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Due to its millisecond-scale temporal resolution, EEG allows to assess neural correlates
with precisely defined temporal relationship relative to a given event. This knowledge is
generally lacking in data from functional magnetic resonance imaging (fMRI) which has
a temporal resolution on the scale of seconds so that possibilities to combine the two
modalities are sought. Previous applications combining event-related potentials (ERPs)
with simultaneous fMRI BOLD generally aimed at measuring known ERP components
in single trials and correlate the resulting time series with the fMRI BOLD signal. While
it is a valuable first step, this procedure cannot guarantee that variability of the chosen
ERP component is specific for the targeted neurophysiological process on the group and
single subject level. Here we introduce a newly developed data-driven analysis procedure
that automatically selects task-specific electrophysiological independent components
(ICs). We used single-trial simultaneous EEG/fMRI analysis of a visual Go/Nogo task to
assess inhibition-related EEG components, their trial-to-trial amplitude variability, and the
relationship between this variability and the fMRI. Single-trial EEG/fMRI analysis within
a subgroup of 22 participants revealed positive correlations of fMRI BOLD signal with
EEG-derived regressors in fronto-striatal regions which were more pronounced in an
early compared to a late phase of task execution. In sum, selecting Nogo-related ICs
in an automated, single subject procedure reveals fMRI-BOLD responses correlated to
different phases of task execution. Furthermore, to illustrate utility and generalizability of
the method beyond detecting the presence or absence of reliable inhibitory components
in the EEG, we show that the IC selection can be extended to other events in the same
dataset, e.g., the visual responses.

Keywords: single-trial EEG/fMRI, trial-to-trial variability, independent component analysis, response inhibition,
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INTRODUCTION
Behavioral variability such as the varying effectiveness of motor
inhibition or trial-to-trial variations of reaction times has been
linked to single-trial variabilities in neural processes (MacDonald
et al., 2006; Fontanini and Katz, 2008; Ledberg et al., 2012). It has
been shown that single-trial variability of evoked neural activity
can be modeled by a combination of random ongoing network
activity and stationary stimulus-related responses (Arieli et al.,
1996). Therefore, single-trial fluctuations of evoked responses
contain aspects of moment-to-moment fluctuations in the par-
ticipant’s brain state rather than only representing noise (Lutz
et al., 2002; Kelly et al., 2008; Ledberg et al., 2012). Assessing
trial-to-trial variations is also key to characterize intra- as well as
inter-individual behavioral and neural processing phenotypes.

In order to meaningfully analyze trial-to-trial variations, they
have to be related to other parameters available for the same
single trials. Trial-by-trial coupling of simultaneous EEG/fMRI
data (Debener et al., 2005; Eichele et al., 2005; Huster et al.,

2012) allows relating single-trial event-related EEG with single-
trial BOLD data in an attempt to map the changes in the
participant’s brain state mentioned above to changes in metabolic
brain activity. This approach is also designated “integration-by-
prediction” regarding that single-trial EEG/fMRI analyses usually
employ EEG-derived regressors as predictors of the fMRI BOLD
responses (for more detail see Debener et al., 2006; Eichele
et al., 2009; Bland et al., 2011). In the process of isolating task-
related single-trial EEG activity, different routines have been used:
single-trial EEG features are extracted from single independent
components (ICs) reflecting best the EEG component of interest
(Debener et al., 2005; Feige et al., 2005; Mobascher et al., 2009),
from artifact-cleaned EEG data using several electrodes (Eichele
et al., 2005; Novitskiy et al., 2011) or single electrodes (Bénar
et al., 2007; Mulert et al., 2008; Warbrick et al., 2009; Karch et al.,
2010; Scheibe et al., 2010; Juckel et al., 2012; Baumeister et al.,
2014). However, in the majority of studies components of interest
were identified by visual inspection, which depends on subjective

www.frontiersin.org July 2014 | Volume 8 | Article 175 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00175/abstract
http://community.frontiersin.org/people/u/144738
http://community.frontiersin.org/people/u/156286
http://community.frontiersin.org/people/u/94910
http://community.frontiersin.org/people/u/140283
mailto:lena.schmueser@unimedizin-mainz.de
mailto:lena.schmueser@unimedizin-mainz.de
http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Schmüser et al. Data-driven analysis of simultaneous EEG/fMRI

evaluation and can be biased by inter- and intra-individual varia-
tions of the evaluator.

Greater objectivity can instead be provided by data-driven
approaches of component selection. Goldman et al. (2009)
for example selected task-discriminating EEG components in
a completely data driven way. The authors identified task-
related components which discriminated two task condi-
tions in stimulus-locked and response-locked time windows.
They demonstrated that single-trial correlations of these task-
discriminating components with fMRI BOLD responses could
reveal brain areas different from those yielded by classical fMRI
analyses. However, an important limitation of this linear dis-
crimination method is that the algorithm could extract only one
EEG component for a given time window and thus could miss
meaningful components. Another approach that circumvents this
by selecting the components in source space instead of sensor
space was presented by Wessel and Ullsperger (2011). The authors
developed an algorithm (COMPASS) that automatically identifies
ICs contributing to the event-related potential (ERP) of inter-
est by comparing each IC with a predefined ERP template. This
approach however is limited by restricting the selection proce-
dure to predefined ERP templates. Thus, we aimed to develop
a new approach enabling us to classify and select inhibition-
related ICs intra-individually in a data driven way without a priori
implicating known ERP components. This approach avoids the
analytical bias of the assessment of EEG correlates of task-related
activity introduced by the restriction to distinct ERP components.
Furthermore, by classifying and selecting ICs intra-individually
our approach takes into account known inter-individual differ-
ences in neural processing (Kanai and Rees, 2011).

This automated procedure was applied to simultaneously
acquired EEG and fMRI data of 39 healthy control participants
who had performed a visual Go/Nogo task. This paradigm has
been used in several EEG/fMRI studies, including studies inves-
tigating the effect of fMRI data acquisition on ERP. Bregadze
and Lavric (2006), for instance, showed that Nogo-related ERP
components can be extracted from EEG data recorded simul-
taneously with fMRI data acquisition. In 2011, Lavric et al.
demonstrated that the detection of task-related modulations of
N2/P3 ERPs could be improved by applying ICA-based analyses.
Variants of the classical Go/Nogo task were also used in simulta-
neous EEG/fMRI studies in order to assess the neural correlates of
response inhibition. Using a cued auditory Go/Nogo task during
simultaneous EEG/fMRI, Karch et al. (2008) found correlations of
fMRI BOLD signal in insular, right temporo-parietal and medial
frontal cortex with fronto-central Nogo-P3 amplitude values.
Most recently, Baumeister et al. (2014) investigated the role of N2
and P3 in cognitive processes associated with response inhibition
by using parametric modulation of fMRI BOLD signal with both
N2 and P3 single-trial amplitude values derived from Cz. This
analysis revealed an association of N2 with attentional processes
while P3 was associated with inhibitory processes but also with
memory recollection and internal reflection (Baumeister et al.,
2014). Although the above studies hint at a relation of the N2/P3
complex to Go/Nogo inhibitory processes it is not clear how spe-
cific variations of the N2/P3 complex are for inhibition. Thus,
instead of selecting a-priori defined distinct ERP components

such as the N2/P3 complex we used a purely data-driven approach
to select ICs reliably associated with inhibition.

