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The ability to recognize errors is crucial for efficient behavior. Numerous studies
have identified electrophysiological correlates of error recognition in the human brain
(error-related potentials, ErrPs). Consequently, it has been proposed to use these signals
to improve human-computer interaction (HCI) or brain-machine interfacing (BMI). Here, we
present a review of over a decade of developments toward this goal. This body of work
provides consistent evidence that ErrPs can be successfully detected on a single-trial
basis, and that they can be effectively used in both HCI and BMI applications. We first
describe the ErrP phenomenon and follow up with an analysis of different strategies
to increase the robustness of a system by incorporating single-trial ErrP recognition,
either by correcting the machine’s actions or by providing means for its error-based
adaptation. These approaches can be applied both when the user employs traditional
HCI input devices or in combination with another BMI channel. Finally, we discuss
the current challenges that have to be overcome in order to fully integrate ErrPs into
practical applications. This includes, in particular, the characterization of such signals during
real(istic) applications, as well as the possibility of extracting richer information from them,
going beyond the time-locked decoding that dominates current approaches.
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1. INTRODUCTION
Errare humanum est, perseverare autem diabolicum

–Seneca the younger

The ability of human and non -human animals to learn and
adapt their behavior is largely based on their capacity of iden-
tifying erroneous actions (Rabbitt, 1966). Several studies have
reported that such events elicit distinct neural responses, which
can be observed using different neuroimaging techniques includ-
ing fMRI, scalp and intracranial electroencephalography (EEG),
and magnetoencephalography (MEG). In particular, it has been
demonstrated that the electrophysiological signatures of this error
processing—i.e., error-related potentials, ErrPs– can be reliably
decoded on a single-trial basis, thus allowing their use through
brain-machine interface (BMI) systems as a means to improve
the machine’s performance, similarly to animals. For instance,
typically BMIs aim at decoding user’s intentions from the neu-
ral activity (e.g., as recorded by EEG). Misclassification of these
intentions results in an erroneous command. The user’s sub-
sequent perception of such error can elicit an ErrP and the
successful decoding of this response would allow the system to
take corrective actions, e.g., by preventing the erroneous com-
mand from being fully executed or reverting its outcome (Schalk
et al., 2000; Ferrez and Millán, 2008a; Dal Seno et al., 2010).
Alternatively, ErrPs can be used to reduce the possibility of the
error reappearing in the future through re-calibration of the sys-
tem, allowing it to “learn from its mistakes” (Artusi et al., 2011;

Llera et al., 2011). These approaches are illustrated in Figure 1.
They combine the decoding of one brain signal (e.g., correlates
of motor imagery or stimulus recognition) for controlling the
device and the ErrP as a corrective mechanism, thus correspond-
ing to hybrid BMI systems (Pfurtscheller et al., 2010). Notably,
the same principles can also be applied to human-computer
interaction (HCI) systems when input devices other than BMI
are employed (Parra et al., 2003; Chavarriaga and Millán, 2010;
Wang et al., 2011; Zander and Kothe, 2011; Zander and Jatzev,
2012). Interestingly, these ErrPs are naturally elicited during
human interaction with the machine. This means that informa-
tion about the user’s cognitive assessment of such interaction can
be obtained implicitly, without a need for training or asking the
users to actively generate them. Systems that decode this infor-
mation are sometimes referred to as passive BMIs; as opposed to
the so-called active BMIs where the brain signals are consciously
modulated by the user to control a given device or application
(Zander and Kothe, 2011). However, caution should be taken not
to interpret this as if the user played an entirely passive role during
the interaction. In fact, ErrPs have been shown to be modulated
by the user’s level of engagement in the task (Hajcak et al., 2005).

In the last decade, researchers have provided ample evidence
of the feasibility of such approaches. Here we review this work,
starting with a short description of different error-related elec-
trophysiological patterns (section 2). For more detailed account
of the neural basis of these signals, readers can refer to reviews
by Taylor et al. (2007); Hoffmann and Falkenstein (2012); Wessel
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FIGURE 1 | Exploitation of error-related potentials to improve BMI

performance. Left: Single trial detection of these potentials, indicating
erroneous actions, is used to trigger a corrective action, e.g., preventing

execution of the last BMI command. Right: ErrPs are used to update
the BMI classifier or the device controller by means of reinforcement
learning.

(2012), and Ullsperger et al. (2014). Here we focus on signals
that have been mostly exploited for brain-machine interfac-
ing and primarily discuss electroencephalographic signals found
using non-invasive recording techniques (section 3). We go on
to present different strategies that can be applied to increase the
robustness of the BMI system by incorporating single-trial ErrP
recognition in both able-bodied subjects and users with motor
disabilities (sections 4 and 5). We also present recent efforts to
integrate these signals into real-world applications (section 6).
Finally, we review the techniques used for decoding these poten-
tials (section 7) and discuss current challenges in the study and
exploitation of these signals (section 8).

