfunction of mutant A1 cortex
fast-spiking neurons during awake quiescent period. However,
a recent study showed a dramatic increase in the putative fast-
spiking neurons in visual cortex by the active running in a
head-restrained condition that may elicit desynchronized state
(Niell and Stryker, 2010). Further study is necessary to clarify the
mechanisms of the state-dependent elevation of spontaneous LFP
power observed in our mutant mice.

COMPARISON TO CLINICAL DATA
Overall, the present results were consistent with the clini-
cal EEG data showing reductions in the onset of auditory
evoked responses (P50, N100) and of 40-Hz ASSR power and

www.frontiersin.org July 2014 | Volume 8 | Article 168 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Auditory_Cognitive_Neuroscience/archive


Nakao and Nakazawa Impaired auditory steady-state response

phase-locking in the cortex of individuals with schizophrenia,
supporting the face validity of our mouse model. Furthermore,
our findings argue against the possibility that 40-Hz ASSR deficits
in patients with schizophrenia may reflect antipsychotic effects
(Woo et al., 2010). However, we also found several findings incon-
sistent with the human data. First, in human adult subjects 40-Hz
click trains induce the maximal ASSR at 40 Hz and the effects of
40-Hz stimuli at 20 and 30 Hz are smaller compared to 40 Hz
(Galambos et al., 1981; Pastor et al., 2002; Picton et al., 2003).
Since the optimal input frequency of fast-spiking neurons for
action potential generation is known to be 30–50 Hz in rats (Pike
et al., 2000), the ASSR impairment selectively at 40 Hz stimula-
tion may suggest unequivocal deficits of fast-spiking neurons in
patients with schizophrenia. In our study, however, 40-Hz stimuli
induced a resonance peak at 30 Hz in addition to the 40-Hz peak
(Figure 1D) whereas the phase locking spectrum showed a peak
only at 40 Hz (Figure 1G). This may suggest that the murine A1
cortex exhibits a broader resonance frequency (30 Hz as well as
40 Hz) than in humans; although no power peak at 30 Hz was
detected when stimulated at 20 Hz (Figure 2B). Further study
is warranted to determine whether the resonant frequency to
auditory stimuli is varied depending on the species.

Second, 20-Hz ASSRs are usually unaffected in schizophrenia
(Kwon et al., 1999; Light et al., 2006; Vierling-Claassen et al.,
2008); however some human ASSR studies also showed atten-
uation in 20-Hz ASSRs (Krishnan et al., 2009). In contrast, in
our model 20 Hz ASSRs are reduced in power and phase lock-
ing (Figure 2). Nonetheless, the mutant ASSR peak at 20 Hz was
still visible (Figure 2B) and attenuation of phase locking at 20 Hz
was modest (Figure 2E), compared to robustness of 40-Hz ASSR
deficits. Furthermore, the initial N1 responses triggered by 20-
Hz ASSR stimuli were normal in the mutant mice. Therefore, the
degree of evoked ASSR deficits appears to be more robust at 40-
Hz than at 20-Hz in our mutant mice. It is conceivable that LFP
recording directly from A1 cortex is more sensitive to detect ASSR
impairment, compared to clinical skull-EEG recording.

Third, broadband enhancement of baseline EEG may not
be characteristic of studies of resting EEG in patients with
schizophrenia (Winterer et al., 2004; Kikuchi et al., 2011;
Silverstein et al., 2012). However, Spencer (2012) re-analyzed
their previous data which showed deficits in auditory evoked
gamma oscillations and found that the pre-stimulus baseline
gamma power was increased in the left auditory cortex of chronic
patients. Interestingly, in his study, the baseline power increased
across a wide frequency band (15–100 Hz) and this broadband
increase was marginally significant, which is consistent with our
finding.

Finally, this study involved relatively small sample sizes under
per-animal analysis design (7 control and 6 mutant mice), which
could be a confounding factor. However, nearly the same results
were obtained by per-channel analysis (for example, Figure 4 vs.
Figure 5), which further supports our conclusion.

CLINICAL MANIFESTATION OF BASELINE LFP POWER INCREASE
Given that sensory-evoked gamma oscillation deficits are pre-
sumably linked to the cognitive deficits (Spencer et al., 2004;
Cho et al., 2006), there are several possible clinical manifestation

of baseline power increase. Increased baseline gamma oscilla-
tions have been reported in patients during psychotic episodes,
including visual and auditory hallucinations (Baldeweg et al.,
1998; Ropohl et al., 2004; Lee et al., 2006; Becker et al., 2009).
Other studies suggest a link between baseline gamma oscillations
and negative symptoms (Suazo et al., 2012), working memory
(Winterer et al., 2004; Suazo et al., 2012), or synaptic plasticity
(Bikbaev et al., 2008; Kulikova et al., 2012). A recent meta-
analysis of functional neuroimaging in schizophrenia patients
with auditory hallucinations revealed “paradoxical” engagement
of A1 cortex, such that left A1 cortex displayed increased activa-
tion in the absence of external auditory stimuli (but with auditory
verbal hallucinations), and decreased activation when an external
stimulus was actually present (Kompus et al., 2011). Consistent
with this, our mutant mice also exhibited an increase in base-
line spontaneous LFP increase in the absence of external stimuli,
which tended to decrease during repetitive ASSR stimuli and to
return back to the elevated level 20 min after the last ASSR stimuli.
This remarkable similarity between human patient studies and
the finding in the present study may suggest that baseline LFP
power increase is a signature of “paradoxical” A1 cortex activation
in the absence of external stimuli. Further studies are warranted to
assess the clinical and neurobiological significance of oscillations
and synchrony deficits in schizophrenia.
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