The present study was designed to examine the BOLD corre-
lates of variations in electrophysiological inhibition-related com-
ponents in a data-driven approach. While previous studies used
fixed latency windows and distinct EEG channels to derive regres-
sors from the EEG, relying upon data from other EEG studies or
own grand averages for their choice, we automatically selected IC
components reliably associated with response inhibition for each
single participant. We ensured to use only ICs which had reliably
larger amplitude in Nogo than in Go trials securing the specificity
of EEG components for neural activity of response inhibition.
We therefore introduce a newly developed data-driven analysis
procedure that automatically selects participant-specific electro-
physiological ICs which are reliably and specifically Nogo-related
at an early or late stage of response inhibition to inform fMRI
data analysis. To assess and validate the performance and out-
come of our automated procedure in the context of combined
EEG/fMRI analysis procedures, we compared our automated IC-
based approach to an approach based on selecting single-trial
amplitude values from predefined ERP components (see Figure 1
for a graphical overview). Thus, in line with Baumeister et al.
(2014) we extracted for each participant the mean amplitude
values of N2 (280–340 ms post-stimulus) and P3 (350–570 ms
post-stimulus) from the Cz site. Second, to illustrate the utility
of the method beyond detecting Nogo-related components, we
used the same data-driven analysis procedure for detecting visual
responses in the same dataset. Visual components are well suited
for validation purpose, as consistent results have been found
in previous EEG/fMRI studies with different task settings (Di
Russo et al., 2002, 2005; Novitskiy et al., 2011; Warbrick et al.,
2013). Using separate EEG and fMRI data acquisition, Di Russo
et al. (2002, 2005) showed that the P1 and N1 subcomponents
can be accounted for by dipoles localized to middle occipital
gyrus, fusiform gyrus and parietal lobe. More recently Novitskiy
et al. (2011) and Warbrick et al. (2013) found positive single-
trial correlations of visual components with fMRI BOLD signal
in regions of the visual dorsal stream but also in medial frontal
and precentral gyri.

MATERIALS AND METHODS
Taking advantage of the fact that independent component analy-
sis (ICA) can be used to isolate task-related components (Debener
et al., 2005; Bagshaw and Warbrick, 2007), we employed ICA in
order to selectively extract time series related to different phases
of task execution of a visual Go/Nogo task. Importantly, the algo-
rithm we used was not designed to identify ICs associated with
classical event-related components such as N2 and P3, but to
automatically select ICs with significantly increased amplitudes
in Nogo trials compared to Go trials within predefined time win-
dows located prior and around the individual’s median response
time (RT). Thus, for each participant, EEG data were decomposed
into temporally ICs which were then intra-individually classi-
fied according to their relation to response inhibition (Nogo >

Go). ICs identified as reliably Nogo-related within a predefined
time window were combined into individual electrophysiological
regressors and then included into fMRI first-level analysis.
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FIGURE 1 | Graphical representation of single-trial EEG/fMRI analysis.

After simultaneous EEG/fMRI data acquisition (A) the EEG data is
preprocessed and corrected for fMRI artifacts (B) using independent
component analysis (ICA). Subsequently the electrophysiological single-trial
values can be extracted (C) using different approaches (D). Classically (D1),
single-trial amplitude values are extracted from predefined ERP components.
This is based on a chosen electrode site where the ERP component of
interest (Nogo-N2 and Nogo-P3) is most pronounced in the grand mean
average. Followed by the specification of N2 (280–340 ms, yellow) and P3
(350–570 ms, red) latency ranges which cover best the task-related ERP
effects on group level at the selected electrode site (Cz). For each participant
the mean single-trial values are extracted from these predefined latency

ranges. Alternatively (D2), our approach allows to extract single-trial values
from independent components (ICs) which are intra-individually classified and
selected in an automated procedure. This is based on a priori specification of
latency ranges of interest, in this case located prior (early, yellow) and around
(late, red) the individual’s median response time (RT). ICs are intra-individually
classified according their association with the Nogo condition (significantly
increased amplitudes in Nogo trials compared to Go trials). For each
participant the mean single-trial values are extracted from latency ranges in
which the respective IC was reliably larger during Nogo. In both approaches
the resulting electrophysiological regressors are included in the general linear
model of fMRI data analysis (E) in order to perform the single-trial EEG/fMRI
data analysis (F).

EXPERIMENTAL DESIGN
Participants
Thirty-nine participants (16 males; mean age: 38.85 ± 16.48)
were included in this analysis. Participants were recruited from

a larger sample (Sebastian et al., 2013a) because of their good
overall data quality for EEG and fMRI (see section Data
Preprocessing). All participants were right-handed (Oldfield,
1971) and had normal or corrected-to-normal vision. Structural
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Clinical Interview for DSM-IV Axis I and II Disorders (SCID-
I/II) was used (Wittchen et al., 1997) to exclude participants with
a lifetime history of axis I or axis II disorders. The study was
approved by the Ethics Committee of the University of Freiburg
Medical School and all participants gave their informed con-
sent prior to MRI scanning. Each participant received a financial
compensation of C55.

Experimental paradigm
During the simultaneous EEG/fMRI session all participants per-
formed a visual Go/Nogo-task. Participants were instructed to
respond by pressing a mouse button with the right index fin-
ger to every letter (Go stimulus) except for the letter “X”
(Nogo stimulus). Each letter was shown for 500 ms followed
by a black screen for the next 500 ms. Every participant com-
pleted two runs each consisting of 300 stimuli. Nogo stimuli
were presented with a mean probability of 29%, and each Nogo
stimulus was followed by at least one Go stimulus (Sebastian
et al., 2013a,b, 2012). Visual stimuli were programmed using the
software “Presentation” (Neurobehavioral Systems, Version 11.1
http://www.neurobs.com/) and were projected on a screen at the
head end of the scanner bore and viewed with the aid of a mirror
mounted on the head coils. Participants had in advance received
a brief training session on the task outside the scanner room.

DATA ACQUISITION
The study was conducted at the University Hospital of Freiburg
(Department of Radiology). fMRI data acquisition and EEG
recordings were initiated manually whereas visual presentation
was initiated by a trigger code sent from the MR scanner. The
EEG-amplifier hardware clock was synchronized with the tim-
ing of gradient switching during fMRI measurements (SyncBox;
Brain Products, Gilching, Germany). Onsets of stimulation
and echo-planar image (EPI) scans as well as the participant’s
response were registered on a trigger channel of the EEG acqui-
sition host.

fMRI/MRI
MRI data was collected using a 3T tim-TRIO scanner (Siemens
Medical Systems, Erlangen) equipped with a 12 channel head
coil. Foam padding was used to limit head motion within the
coil. For functional BOLD imaging, T2∗-weighted EPI volumes
were acquired (TR = 2250 ms, TE = 30 ms, flip angle = 90◦,
FOV = 92 mm, voxel size = 3 × 3 × 3 mm, 36 slices) by apply-
ing fully automated PACE (Prospective Acquisition Correction)
motion correction (Thesen et al., 2000) and distortion correc-
tion based on point spread function mapping (Zaitsev et al.,
2004). Per run 157 complete brain volumes were acquired.
Following fMRI data acquisition, the EEG cap was removed
and 3D MRI data for anatomical references was acquired using
a 3D magnetization prepared, rapid acquisition gradient echo
(MPRAGE) sequence (TR = 2200 ms, TE = 4.11 ms, flip angle =
12◦, FOV = 256 mm, voxel size = 1 × 1 × 1 mm).