2. ERROR-RELATED BRAIN ACTIVITY
Early reports of error-related brain activity date back to the early
1990’s (Falkenstein et al., 1991; Gehring et al., 1993). These stud-
ies showed a characteristic EEG event-related potential (ERP)
elicited after subjects committed errors in a speed response choice
task. This pattern is characterized by a negative potential deflec-
tion, termed the error-related negativity (ERN), appearing over
fronto-central scalp areas at about 50–100 ms after a subject’s
erroneous response (Falkenstein et al., 2000). This negative com-
ponent is followed by a centro-parietal positive deflection (Pe).
Modulations of this latter component have been linked to the

subject’s awareness of the error. Interestingly, correlations have
been found between the ERNs and behavioral adjustments fol-
lowing these errors, e.g., post-error response slowing (Debener
et al., 2005; Frank et al., 2005; Themanson et al., 2012); support-
ing the idea that the signal indeed reflects an action monitoring
process (Holroyd and Coles, 2002). This is further corroborated
by the fact that the ERN amplitude seems to be modulated by
the importance of errors in the given task (Frank et al., 2005;
Taylor et al., 2007), as well as the subjective awareness of the
error (Falkenstein et al., 2000; Wessel, 2012; Navarro-Cebrian
et al., 2013). Regardless of such functional modulations, these
signals are also influenced by individual differences and certain
pathological conditions (Olvet and Hajcak, 2008). Importantly,
however, these signals have been shown to be quite reliable over
time (Olvet and Hajcak, 2009) and across different tasks (Riesel
et al., 2013).

A similar medial-frontal EEG pattern has been reported to
appear after presentation of “feedback,” i.e., the delayed result
of a choice or action. This feedback-related negativity (FRN),
appearing between 200 and 300 ms after feedback onset, is modu-
lated by choices leading to losing situations in strategic gambling
tasks (Cohen et al., 2007), as well as subject-specific sensitivity
to reinforcement signals (Frank et al., 2005). Interestingly, sim-
ilar signals are also elicited in the absence of motor response
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or while observing errors committed by a different person or
agent (van Schie et al., 2004; Yeung et al., 2005; Zander et al.,
2008; Chavarriaga and Millán, 2010; Zander and Jatzev, 2012).
Mounting evidence provides further support of the link between
these signals and reward or utility prediction errors, suggesting
that ErrPs are generated when the actual outcome does not cor-
respond to the expected one (Holroyd and Coles, 2002; Holroyd
et al., 2003; Nieuwenhuis et al., 2004; Yeung et al., 2005). Such
information can be used for learning by adjusting the behavior
to minimize errors, as proposed by the reinforcement learning
theory (Sutton and Barto, 1998).

It is worth to notice that, although these signals are typically
referred to as “negativities,” the EEG correlates of performance
monitoring comprise a uniform sequence of ERP components
irrespective of the error source (Ullsperger et al., 2014). These
include the fronto-central negative deflections related above, fol-
lowed by a fronto-central positive deflection and then a later
parietal positivity. This pattern is found after self-generated errors
(i.e., the ERN/Pe complex), stimulus presentation (i.e., N2/P3
complex), and feedback errors (i.e., FRN/P3 complex). It is
not entirely clear to what extent these signals share common
underlying processes. Several studies using fMRI, EEG-based
source localization, and intra-cranial recordings suggest that the
fronto-central ERP modulations commonly involve the medial-
frontal cortex, specifically the anterior cingulate cortex (ACC)
(Ullsperger and von Cramon, 2001; Brázdil et al., 2002; van
Veen and Carter, 2002; Herrmann et al., 2004; Taylor et al.,
2007).

Lastly, ErrPs seen as distinct patterns in the temporal domain
of electrophysiological signals are not an exhaustive description
of the observable EEG phenomena. Accumulating invasive and
non-invasive studies are also demonstrating frequency modula-
tions, specifically with erroneous responses eliciting an increase
of theta activity followed by a decrease of beta rhythm ampli-
tude (Trujillo and Allen, 2007; Cohen et al., 2008; Koelewijn
et al., 2008; Cavanagh et al., 2009, 2012). Moreover, connectivity
studies reveal patterns of cross-regional synchronizations, point-
ing to influences from ACC to prefrontal areas (Cavanagh et al.,
2009).