EEG
Continuous EEG data was recorded with a 64-channel
EEG-system consisting of two 32-channel MR compatible
EEG-amplifiers (BrainAmp MR plus; Brain Products) powered

by a MR-compatible rechargeable battery pack (PowerPack, Brain
Products). The EEG system was placed inside the scanner bore
directly behind the head coil. This allowed for the use of short
wires, thus reducing potential scanner artifacts caused by wires
moving inside the magnetic fields. A total of 62 sintered Ag/AgCl
ring electrodes were placed within an elastic EEG-recording
cap (EasyCap, Falk Minow Services, Herrsching, Germany).
Electrodes were placed according to an extended international
10–20 system with reference electrode positioned at FCz and
ground electrode positioned at AFFz. In order to monitor
electrocardiograms (ECG) and eye blinks (EOG), additional
electrodes were placed beneath the participant’s left scapula and
below the left eye. Electrode-skin contact impedances were main-
tained below 10 k�. The recorded analog EEG signal was filtered
between DC and 1 kHz, digitized with a sampling frequency of
5 kHz and transmitted via fiber optic cables to a recording PC
placed outside the scanner room. To facilitate subtraction of the
gradient artifact, EEG sampling was driven by the clock board
of the MR scanner (SyncBox, Brain Products). The Brain Vision
Recorder software (Brain Products) was used to acquire, store
and display EEG recordings online.

DATA PREPROCESSING
fMRI preprocessing
Image preprocessing was performed using SPM5 (Wellcome Trust
Center for Neuroimaging at UCL, London, UK; http://www.fil.
ion.ucl.ac.uk/spm/software/spm5) running under Matlab 7.7.0
(The MathWorks Inc., Natick, Massachusetts, USA; http://www.

mathworks.com). Images were screened for motion artifacts prior
to data analysis. No excessive head motion (>2 mm) was observed
in any of the subjects. Next, images were manually reoriented
to the T1-template of SPM. To allow for equilibrium effects the
first five volumes of each run were discarded. Functional images
were then realigned to the first image of the first run (six degrees-
of-freedom rigid body transformation) and coregistered to the
individual T1. The T1 image was then spatially normalized (lin-
ear and non-linear transformation) into the reference system
of the Montreal Neurological Institute’s (MNI) reference brain.
Functional images were spatially normalized using the resultant
normalizing parameters and then smoothed by applying a 3D
isotropic Gaussian kernel (8 mm full-width at half maximum,
FWHM).

EEG preprocessing
EEG data was processed offline using AvgQ (Feige, 1999; Freiburg,
Germany; https://github.com/berndf/avg_q), an open source
multichannel (EEG/MEG) data processor driven by Python
scripts. Gradient artifact correction was performed by tem-
plate subtraction (Allen et al., 2000). Data upsampling was not
necessary since the EEG sampling was synchronized to the gra-
dient clock (SyncBox). In order to remove low-frequency drifts
as well as residual scanner artifacts, the gradient-corrected EEG
data was then run through a bandpass filter (0.2–48 Hz) and
down-sampled to 100 Hz. Afterwards, an unmixing matrix was
estimated using the extended infomax algorithm (ICA, Bell and
Sejnowski, 1995; Lee et al., 1999; Makeig et al., 1999, 2002) for
the continuous EEG data of each participant and run separately.
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By multiplying the continuous EEG data with this unmixing
matrix, IC activations can be computed for any EEG sample with-
out repeating the ICA training. For ballistocardiographic (BCG)
and electrooculographic (EOG) artifact detection and correc-
tion, averages related to heart beat and eye blink were computed.
Single heart beats were detected in the ECG signal by convolu-
tion with a time-domain ECG template. The continuous EEG was
averaged with respect to the detected heart beats and ICs load-
ing on this average identified. Artifact correction was performed
by removing these ICs. Based on the BCG artifact corrected
EEG data, EOG artifact detection and correction was performed
similarly. Importantly, BCG/EOG artifact corrected EEG is not
used in the main method illustrated here. In this method, the
electrophysiological information used for single-trial EEG/fMRI
analysis is extracted from the IC time courses themselves, exclud-
ing those ICs representing BCG/EOG artifacts. Participants of an
initially larger sample (Sebastian et al., 2013a) of whom the arti-
fact correction did not achieve usable datasets were excluded from
further analysis.

CLASSIFICATION AND SELECTION OF INDEPENDENT COMPONENTS
The IC time courses of each participant were segmented into
epochs of 1200 ms starting 200 ms prior to stimulus onset.
The 200 ms pre-stimulus interval was used for baseline correc-
tion. Epochs belonging to the same event type (i.e., correct
response: Go and Nogo; incorrect response: omission of Go trials
and commission errors in Nogo trials) were averaged, result-
ing in four different event-related averages each consisting of 64
averaged ICs.

Reliability testing and thresholding
In addition to the pointwise mean, pointwise variance informa-
tion was collected. Together they were used to compute pointwise
t-tests comparing either the Nogo and Go conditions (two-
sample t-test for independent groups) or comparing the average
against baseline (one-sample t-test) on each IC and event type.
In a second step, the point-wise t-values were transformed into
Z-scores as basis for the subsequent IC classification. As high Z-
scores are indicative of high signal-to-noise ratios, only ICs with
absolute Z-scores crossing a predefined threshold entered further
analysis steps. Since there were 300 trials per block of which 90
were Nogo trials, we selected a Z-score of 0.275 which corre-
sponds to a two-sided p-value of 0.01 (two-sample t-test with
df = 89), choosing the degree of freedom conservatively from the
condition with the smaller number of epochs contributing to the
analysis.

Nogo-related ICs
IC classification. To determine components reliably associated
with the Nogo condition, Z-score differences between Nogo- and
Go-related IC averages were computed as described in section
Reliability Testing and Thresholding. Nogo-Go differences were
classified as sufficiently reliable if their absolute Z-score exceeded
a threshold of 0.275. All latency ranges with above-threshold Z-
scores were noted, i.e., the latencies at which the threshold was
crossed in positive and in negative direction. The polarity of ICs
in a given latency range is arbitrary. To be able to select only such

FIGURE 2 | Visualization of the two predefined time windows in which

the independent component’s (IC) latency range of significant

activation had to be confined. Starting point of the “early” time frame
(yellow brackets) is 200 ms after stimulus onset, ending point is the
individual median correct Go response time (RT). The “late” time frame
(red brackets) starts 100 ms prior to RT and ends 300 ms after RT. To be
selected, the IC’s latency range of reliable activation must be wholly
contained within one of the predefined time windows, i.e., the Nogo minus
Go absolute Z-score must arise above threshold (|Z |> 0.275) and must fall
below threshold (|Z |< 0.275) within the time window. Black bars depicting
100 ms intervals.

ICs and latency ranges in which the Nogo amplitude was larger, a
direction was defined for each latency range by noting the polarity
of the event-related IC average with the larger absolute amplitude
in this latency range. For each participant, a list of Nogo-related
ICs, latency ranges and polarities was formed keeping only those
associated with larger absolute amplitudes in Nogo trials.

IC selection. To construct regressors representing different phases
of the inhibition processes, we combined ICs and latency ranges
falling into different time windows (Figure 2). These time win-
dows were defined for each participant in relation to stimulus
onset and the individual’s median correct Go RT. To capture neu-
ral correlates of an early stage of response inhibition without
including correlates of visual processing and object recogni-
tion (Johnson and Olshausen, 2003), the “early” time window
starts 200 ms after stimulus onset and ends with the individual
median RT (Figure 2, yellow part). To capture neural corre-
lates of a later stage of response inhibition we defined a second
time window located around the participant’s RT. Considering
the trial-to-trial fluctuations of single trial RTs around median
RT the “late” time window starts 100 ms before RT and ends
300 ms after RT (Figure 2, red part). We allowed overlapping
latency windows because both start and end of each acceptable
latency range as determined previously (Nogo-Go |Z|> 0.275)
were strictly required to fall within the given ranges (Figure 3A).
This means that any acceptable activity not only has to be sig-
nificant within the given time range but must also start (i.e., rise
above Z-threshold) after the beginning and end (i.e., fall under
Z-threshold) before the end of the given range. The overlapping
time ranges were chosen to avoid losing too many meaningful
activity candidates.

www.frontiersin.org July 2014 | Volume 8 | Article 175 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Schmüser et al. Data-driven analysis of simultaneous EEG/fMRI

FIGURE 3 | (A) IC activation grand averages (a) and grand mean topographies
(b,c) of all participants ICs which were classified as reliably Nogo-related
within the early latency range or late latency range. Mean and 95%
confidence interval (CI) of Nogo (black lines) and Go (green lines) are
displayed in solid and dotted lines, respectively; gray bars indicate the early
and late latency ranges on the group level. (B) Activation maps displaying the

main effects of positive correlations with EEG-derived early (a; time window
starting 200 ms after stimulus onset and ending with the RT) and late (b; time
window starting 100 ms prior to RT and ending 300 ms after RT) regressors.
These regressors were orthogonalized to onset regressors. Images are
displayed in neurological order (L, Left; R, Right), with p < 0.005 (unc.) and
k = 20. RT, individual median Go response time.

Feature extraction. For every selected IC, mean amplitudes of
all single trials were extracted from the latency range in which
the respective IC component was reliably larger during Nogo and
inverted if necessary to ensure positive polarity with respect to
the Nogo-Go difference, using the polarity noted above. To be
able to compare the time ranges across a single group of par-
ticipants, participants failing to display Nogo-specific ICs on the
chosen absolute Z-score level (|Z|> 0.275) for any time window
were excluded. For each of the remaining 22 participants (7 males;
mean age: 34.41 ± 14.1), amplitude vectors of ICs selected with

respect to the same time window (early or late) and run were com-
bined into a single amplitude vector by summation. This resulted
in two different EEG-derived regressors for each participant and
run: early and late.

Visual ICs
To assess whether component selection can be done on other elec-
trophysiological components in the same dataset of the visual
Go/Nogo task, we modified the approach so that visual compo-
nents can be detected.
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IC classification. In contrast to the Nogo-related ICs which we
expected to have larger amplitudes in Nogo than in Go condi-
tions, we assumed that visual responses are similar in Go and
Nogo conditions. Thus, instead of for the Nogo-Go difference, IC
average and variance were computed across Nogo and Go epochs.
ICs were classified as sufficiently reliably activated if their abso-
lute Z-score exceeded a threshold of 0.275. For each participant
and run, a list of ICs, latency ranges and polarities was formed.

IC selection. To construct a regressor representing visual pro-
cessing we combined ICs and latency ranges falling into a time
window starting 90 ms after stimulus onset and ending 140 ms
after stimulus onset (Figure 5A).

Feature extraction. For every selected IC, mean amplitudes of
each single trial were extracted from the latency range in which
the respective IC component had crossed the predefined Z-
threshold. Two participants failed to display visual ICs on the
chosen absolute Z-score level (|Z|> 0.275) and were therefore
excluded from any further analyses. For each of the remaining
37 participants (15 males; mean age: 38.27 ± 16.1) and run,
amplitude vectors of the selected ICs were combined into a single
amplitude vector by summation.

CLASSIFICATION AND SELECTION OF N2/P3 ERPs
To compare the automated IC-based approach to a more clas-
sical approach based on selecting single-trial amplitude values
from predefined ERP components, we extracted the mean N2/P3
amplitude values. To achieve improved comparability, single-trial
EEG/fMRI analysis of N2/P3 amplitudes was computed for the
same 22 participants as the single-trial EEG/fMRI analysis of
Nogo-related ICs.

The BCG/EOG artifact corrected EEG of each participant was
re-referenced to the average of TP9 and TP10 and segmented into
epochs of 1200 ms starting 200 ms prior to stimulus onset. The
200 ms pre-stimulus interval was used for baseline correction.
Epochs belonging to the same event type (i.e., correct response:
Go and Nogo; incorrect response: omission of Go trials and com-
mission errors in Nogo trials) were averaged, resulting in four
different event-related averages.

For each participant, single-trial amplitude values were
extracted from Cz where the Nogo-N2/-P3 effects were most pro-
nounced in the grand average. N2 was measured as the mean
amplitude in the time window 280–340 ms after stimulus onset,
whereas P3 was measured as the mean amplitude between 350
and 570 ms after stimulus. These latency ranges were chosen
to cover best the task-related N2 and P3 effects on group level
(Figure 4A) Mean amplitudes of each single trial were extracted
from the N2 and P3 latency ranges at Cz, resulting in two
amplitude vectors for each participant.

fMRI REGRESSORS
To fit the sampling frequencies of EEG-derived regressors (f =
1 Hz) and fMRI data acquisition (f = 1/2.25 Hz), each joint
amplitude vector was interpolated over time by using a cubic
smoothing spline function and re-sampled at the time points of
fMRI data acquisition. This down-sampled time course was then
normalized to inter-quartile range (IQR = 1) and convolved with

a canonical hemodynamic response function. In a second step,
each EEG-derived regressor was orthogonalized with respect to
classical onset regressors (Go, Nogo, Errors).

FIRST-LEVEL SINGLE-TRIAL EEG/fMRI ANALYSIS
Statistical analysis of fMRI data was performed using SPM8 run-
ning under Matlab 7.7.0. For each participant (N = 37 in case of
visual components and N = 22 in all other cases) different GLMs
were fitted separately to the fMRI data. The design matrix of each
GLM contained four regressors of interest: three onset regres-
sors (Go, Nogo, and Errors) and one EEG regressor derived from
either early or late ICs, N2 or P3 ERP, or visual ICs. Task-related
EEG-derived regressors were orthogonalized to the onset regres-
sors, whereas the visual regressor was not orthogonalized. The
time courses of regressors and functional data were run through
a high-pass filter with a 128 s cut-off in order to remove artifacts
resulting from low frequency temporal variations. Since ICA was
applied to each run independently, we obtained two EEG-derived
regressors and thus two corresponding contrast images for each
participant and time window. A single beta image per partici-
pant was computed for second-level analyses by averaging the
two contrast images belonging to the same participant and time
window.