As already mentioned, several studies have reported an evoked
response to errors in the user intention decoding when using BMI
systems (c.f., Figure 2). This response exhibits the same pattern of
modulations as described above. The difference waveform (error
minus correct) over fronto-central areas is characterized by an
initial positive peak at about 200 ms after feedback presentation,
followed by a larger negative deflection at about 250 ms and a
third larger positive peak at about 320 ms. Furthermore, estima-
tion of the intracranial activity using sLoreta (Pascual-Marqui,
2002) indicated that the signals elicited during brain-machine
interaction were generated in the ACC, consistent with other
error-related EEG correlates (Ferrez and Millán, 2008a; Lopez-
Larraz et al., 2010; Iturrate et al., 2013a). Notably, the term error-
related potential (ErrP), has since become quite widespread within
the BMI community, covering electrophysiological responses
elicited in a number of paradigms. Resolving its relationship to
ERP components, and their functional modulations, typically
identified in basic cognitive neurosciences is beyond the scope

of this BMI-focused review (although we refer to one relevant
confound below). It can be considered as a useful umbrella term
for application-driven research, albeit to a certain extent at the
cost of correspondence with fundamental investigations. This is,
however, partly justified by different research settings: closed-
loop usability and practicalities of single-trial decoding are rarely
the chief concern of basic neuroscience, while the latter’s typical
abstract, distilled experimental paradigms are not employed by
engineering-oriented researchers.

3. ERROR-RELATED POTENTIALS FOR BMI
Following the basic neurophysiological findings described in the
preceding section, several studies aimed at assessing whether sim-
ilar signals were also to be found when the errors were produced
by a machine as a result of a misclassification of the user’s inten-
tion while operating an actual or simulated BMI. In a first report
Schalk et al. (2000) showed in four healthy subjects that ErrPs
are elicited at the end of erroneous trials when they controlled
a 1-D cursor using a non-invasive BMI based on modulation of
mu and beta EEG rhythms. This approach was further developed
by Ferrez and Millán (2008a) in a study on five subjects using a
2-class motor-imagery (MI) based BMI controlling a cursor mov-
ing in discrete steps (c.f., Figure 3A). They showed that the ERPs
elicited after each command could be decoded as corresponding
to the error or correct condition with an accuracy of about 80%.
Simultaneously, other studies tested the feasibility of decoding the
error-related activity elicited after manual responses (Blankertz
et al., 2003; Parra et al., 2003).

Further studies demonstrated other encouraging features of
ErrPs for their use in BMI applications. Firstly, as with the ERN,
they have been shown to be quite stable over time. ErrP classifiers
maintained the same performance when tested several months
after their calibration (Ferrez and Millán, 2008a; Chavarriaga
and Millán, 2010). Furthermore, these signals seem to be mainly
related to a general error-monitoring process, instead of speci-
ficities of the particular task that was performed. Iturrate et al.
(2014) compared ErrPs elicited in three tasks in which subjects
(N = 6) monitored the operation of devices of different degree of
complexity: a 1-D cursor movement (Figure 3A), and a simulated
(Figure 3B) and real robots (Figure 3C) moving in a 2-D space.
Their results show that ErrPs across these tasks significantly dif-
fer in the latency of the peak modulations, but not in amplitude
or overall waveform, thus suggesting the possibility of identifying
task-independent markers of erroneous brain-machine interac-
tion. Along the same lines, similar waveforms have been reported
in tasks using different feedback modalities (Lehne et al., 2009;
Perrin et al., 2010; López-Larraz et al., 2011; Chavarriaga et al.,
2012).

An account of ErrP usage in BMI applications must indicate
several specific confounds these signals may be susceptible to.
Since –due to the nature of BMI– such applications often involve
moving stimuli, there is the possibility that observed signals may
be contaminated with electrooculographic (EOG) artifacts due to
eye movements. This can bias the decoding particularly in appli-
cation designs where direction of feedback movement is related
to correctness of action. To counter this confound, researchers –
especially in in proof-of-concept studies– may take care to ensure
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FIGURE 2 | Error-related potentials in a 2-class task used in BMI.

Left column, Interaction ErrP. The cursor movement is controlled by a
MI-based BMI (Ferrez and Millán, 2008a). Right column, Monitoring
ErrP: The cursor moves automatically and the user is asked to evaluate
whether it moves toward the target location (Chavarriaga and Millán,
2010). (A,B) Event-related spectral perturbation. (C,D) Grand-average ERP

at electrode FCz for correct, error and difference (error minus correct)
conditions. t = 0 corresponds to the stimulus presentation onset (i.e.,
cursor movement). (E,F) Topographical representation of the group
average difference ERP for both the interaction (N = 4) and monitoring
paradigms (N = 6). Activity is color coded from blue to red
corresponding to the range [−5 5] uV.