GROUP ANALYSIS
The first level analysis results of task-related regressors (i.e.,
early/late and N2/P3) were subjected to paired t-tests with either
early/late or N2/P3 as paired observations. The first level analysis
results of EEG regressors derived from visual components were
subjected to a one-sample t-test. For whole brain analysis the
statistic images were assessed for cluster-wise significance by
using a cluster-defining height threshold of p < 0.05 (family-
wise error = FWE correction for multiple comparisons). In the
case of region of interest (ROI) analyses, clusters were assessed
for peak-wise significance by using a height threshold of p <

0.05 (FWE corrected). Following Sebastian et al. (2013b), small
volume correction was computed for the following predefined
ROIs as derived from the automated anatomical labeling atlas
(AAL): lateral inferior frontal cortex (IFC; derived from a combi-
nation of pars opercularis and pars triangularis); middle frontal
gyrus; pre-supplementary motor area (preSMA; derived from
the SMA region with y > 0); caudate nucleus; putamen and
pallidum. Additionally small volume correction was computed
for the subthalamic nucleus (STN), consisting of two boxes of
respectively 10 × 10 × 10 mm in size and localized at the MNI
coordinates −10, −15, −5 (left STN) and 10, −15, −5 (right
STN) (Aron and Poldrack, 2006). For visual components, bilat-
eral inferior occipital cortex, bilateral middle occipital cortex and
bilateral superior occipital cortex were additionally included.

RESULTS
EEG/fMRI SINGLE-TRIAL ANALYSIS OF NOGO-RELATED ICs
Positive correlations of the fMRI BOLD signal with EEG regres-
sors derived from IC related to task processing at an early
(200 ms after stimulus onset until individual median RT) and
later (100 ms prior to median RT until 300 ms after median
RT) stage of response inhibition are listed in Table 1. Due to
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FIGURE 4 | (A) Grand average (a) and grand mean topographies at N2
latency range (b) and P3 latency range (c). Mean and 95% confidence
interval (CI) of Nogo (black lines) and Go (green lines) are displayed in solid
and dotted lines; gray bars indicate the early and late latency ranges on
the group level (a). (B) Activation maps displaying the main effects of

positive correlations with EEG-derived N2 (a; time window 280–340 ms
after stimulus onset) and P3 (b; time window 350–570 ms after stimulus
onset) regressors. These regressors were orthogonalized to onset
regressors. Images are displayed in neurological order (L, Left; R, Right),
with p < 0.005 (unc.) and k = 20.

orthogonalization, these regressors revealed those parts of the
trial-to-trial fluctuation that are not captured by the onset regres-
sors. As shown in Figure 3B, EEG-derived regressors correlated
positively with fMRI BOLD signal in cortical and subcorti-
cal regions associated with response inhibition. Although no
significant differences between early and late were found at the
level of p < 0.05 (FWE corrected), it can be seen that correlations
with early and late EEG-derived regressors revealed overlapping
but also different areas of activation in regions associated with
response inhibition.

The early regressor but not the late regressors correlated
positively with fMRI BOLD signal in bilateral frontal regions such
as right posterior IFG (pars opercularis), right Insula/IFG (pars
orbitalis), bilateral superior frontal gyrus and left precentral gyrus
(adjacent to inferior frontal junction) as well as bilateral insula
lobe. Subcortically positive correlations between fMRI BOLD sig-
nal and early regressor were found in right putamen, bilateral
caudate nucleus and bilateral pallidum, whereas the late regressor
correlated positively with left putamen. Positive correlations with
both regressors but with reduced cluster size in correlations with
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FIGURE 5 | (A) Grand averages (a) and grand mean IC topography (b) of all
participants ICs which were classified as reliable related to visual processing
within the latency range of 90–140 ms. Mean and 95% confidence interval
(CI) of Nogo (black lines) and Go (green lines) are displayed in solid and dotted

lines; the gray bar indicates the latency range of 90–140 ms (a). (B) Positive
correlations of fMRI BOLD signal with EEG regressor derived from visual
components (90–140 ms after stimulus onset). Images are displayed in
neurological order (L, Left; R, Right), with p < 0.005 (unc.) and k = 20.

late regressor were found in pre-SMA, bilateral dorso-lateral pre-
frontal cortex and right supramarginal gyrus/temporo-parietal
junctions. Further positive correlations between fMRI BOLD sig-
nal and both EEG-derived regressors were found in left superior
temporal gyrus, right precuneus, bilateral occipital regions, left
hippocampus and bilateral insula lobe/amygdala.

EEG/fMRI SINGLE-TRIAL ANALYSIS OF N2/P3 ERPs
Positive and negative correlations of the fMRI BOLD signal with
EEG regressors derived from Cz electrode at the latency ranges N2
(280–340 ms post-stimulus) and P3 (350–570 ms post-stimulus)
are listed in Tables 2, 3. As these regressors were orthogonalized
to onset regressors, correlations of these EEG-derived regressors
with fMRI BOLD signal only revealed that part of the trial-to-
trial fluctuation that is not captured by the onset regressors. As
shown in Figure 4B, the N2/P3 EEG-derived regressors corre-
lated positively with fMRI BOLD signal in cortical and subcortical
regions associated with response inhibition. Despite significant
differences (P3 > N2) in left postcentral gyrus, left STN/thalamus
and a large area stretching from cerebellar vermis/lingual gyrus to
cuneus/precuneus (Table 4), it can be seen that correlations with
N2 and P3 EEG-derived regressors revealed overlapping but also
different areas of activation in regions associated with response
inhibition.

The N2 regressor but not the P3 regressors correlated
positively with fMRI BOLD signal in right posterior IFG (pars
opercularis), right superior temporal gyrus and left caudate

nucleus. The P3 regressor but not the N2 regressors correlated
positively with fMRI BOLD signal in left anterior IFG (pars tri-
angularis), right precentral gyrus, left middle cingulate cortex,
right middle and inferior temporal regions, bilateral occipital
areas and subcortical regions such as left putamen, left STN and
bilateral thalamus/hippocampus. Positive correlations with both
regressors but with reduced cluster size in correlations with P3
regressor were found in right Insula/IFG (pars orbitalis) and right
precuneus/inferior parietal lobule. Reduced cluster size in corre-
lations with N2 regressor compared to P3 regressor was found
in left dorso-lateral prefrontal cortex, right pre-SMA and left
superior temporal gyrus. The N2 regressor but not the P3 regres-
sors correlated negatively with fMRI BOLD signal in a cluster
located at the superior medial frontal gyrus and a large area
stretching from central lingual gyrus and cerebellum to precuneus
and calcarine gyrus, but also in smaller cortical and subcortical
clusters located in pre-SMA, left middle frontal gyrus, bilat-
eral fusiform gyri, left STN, and right Pallidum and caudate
nucleus (Table 3).

Supplementary Table 1 contains a side-by-side comparison of
positive fMRI BOLD correlations obtained using the new method
(early/late regressors, section EEG/fMRI Single-trial Analysis of
Nogo-related ICs) and the classical method (current section).

EEG/fMRI SINGLE-TRIAL ANALYSIS OF VISUAL ICs
Positive correlations of the fMRI BOLD signal with EEG regres-
sors derived from IC related to visual processing (ICs with |Z|>
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0.275 within the latency ranges of 90–140 ms post-stimulus) are
listed in Table 5. Correlations of fMRI BOLD signal with EEG
regressor derived from single-trial amplitudes of visual compo-
nents yielded activations primarily in visual areas but also in the
left premotor cortex (Figure 5B). However, significant positive
correlations at the level of p < 0.05 (FWE corrected) were found
exclusively in visual areas (bilateral middle and superior occipital
gyri) but not in premotor areas.