FIGURE 3 | Several experimental protocols used to study ErrPs during

brain-machine interaction. (A) 1-D cursor control (Ferrez and Millán, 2008a;
Chavarriaga and Millán, 2010; Tsoneva et al., 2010; Goel et al., 2011; Zhang

et al., 2012; Iturrate et al., 2013a, 2014). The cursor (orange square) moves in
discrete steps toward a target location (green square). (B,C) 2-D control of a
simulated and real robotic arm (Omedes et al., 2013; Iturrate et al., 2014).

that the location or movement of target stimuli are balanced.
Fortunately, it has consistently been found that ocular artifacts
have little influence on the signals used for the decoding (Ferrez
and Millán, 2008a; Chavarriaga and Millán, 2010; Iturrate et al.,

2010; Artusi et al., 2011; Spüler et al., 2012): Nevertheless EOG
artifacts remain an ever-present concern in EEG studies using
moving stimuli and their potential impact should be systemati-
cally assessed.
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A different possible confound is that the observed poten-
tials are more related to the rarity of the erroneous events than
their valence. To evaluate this, Ferrez and Millán (2008a) and
Chavarriaga and Millán (2010) performed experiments with error
rates of 50% and 40%, respectively. In both cases they report sim-
ilar ErrPs than those obtained with lower error rates, although
with lower amplitudes. Similarly, the N200/P300, as well as the
FRN signals have also been reported to be modulated by the
target/error likelihood (Polich, 1990; Polich and Margala, 1997;
Jessup et al., 2010; Hauser et al., 2014). In conclusion, although
ErrPs are modulated by the frequency of the stimulus they can-
not be explained by this factor alone and seem more correlated to
their meaning.

Another factor that can modulate the amplitude of the ErrP
concerns the attention level of the subject and her/his engage-
ment in the task (Hajcak et al., 2005). Subjects tend to have
smaller ErrP amplitude when simply monitoring the device than
when they are controlling it, c.f. Figures 2C,D (Ferrez and Millán,
2008a; Chavarriaga and Millán, 2010). This factor may influence
the performance and, as with other BMI approaches, calls for
efficient calibration methods, which could be used before online
operation.

Overall, initial ErrP studies supported the idea that it was pos-
sible to identify erroneous responses–either manual or decoded
through a BMI–and use them to correct these errors to improve
the overall performance (c.f., Figure 1 Left). They were based on
offline analysis and did not assess the effect of these approaches
during online operation, but fostered continued efforts to reliably
decode such error-related brain activity and to integrate it in the
framework of human–machine interaction.

4. ERROR-RELATED POTENTIALS AS A CORRECTIVE SIGNAL
4.1. ERROR CORRECTION IN MOTOR-RELATED BMI
Subsequent attempts at integration of ErrP-based correction into
online BMI setups yielded generally positive results. Extending
their previous protocol, Ferrez and Millán (2008b) used a two-
class MI-based BMI to control one-dimensional step-wise move-
ments of a cursor. The potential evoked by the cursor movement
was decoded to indicate an erroneous or correct movement. In
the former case, the cursor was returned to the previous position.
Simultaneous real-time decoding of both ErrPs and MI-related
activity in two subjects resulted in a three-fold increase in the
information transfer rate. They report 80% accuracy in the ErrP
recognition, which lead to a reduction of the MI decoding error
from about 30% to less than 9%. Kreilinger et al. (2009) also
reported performance improvement in a similar experimental
protocol involving 13 healthy subjects. MI classification accu-
racy increased from about 70 to 80% using the online ErrP-based
correction.

Other studies have provided further support to the feasi-
bility of using such hybrid approaches, combining the use of
one BMI signal to decode the action commands and the ErrP
decoding to correct erroneous actions. For instance, Artusi et al.
(2011) using offline analysis showed improvement in the decod-
ing of movement-related potentials (i.e., preparatory EEG activity
before actual movement performance) by introducing ErrP classi-
fication. In their approach, the outcome of the movement decoder

was shown to the user and if the elicited EEG response was
decoded as corresponding to the error condition, the trial was
discarded and the task had to be repeated. Their experiment,
involving six healthy subjects, yielded an average ErrP recogni-
tion of 80%. Simulation of this corrective mechanism showed a
reduction of the global error rate in discriminating between imag-
ination of slow and fast arm flexions from 26% to 14%. In this
case, 20% of the trials were discarded based on the ErrP decod-
ing. They estimated an improvement in the average information
transfer rate of 76%. Altogether these results are indeed encour-
aging; however, often such studies used simulated initial BMI
commands in order to keep a constant performance; e.g., Ferrez
and Millán (2008a); Millán et al. (2009); Artusi et al. (2011).
The purpose of such manipulation is to decouple the estima-
tion of the benefits of ErrP-based detection from within-session
variations of the command decoder. In consequence, further
online tests are required to fully assess the actual performance
of motor-related BMIs combined with ErrP-triggered corrective
actions.