DISCUSSION
The current study aimed at a data-driven identification of corre-
lates of trial-to-trial variability in inhibition specific neurophysio-
logical activity in simultaneously acquired EEG and fMRI. Using
data of 39 healthy participants in a visual Go/Nogo task, single

trial EEG/fMRI analysis was performed based on the automated
identification of inhibition-related electrophysiological ICs. This
identification was done for each participant in a completely data
driven way using an extended ICA (Bell and Sejnowski, 1995; Lee
et al., 1999; Makeig et al., 1999, 2002). Specifically Nogo-related
ICs (i.e., Nogo minus Go) were identified by Z-scores of stimulus-
locked averages above a predefined threshold within one of two
time windows.

SINGLE-TRIAL EEG/fMRI ANALYSIS OF NOGO-RELATED ICs AND N2/P3
ERPs
In those participants showing reliable inhibition-related compo-
nents, we were able to analyze the relationship between trial-
to-trial variations in these ICs and fMRI brain activity. Due to

Table 1 | Positive correlations of fMRI BOLD signal with orthogonalized EEG-derived regressors early (time window starting 200 ms after

stimulus onset and ending with the individual median RT) and late (time window starting 100 ms prior to RT and ending 300 ms after RT).

Region Early: positive correlations Late: positive correlations

x y z k Z p x y z k Z p

FRONTAL LOBE

IFG (pars opercularis) R 54 18 27 36 3.84 0.045 – – – – – –

IFG (pars orbitalis) R 51 21 −3 516 4.20 0.013* – – – – – –

Middle frontal gyrus R 24 51 33 821 4.18 0.020* 27 36 24 213 4.49 0.005*

Middle frontal gyrus L −39 45 15 187 4.55 <0.001 −27 42 36 225 4.01 0.038*

Superior frontal gyrus R 24 54 33 92 4.42 <0.001 – – – – – –

Superior frontal gyrus L −21 −3 57 636 5.37 <0.001 – – – – – –

pre-SMA C −9 3 48 449 4.46 0.002* 12 15 66 132 4.63 0.001*

Precentral gyrus L −36 3 39 101 4.28 <0.001 – – – – – –

TEMPORAL LOBE

Superior temporal gyrus L −63 −27 42 86 4.01 0.001 −51 −33 9 54 4.60 0.008

Temporal pole/insula lobe R – – – – – – 36 12 0 59 4.07 0.005

Middle temporal gyrus R 51 −72 18 44 4.06 0.020 – – – – – –

Supramarginal gyrus R 66 −39 24 317 5.15 <0.001 66 −21 18 48 4.29 0.014

Insula lobe L −39 −6 −6 57 4.49 0.006 – – – – – –

Insula lobe/amygdala R 42 −3 −27 58 4.24 0.005 – – – – – –

Insula lobe/amygdala L – – – – – – −27 6 −15 56 4.68 0.007

Hippocampus L −24 −18 −9 57 4.93 0.006 −27 −15 −12 53 5.24 0.009

PARIETAL LOBE

Precuneus R 9 −42 54 128 4.68 <0.001 15 −54 60 65 4.70 0.003

OCCIPITAL LOBE

Middle occipital gyrus R 33 −78 27 146 4.93 <0.001 – – – – – –

Middle occipital gyrus L – – – – – – −39 −63 0 57 4.79 0.006

Superior occipital gyrus L −18 −78 27 217 4.76 <0.001 −24 −66 21 88 4.68 <0.001

Lingual gyrus L – – – – – – −3 −72 0 36 4.57 0.045

SUBCORTICAL AREAS

Putamen R 18 15 −3 45 3.87 0.018 – – – – – –

Putamen L – – – – – – −27 6 −9 86 3.84 0.017*

Caudate nucleus R 15 15 −3 154 3.85 0.015* – – – – – –

Caudate nucleus L −9 12 9 103 3.53 0.045* – – – – – –

Pallidum R 15 9 −3 * 3.74 0.004* – – – – – –

Pallidum L −21 0 6 20 3.21 0.023* – – – – – –

The region in which the cluster’s local maximum is located in hemispheres Right (R), Left (L), or Central (C); the peak location in MNI coordinates (x, y, z); cluster

extend in number of voxels (k); maximum Z-score; and FWE-corrected p-values (cluster level corrected, *small volume corrected) are reported for each significantly

activated cluster separately. IFG, inferior frontal cortex. SMA, supplementary motor area.
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the high temporal resolution of the EEG, we could specifically
assess inhibition-related EEG activity occurring clearly before
the typical RT (early time window) and inhibition-related EEG
activity occurring around the typical RT (later time window;
Figure 3A). The corresponding EEG-derived regressors were
orthogonalized to the classical paradigm-derived onset regressors
to reveal only those brain regions in which the BOLD signal is
attributed genuinely to trial-to-trial fluctuations of inhibition-
related ICs rather than to condition effects. Both, early and
late EEG-derived regressors correlated positively with fronto-
striatal regions (right IFC, pre-SMA and basal ganglia) associated
with response inhibition (Chambers et al., 2009; Aron, 2011).

Although there were no significant differences between early and
late, in most areas including right Insula/IFC, right posterior IFC,
premotor areas and basal ganglia, correlations of fMRI BOLD sig-
nal with the early EEG regressor were stronger than with the late
EEG regressor. This indicates that the strength of positive corre-
lations is decreasing from early to late stages of response inhibi-
tion. However, when interpreting results of single-trial EEG/fMRI
analysis it should be considered that although the EEG’s high
temporal resolution allows extracting electrophysiological activ-
ity clearly related to different stages of neural processing, the fMRI
BOLD signal’s temporal resolution remains low. Accordingly, we
are able to correlate electrophysiological signals generated by the

Table 2 | Positive correlations of fMRI BOLD signal with orthogonalized EEG-derived regressors N2 (280–340 ms after stimulus onset), and P3

(350–570 ms after stimulus onset).

Region N2: positive correlations P3: positive correlations

x y z k Z p x y z k Z p

FRONTAL LOBE

IFG (pars opercularis) R 51 15 27 35 4.24 0.036 – – – – – –

IFG (pars orbitalis) R 51 12 −3 218 4.60 0.002* 51 12 −3 53 4.49 0.004*

IFG (pars triangularis) L – – – – – – −45 45 9 48 4.32 0.009

Middle frontal gyrus R – – – – – – 27 3 51 215 4.23 0.016*

Middle frontal gyrus L −30 48 33 117 4.71 0.002* −33 27 45 412 4.74 0.001*

pre-SMA C 6 18 63 101 4.38 0.004* 6 18 63 157 4.71 0.001*

Precentral gyrus R – – – – – – 27 −9 48 59 4.65 0.003

Middle cingulate cortex L – – – – – – −9 −33 45 41 4.68 0.019

TEMPORAL LOBE

Superior temporal gyrus/insula lobe R 54 −3 −3 99 5.27 <0.001 – – – – – –

Superior temporal gyrus/insula lobe L −39 −12 −6 76 5.08 0.001 −39 −12 −6 183 5.93 <0.001