4.2. ERROR CORRECTION IN P300-BASED BMI
ErrP-based correction mechanisms have also been applied widely
to P300-based spellers (Dal Seno et al., 2010; Takahashi et al.,
2010; Combaz et al., 2012; Spüler et al., 2012; Schmidt et al.,
2012). These systems exploit an event-related potential elicited
by a rare, relevant stimulus: the so-called P300 ERP component
(Farwell and Donchin, 1988). In this application, the interface
can cancel a character selected with the P300-based speller upon
subsequent ErrP detection or, alternatively, correct it by choosing
the second most probable character according to the P300 decod-
ing. Although, an early study showed little or no improvement
by ErrP-based online correction for two subjects using a pseudo-
random matrix speller (Dal Seno et al., 2010), later works showed
advantage of integrating the ErrP detection into the BMI. Schmidt
et al. (2012) reported an average increase of 40% in the writing
speed of twelve healthy subjects using a speller interface designed
to reduce the performance sensitivity to gaze shifts (Treder et al.,
2011). More recently, Spüler et al. (2012) reported experiments
with six subjects with motor disabilities (5 diagnosed with amy-
otrophic lateral sclerosis, ALS, and one with Duchenne muscular
dystrophy) in which a performance increase was observed (0.37
bits per trial). For comparison, an age-matched group of eight
able-bodied subjects showed an increase of 0.73 bits per trial,
while a group of nine younger subjects had an increase of 0.44 bits
per trial. Notably, patients with ALS exhibited similar ErrP pat-
terns to those of healthy subjects, further supporting the potential
use of error processing signals in such BMI applications, primar-
ily meant for users with severe disabilities. Both studies found an
inverse correlation between the performance improvement and
the accuracy of the P300 decoder. However, conversely, a different
study involving 16 healthy subjects reported larger improvement
for users with higher spelling accuracy (Perrin et al., 2012). In
this study, such subjects also showed a slightly higher speci-
ficity in the decoding of the ErrP signal. A potential issue to
be taken into account in this approach is that both P300 and
ErrPs are modulated by attentional processes (Yeung et al., 2005;
Kleih et al., 2010). Therefore, factors that affect the level of
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engagement or motivation of the user (e.g., a BMI low accu-
racy, high mental workload) may be reflected in the elicited ERPs
and, depending on the sensitivity of the decoder to these varia-
tions, be detrimental to the overall performance after integration
of the ErrP-based correction in both able-bodied and users with
disabilities.

4.3. CORRECTION OF MANUAL RESPONSES
Besides using ErrPs to correct commands generated by BMI sys-
tems, these signals can also be used in HCI applications requiring
manual responses from the user. The first attempts to decode the
ERN/Pe components date back to the early 2000s. Blankertz et al.
(2003) reported decoding of error-related signals in eight able-
bodied subjects using a modified d-2 attention task (Bates and
Lemay, 2004). Then, Parra et al. (2003) analyzed ErrPs in a forced
choice visual discrimination task, i.e., the Eriksen Flankers task.
They reported single-trial classification accuracy of 91% averaged
over seven healthy subjects. Furthermore, online correction of the
manual responses using the decoded error-related EEG correlates
reduced the discrimination error rate in 5 of the subjects (average
error reduction was 21.4 ± 21.7%). While in the above study users
responded by pressing a key, Ventouras et al. (2011) also tested
the decoding of the ERN/Pe in the Eriksen task using a joystick as
input device. Their experiment included 16 healthy subjects, and
classification performance was assessed using the leave-one-out
procedure. They reported sensitivity and specificity values over
87.5%.

These signals have also been tested as a means to correct errors
in typewriting tasks. Wang et al. (2011) decoded ErrPs elicited
during a hear-and-type task where nine subjects had to type
numbers dictated by a computer. They reported sensitivity and
specificity values of 68.72 and 51.68% for classifiers trained and
tested on the same subject. The performance for cross-subjects
classifiers was 68.72 and 49.45%, respectively. A limitation of this
study, and a potential reason for the low decoding performance,
is the small number of keystroke errors made by the subjects,
ranging from 0.42 to 3.58%. As discussed below, this limits the
possibility of building proper models of the signals corresponding
to errors.

Another interesting study evaluated both feedback and self-
generated errors in a task involving visuo-tactile stimuli (Lehne
et al., 2009). Eleven participants took part in the study where
an array of vibrotactile stimulators provided information about
a tactile cursor that should be directed toward a target location
on the torso. Visual stimulus presented an intended direction of
movement and upon its appearance, the user pressed a button
to confirm or reject the proposed movement direction. Given
the task difficulty, users made erroneous responses in 27.8% of
the trials on average. Furthermore, in other trials machine errors
were also introduced (i.e., the machine misinterpreted the button
responses). Classification of both types of errors yielded accura-
cies of about 70%, with higher detection rates for the correct than
the error trials (i.e., about 70 and 50%, respectively).