Superior temporal gyrus L −42 −27 12 36 5.51 0.032 −42 −27 12 35 5.38 0.036

Superior temporal gyrus L −63 −39 12 76 5.20 0.001 −63 −33 15 48 5.78 0.009

Middle/inferior temporal gyrus R – – – – – – 57 −66 0 44 4.97 0.014

Fusiform gyrus R – – – – – – 33 −39 −15 74 5.31 0.001

Temporal pole/insula lobe R – – – – – – 60 3 −9 148 5.41 <0.001

PARIETAL LOBE

Supramarginal gyrus R – – – – – – 54 −21 18 42 4.49 0.017

Postcentral gyrus R – – – – – – 51 −30 51 94 5.48 <0.001

Inferior parietal lobule L −39 −51 54 80 4.95 <0.001 −42 −51 54 631 5.05 <0.001

Precuneus R 9 −45 60 63 4.93 0.002 18 −42 57 49 4.45 0.008

OCCIPITAL LOBE

Middle occipital gyrus R – – – – – – 36 −75 6 46 4.35 0.011

Middle occipital gyrus L – – – – – – −27 −69 30 68 4.36 0.001

Lingual gyrus R – – – – – – 12 −54 −3 33 4.17 0.045

Lingual gyrus L −27 −48 −3 43 5.08 0.015 −18 −66 −9 676 5.31 <0.001

Cuneus/precuneus R – – – – – – 24 −54 30 148 4.97 <0.001

SUBCORTICAL AREAS

Caudate nucleus L −18 −15 24 14 3.95 0.010* – – – – – –

Putamen L – – – – – – −33 −15 −6 14 3.65 0.035*

Subthalamic nucleus L – – – – – – −12 −18 −6 5 2.92 0.047*

Thalamus R – – – – – – 21 −27 −3 79 4.61 <0.001

Thalamus/hippocampus L – – – – – – −21 −24 −6 138 5.50 <0.001

The region in which the cluster’s local maximum is located in hemispheres Right (R), Left (L), or Central (C); peak location in MNI coordinates (x, y, z); cluster extend

in number of voxels (k); the maximum Z-score; and FWE-corrected p-values (cluster level corrected, *small volume corrected) are reported for each significantly

activated cluster separately. IFG, inferior frontal cortex. SMA, supplementary motor area.
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brain at different stages of neural processing with the fMRI BOLD
signal but we are not able to distinguish whether there is a causal
relationship between a certain region and the Nogo-related activ-
ity or whether the activity of the regions are just statistically more
likely to be preceded, accompanied, or followed by Nogo-related
activity without a causal relationship.

Table 3 | Negative correlations of fMRI BOLD signal with

orthogonalized EEG-derived regressor N2 (280–340 ms after stimulus

onset).

Region N2: negative correlations

x y z k Z p

FRONTAL LOBE

Superior medial gyrus L −6 60 3 121 5.00 <0.001

Middle frontal gyrus L −27 54 9 48 4.26 0.013*

pre-SMA C 0 18 54 73 3.99 0.020*

TEMPORAL LOBE

Fusiform gyrus R 27 −42 −12 88 5.21 <0.001

Fusiform gyrus L −24 −45 −15 47 5.17 0.010

Angular gyrus L −42 −75 39 48 4.22 0.009

OCCIPITAL LOBE

Lingual gyrus/cerebellum R 9 −54 −15 156 4.52 <0.001

SUBCORTICAL AREAS

Caudate nucleus R 12 −3 18 31 3.60 0.041*

Pallidum R 15 3 3 10 3.68 0.005*

Subthalamic nucleus L −12 −18 −9 8 3.16 0.021*

The region in which the cluster’s local maximum is located in hemispheres right

(R), left (L), or central (C); peak location in MNI coordinates (x, y, z); cluster

extend in number of voxels (k); the maximum Z-score; and FWE-corrected p-

values (cluster level corrected, *small volume corrected) are reported for each

significantly activated cluster separately. SMA, supplementary motor area.

Table 4 | Brain regions significantly stronger correlated with P3

single-trial amplitude values (350–570 ms after stimulus onset) than

with N2 single-trial amplitude values (280–340 ms after stimulus

onset).

Region P3 > N2

x y z k Z p

PARIETAL LOBE

Postcentral gyrus L −39 −24 54 91 3.45 0.029

OCCIPITAL LOBE

Lingual/calcarine gyrus C 0 −63 12 414 4.53 <0.001

SUBCORTICAL AREAS

Subthalamic nucleus L −12 −18 −6 11 3.49 0.006*

Thalamus L −18 −24 −6 88 3.61 0.034

The region in which the cluster’s local maximum is located in hemispheres Left

(L) or Central (C); peak location in MNI coordinates (x, y, z); cluster extend in num-

ber of voxels (k); maximum Z-score; and FWE-corrected p-values (cluster level

corrected, *small volume corrected) are reported for each significantly activated

cluster separately.

Single-trial correlation of N2/P3 amplitude values with fMRI
BOLD signal was computed for the same 22 participants as the
single-trial EEG/fMRI analysis of Nogo-related ICs. The N2-
dervied EEG regressor correlated negatively with regions asso-
ciated with the default mode network (precuneus and superior
medial cortex) (Raichle et al., 2001; Buckner et al., 2008) but also
with areas in pre-SMA, middle frontal gyrus and basal ganglia.
To some degree, these results are consistent with Baumeister et al.
(2014), who found negative correlations of increased N2 ampli-
tudes in right middle frontal gyrus, bilateral middle temporal and
fusiform gyri but also in regions associated with the default mode
network (right precuneus, bilateral superior temporal gyrus and
right medial frontal gyrus). As discussed by Baumeister et al.
(2014), this might indicate an association between increasing N2
amplitudes and deactivation of the default mode network.

Both, N2- and P3-derived EEG regressors correlated posi-
tively with fMRI BOLD signal in fronto-striatal regions associated
with response inhibition (right IFC, pre-SMA and basal ganglia),
but also in distributed areas located in temporal and parietal
lobule. Except for right IFC the degree of positive correlations
with N2/P3-derived EEG regressors increased from N2 to P3,
whereas in IC-based EEG/fMRI analysis fewer regions were pos-
itively correlated with the late EEG regressor relative to the early
EEG regressor. The latter may indicate that regions relevant for a
successful response inhibition are up-regulated at an early stage
of response inhibition but not at the later stage of response inhi-
bition. This seems to be reasonable as it could be expected that
regions essential for withholding a prepotent motor response are
activated prior to the time point when the Go response would
be executed. In contrast to this, N2/P3 single-trial amplitude
values seem to correlate with a mixture of network parts associ-
ated with response inhibition, attentional processing or response
monitoring.

When comparing both approaches (i.e., early/late vs. N2/P3)
it can be seen that the activation pattern yielded by the early EEG
regressor and the N2 EEG regressor are largely deviating. This

Table 5 | Positive correlations of fMRI BOLD signal EEG-regressor

derived from visual response (time window starting 90 ms after

stimulus onset and ending 140 ms after stimulus onset).

Region Visual components

x y z k Z p

OCCIPITAL LOBE

Superior occipital gyrus R 24 −93 12 42 3.65 0.037*

Superior occipital gyrus L −15 −93 12 70 4.22 0.003*

Middle occipital gyrus R 33 −87 15 114 3.88 0.021*

Middle occipital gyrus L −21 −93 9 55 5.25 0.019

Middle occipital gyrus L −42 −69 3 59 4.69 0.014

The region in which the cluster’s local maximum is located in hemispheres Right

(R) or Left (L); peak location in MNI coordinates (x, y, z); cluster extend in num-

ber of voxels (k); maximum Z-score; and FWE-corrected p-values (cluster level

corrected, *small volume corrected) are reported for each significantly activated

cluster separately.
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might be related to fundamental differences in both approaches.
While the early and late EEG regressors were constructed exclu-
sively of participant-specific components which are reliably dif-
ferentiating between different task conditions at the respective
latency range, the N2/P3 ERPs were defined on the group level at
the latency ranges and EEG site with the most pronounced Nogo
effect. Repeated measure ANOVA with the factors condition (Go
and Nogo) and ERP (N2 and P3) revealed a significant condition
x ERP interaction [F(1, 21) = 61.516, p < 0.001] on mean ampli-
tude values. However, post hoc test revealed that mean amplitudes
of P3 but not of N2 were significantly different between Go and
Nogo which is in line with Baumeister et al. (2014), who also
reported significant differences for P3 amplitude values but not
for N2 amplitude values. The prominent difference between cor-
relations of the fMRI BOLD signal with the early EEG regressor or
the N2 EEG regressor might be related to the fact that the early ICs
are reliably task-discriminating at the respective latency range and
thus more sensitive to the Nogo condition, while the N2 seems to
be less specific to the task condition.

In conclusion, the deviating results between ERP-based N2/P3
and IC-based early/late single-trial correlations are probably
related to the fundamentally different approaches of selecting
the EEG features used for single-trial correlations. Following
Baumeister et al. (2014), for each participant the mean single-trial
amplitude values of N2 and P3 were extracted from Cz electrode
at the latency ranges 280–340 and 350–570 ms after stimulus
onset. These time windows were chosen as they reflected best the
Nogo-N2 and Nogo-P3 effects for the entire group (Figure 4A).
However, these fixed time windows were determined on the
group level which is insensitive to inter-individual variability as
they were observable for example in the participant’s median
RT (ranging from 322.81 to 487.94 ms). As it is known that
such phenotypes exist even for simple reaction time paradigms,
inter-individual differences constitute valuable information when
analyzing more complex cognitive functions (Kanai and Rees,
2011). Thus, inter-individual differences make it necessary to
verify intra-individually the presence of certain components
prior to including them into group-level analyses. Therefore, we
developed an analysis procedure that does not build exclusively
on N2/P3 effects, but classifies and selects task- and participant-
specific electrophysiological components in a completely data
driven manner. For every single participant, the algorithm iden-
tifies those participant-specific components which are differen-
tiating best between the different task conditions at the specific
latency range (Figure 3A). Thus, in contrast to N2/P3 ERPs
which were defined on the group level (Figure 4A), early and late
regressors were constructed of functionally characterized ICs.

EEG/fMRI SINGLE-TRIAL ANALYSIS OF VISUAL ICs
We introduced an algorithm that allows for selecting Nogo-
related ICs in an automated procedure; however, the fact that
the algorithm could identify Nogo-related ICs only in about
half of the participants may question the validity of the algo-
rithm. Thus, to test whether our IC selection method is gen-
eralizable and usable beyond Nogo-related IC detection, we
modified the algorithm so that ICs associated with the visual
responses can be detected. Single-trial amplitudes of ICs related

to visual processing (i.e., |Z|> 0.275 within the latency ranges of
90–140 ms post-stimulus) correlated positively with fMRI BOLD
signal in left inferior occipital gyrus as well as bilateral middle and
superior occipital gyri.

The results are consistent with Fuglø et al. (2012) who
found positive correlations of visual components with fMRI
BOLD responses in primary visual cortex and middle occip-
ital gyrus. However, Fuglø et al. (2012) employed a block
design with checkerboard stimulus blocks alternating with blocks
without stimuli, while continuously estimating VEP ampli-
tudes. Therefore, the resulting regressor necessarily follows the
stimulation design to a larger degree. EEG-fMRI correlations
from experiments in which either a constant stimulus is repeated
or stimuli matched for physical properties such as size, complex-
ity and luminance are presented must be viewed from a different
perspective. Variability observed across such stimuli may either
reflect early discriminative activity for different stimuli or sponta-
neous fluctuations in brain state. A study following a spontaneous
fluctuation design (visual oddball with motor responses) compa-
rable to the current one revealed positive correlations of visual
components with fMRI BOLD signal not only in regions of the
visual dorsal stream but also in medial frontal and precentral
gyri (Warbrick et al., 2013). In addition to visual cortex activ-
ity our approach also revealed medial frontal precentral activity
patterns comparable to Warbrick et al. (2013). Thus, despite of
different task settings and the fact that Warbrick et al. (2013)
used a selection procedure based on a-priori defined ERP com-
ponents (P1 and N1), whereas we selected ICs related to visual
processing in a purely data-driven approach, the resultant correla-
tions between EEG-derived regressors and fMRI BOLD responses
are quite similar. This illustrates that beyond of detecting Nogo-
related ICs our algorithm is also able to detect ICs related to visual
responses in the same data set.

LIMITATIONS
As a result of IC selection only about half of participants could
be included into the single-trial EEG/fMRI data analysis. As such
these results of temporal signal evolution in response inhibition
may not be generalizable. Moreover, the fact that Nogo-related
ICs were not identified in one half of the participants suggests that
correlations using these restrictive IC selection criteria can only
be determined for part of the initial population of a study. On the
other hand, the same algorithm was able to detect ICs related to
visual responses in 37 of 39 participants, which argues against a
principal failure of the algorithm. Thus, the finding that certain
Nogo-related components are not present in every participant
may give an indication of substantial inter-individual differences
as state or trait related differences in cognitive strategy when per-
forming the task, illustrating the sensitivity and specificity of the
algorithm for detection of different event related responses.

CONCLUSION
Using EEG-derived regressors based on single-trial amplitude
variability of Nogo-related ICs selected with respect to different
time windows allows visualizing the evolution of brain processes
during motor inhibition. Furthermore, by classifying and select-
ing ICs intra-individually our approach takes account of known
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inter-individual differences in neural processing. In line with
existing automated approaches (Goldman et al., 2009; Wessel
and Ullsperger, 2011) we used an algorithm that allows for
selecting task-related ICs in an automated procedure. As is the
case in the COMPASS-approach (Wessel and Ullsperger, 2011),
our approach uses an automated IC selection procedure but is
independent of ERP templates, which was one of the major draw-
backs of COMPASS. This can be achieved by using an algorithm
that automatically selects inhibition-specific ICs with significantly
increased amplitude during Nogo trials relative to Go trials.
Additionally, these ICs were automatically classified depending
on whether the latency range of reliably Nogo-related activity
occurred early or late relative to median correct Go RT. This is
partially comparable to the approach of Goldman et al. (2009)
but without the drawback of just being able to extract one compo-
nent per time window. As our method is independent of a priori
defined ERPs, we suggest that this approach of using function-
ally defined components could be used for EEG features other
than event-related transient responses. Although not tested yet,
one possible application would be to use it in the context of
background rhythms. In this case, one could selectively use those
components that are characterized by increased spectral power in
one condition relative to another condition.
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