Overall, these works show the feasibility of decoding error-
related information after user overt responses. In general the
classification performance was higher for the correct condition,
in particular when the complexity of the task increases.

5. ERROR-DRIVEN LEARNING
The studies presented above used ErrP detection to immediately
correct erroneous decisions made by the BMI. An alternative use
of these signals is error-driven learning. This approach, illustrated
in Figure 1 Right, has been applied to endow BMI systems with
adaptive capabilities in two different manners. One possibility is
to update the BMI classifier (Blumberg et al., 2007; Llera et al.,
2011, 2012; Roset et al., 2013). For instance, Llera et al. (2011)
used the decoding of error-related MEG activity to identify mis-
classification in a two-class covert visual attention paradigm (N =
8). The lateralization of alpha-band power in posterior channels
was classified using logistic regression to infer which direction
(i.e., left or right) the subject was covertly attending to. ErrP
decoding was used to identify misclassifications and provide new
labels for the incoming data in a semi-supervised manner. The
labeled sample was then used to update the classifier parame-
ters. Offline analysis showed that this approach can significantly
increase the performance of the BMI classifier. Importantly, given
that this is a binary task the intended target class can be easily
inferred for the misclassified samples allowing the use of super-
vised learning techniques for the classifier adaptation. A similar
strategy was adopted by Artusi et al. (2011) in the task described
in section 4.1, i.e., decoding of imagery of fast vs slow movements.
In their case, those trials that were considered as correct after ErrP
classification were incorporated into a learning set that was used
to perform online retraining of the MI classifier.

However, as long as the ErrP decoding is considered to be
in essence binary, the overall performance will be substantially
affected by the false positive rate (i.e., correct BMI actions mis-
classified as errors). A way to palliate this effect is to use methods
relying on probabilistic error signals. In that way the reliability of
the ErrP decoder (estimated from the training set) can be taken
into account. Bayesian filtering or Expectation-Maximization
have been put forward as possible approaches (Perrin et al., 2010;
Artusi et al., 2011; Llera et al., 2012). A similar method was
also proposed in a hybrid system for human-computer interac-
tion where an acceleration-based gesture recognition system was
updated using the decoding of the ErrP signal (Chavarriaga et al.,
2010). However, as per our knowledge they have only been tested
in offline experiments.

Besides adapting the BMI classifier, ErrPs can be used to
improve the behavior of a semi-autonomous system. This
approach is anchored in the concept of shared control, where
intelligent devices can take care of low-level decisions while the
user only provides high-level commands –using a BMI or another
input modality– (Perrin et al., 2010). In this case, the user mon-
itors the performance of the intelligent device and whenever an
ErrP is detected, suggesting the action was perceived as erroneous,
it is used to adapt the device controller to reduce the likeli-
hood of committing the same error later on (Chavarriaga and
Millán, 2010). In terms of the reinforcement learning algorithm,
the detection of an ErrP corresponding to the error condition
will be translated onto a negative reward value, effectively pun-
ishing the performed action when updating the control policy.
This approach was first tested in a 1-D control task with six
healthy subjects (c.f. Figure 3A). The offline analysis showed that
it was possible for the device to learn optimal control policies
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even though the accuracy of the ErrP decoder was not perfect.
An online evaluation of this approach on two subjects monitor-
ing a simulated robot was demonstrated by Iturrate et al. (2010).
In this work the subject had to choose the intended target loca-
tion of the robot and then monitor its movements. The decoded
ErrPs were used in a reinforcement learning paradigm to update
the robot control policy. They reported that the learned policy
converged toward the optimal one–i.e., taking the robot to the
user’s intended location–in 92% and 75% of the cases for each
subject, respectively. Recent integration with shared control tech-
niques suggests that further improvements in performance can
be achieved (Iturrate et al., 2013b). In this case 4 subjects moni-
tored a moving cursor in a 2D reaching task, and the ErrPs were
used to select one control policy from a pre-defined repertoire;
i.e., selecting the most suitable policy to reach the inferred target
location.

6. ERROR-RELATED POTENTIALS IN REALISTIC
APPLICATIONS

As summarized in section 2, a wealth of neuroscience litera-
ture has reported error-related neural correlates. These studies
are typically performed in well-controlled laboratory conditions
using abstract tasks and stimuli. This allows characterization of
such correlates in recording conditions that yield higher signal-
to-noise ratio and avoid confounds that may appear when allow-
ing more behavioral freedom to the subject(user), or relaxing
constraints of the operational setting.

Notably, several studies presented in previous sections cor-
roborated the existence of similar correlates during complex
scenarios or realistic interaction with complex devices. Wang et al.
(2011) evaluated ErrPs when users performed a typewriting task,
while Spüler et al. (2012); Schmidt et al. (2012) and others have
tested these potentials while subjects use a P300-based speller.
Moreover, it has been possible to observe and decode error-related
potentials while people monitor the performance of a robotic
arm (Kreilinger et al., 2012; Iturrate et al., 2014) or a mobile
robot (Perrin et al., 2010; Chavarriaga et al., 2012), both using
simulated and real platforms. Similar correlates were also found
during simulated driving of an intelligent car (Zhang et al., 2013).
Another study, assessing potential BMI applications to cope with
the situational disability experienced by astronauts, reported sim-
ilar ErrP waveforms and decoding performance under different
gravity conditions in parabolic flights (Millán et al., 2009).

These studies suggest that these ErrPs can also be decoded
in more complex tasks and scenarios. Nevertheless, it has to be
noticed that the decoding performance is typically lower than
in simpler, well-controlled experimental paradigms. The perfor-
mance differences can be due to the decreased signal to noise ratio
of the recorded signals, as well as the increased workload placed
on the user in the complex tasks. As shown below, some works
have attempted to identify and exploit common patterns between
simple and complex tasks as a procedure to improve the train-
ing of the ErrP decoder in more challenging conditions (Kim and
Kirchner, 2013; Iturrate et al., 2014).

7. CLASSIFICATION OF ERROR-RELATED POTENTIALS
A key factor for exploiting ErrPs to improve BMI performance is
the ability to decode this signal in a single-trial. As it is the case

for all BMI systems, they rely on the real-time processing of the
neural signals and the use of machine learning techniques to relate
the current activity pattern to a corresponding class (i.e., error or
correct condition). This process involves the extraction of suitable
features and the training of a classifier based on available labeled
samples. Below we discuss the most common methods applied for
decoding the error correlates. However, a comprehensive review
of the machine learning methods applied in BMI is out of the
scope of this paper. Interested readers can refer, among others, to
introductory papers by Bashashati et al. (2007); Lotte et al. (2007)
and Blankertz et al. (2011).

Studies presented in the previous sections show that it is pos-
sible to decode the ErrPs. Noticeably, they have often reported
higher classification accuracy for correct trials than errors. This
may be partly due to the protocols used to train the classifier.
These typically involve a low error-rate (e.g., 20%) thus yielding
a larger number of examples for the correct class. The use of an
imbalanced number of samples per class may result in asymmet-
ric costs for misclassification of each class and leads to classifiers
that are biased toward one of the classes. Moreover, it is diffi-
cult to properly estimate the classifier parameters if only a limited
number of examples is available.

Regarding the processing and classification techniques used
to decode the ErrPs it can be observed that a vast majority
of the reported studies are based on temporal features (i.e.,
waveform shape) computed from a few pre-selected electrodes
in the fronto-central areas (e.g., FCz, Cz). Typically, EEG sig-
nals were low-pass filtered below 10 or 20 Hz and time-samples
from a pre-defined window (usually between 200 and 600 ms)
were used for classification (Blankertz et al., 2003; Ferrez and
Millán, 2008a; Kreilinger et al., 2009; Chavarriaga and Millán,
2010; Dal Seno et al., 2010; Takahashi et al., 2010; Artusi et al.,
2011; Spüler et al., 2012). In some cases, authors used auto-
matic selection mechanisms over larger feature spaces, quan-
tifying discriminant power of features with some metric, e.g.,
t-statistic, Fisher score or r2 (Dal Seno et al., 2010; Goel et al.,
2011; Iturrate et al., 2013a). These studies reported similar fea-
tures than those manually selected but aimed at better capturing
subject-dependent variations in the elicited signals. Alternative
approaches to compute features have recently been proposed
including the usage of spatiotemporal filters (Perrin et al., 2012;
Rousseau et al., 2012; Iturrate et al., 2013a, 2014), as well as sin-
gular value decomposition (Hamner et al., 2011; Phlypo et al.,
2011).

A few studies have tested the feasibility of exploiting features
computed in the frequency domain (Bollon et al., 2009; Omedes
et al., 2013) with generally encouraging results. Interestingly,
Omedes et al. (2013) tested the use of theta power as a feature for
classification in the three experiments shown in Figure 3. They
evaluated which type of features generalize better across tasks
by measuring the classifier performance in a different task than
the one it was trained for. Offline tests of data from six subjects
showed smaller performance degradation across tasks for classi-
fiers using frequency features compared to those using temporal
features. A separate study showed that ErrP variation across these
tasks is mainly due to latency (Iturrate et al., 2014). This suggests
that frequency-based features may be less sensitive to temporal
jitter across individual ErrP trials.
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Goel et al. (2011) tested the use of features computed on
the intracranial EEG sources, which have been estimated using
inverse solution methods. The hypothesis being that projection
into the source space can act as a spatial filtering technique that
increases the signal-to-noise ratio of neurophysiologically rele-
vant discriminant features. Offline analysis in the monitoring
protocol depicted in Figure 3A, showed improved performance–
in terms of area under the curve, AUC (Fawcett, 2006)–with
respect to previously reported results using surface EEG clas-
sifiers in the six subjects analyzed. Further online experiments
confirmed the validity of using these features for classification
although its potential advantages over standard methods is yet to
be fully validated (Goel, 2013).

Taking into consideration the cross-regional interactions
reported in neurophysiological studies (c.f., section 2), Zhang
et al. (2012) evaluated the use of single-trial estimation of con-
nectivity patterns for ErrP classification. They computed direc-
tional interaction across channels using a modified directed
transfer function (DTF) method in different frequency bands
(Kamiński and Blinowska, 1991). Offline analysis of data on 16
subjects using the same monitoring protocol as above, showed
discriminant fronto-central interactions in the theta rhythm that
yielded single-trial decoding above chance level. Furthermore,
the combined use of connectivity and time-based features gave
significantly better performance than temporal features alone,
suggesting that the two feature sets convey complementary
information.

The most common classification techniques used for the
decoding include linear discriminant analysis (LDA) or its vari-
ations such as Fisher LDA or regularized LDA (Blankertz et al.,
2003; Parra et al., 2003; Lehne et al., 2009; Ventouras et al., 2011;
Iturrate et al., 2014), as well as Gaussian classifiers (Ferrez and
Millán, 2008a; Kreilinger et al., 2009; Chavarriaga and Millán,
2010; Perrin et al., 2012) and support-vector machines (SVM)
(Artusi et al., 2011; Ventouras et al., 2011; Wang et al., 2011;
Spüler et al., 2012). In their study, Spüler et al. (2012) performed
an offline comparison of LDA, step-wise LDA, and SVMs with
linear and radial basis function (RBF) kernels. For this analy-
sis they used previously recorded data of six patients with ALS.
Using 10-fold cross-validation test they selected the RBF-kernel
SVM as the best suitable for their application (P300-speller).
Unfortunately, they did not report what specific criteria were used
for this selection nor the performance of each method. Similarly,
Ventouras et al. (2011) compared the performance of SVM and
K-NN classifiers on the decoding of ErrPs elicited after manual
responses. Their analysis using different feature selection mecha-
nisms and leave-one-out cross-validation showed no significant
differences between the two methods. Wang et al. (2011) also
compared classifier performance when decoding those signals.
Interestingly, they found little performance differences between
the sensitivity obtained with LDA and SVM classifiers when train-
ing and testing on the same subject’s data. In contrast, when
the test was performed on a subject that was not part of the
training set, the LDA yielded higher sensitivity. However, their
results were close to chance level and may not be significant
given that only a small number of trials were available for the
error class.

A direct comparison of the performance obtained in these
studies cannot be interpreted as a fair assessment of the advan-
tages of a given decoding method. That is due to the differences in
the pre-processing methods applied, the features selected for clas-
sification, and the reported performance metrics. Nevertheless,
they often reported classification accuracies between 70 and 80%.
As a tentative synthesis, one is under the impression that vari-
ous classification methods reported in literature seem to obtain
comparable results. Taking into account that most of these studies
involve a rather small number of subjects, it is very likely that any
performance differences are largely influenced by inter-subject
variability.

In addition, efforts have been undertaken to design methods
for fast training of the ErrP decoder. Some recent approaches rely
on semi-supervised or unsupervised learning (Grizou et al., 2014;
Zeyl and Chau, 2014). Another applied technique is the use of
available data from other subjects to boost learning of a subject-
dependent classifier (Iturrate et al., 2011; Putze et al., 2013).
Alternatively, ErrPs have been shown to have common charac-
teristics across tasks. In consequence, several methods have been
proposed for online adaptation of classifiers trained in a previous
protocol to the characteristics of the potentials elicited in the new
task (Iturrate et al., 2013a; Kim and Kirchner, 2013; Iturrate et al.,
2014). In this case, provided that an ErrP decoder has already been
trained in a given task, the calibration time for a new task can
be considerably reduced. Finally, as mentioned above, frequency
features seemed less sensitive to task-dependent latency jitters in
the neural response and were thus proposed as a potential means
to implement task-independent classifiers (Omedes et al., 2013).
These techniques have shown encouraging results, but have yet to
be thoroughly tested to confirm their real advantages.

Lastly, besides direct single-trial classification problems, the
ErrP detection process should take into account how this infor-
mation will be later on utilized for interaction. In particular, there
may be application-dependent requirements in terms of sensitiv-
ity and specificity that need to be considered when choosing the
classification technique and parameters (Parra et al., 2003; Seno
et al., 2010; Spüler et al., 2012).

8. DISCUSSION
The works reviewed in this paper strongly support the feasibil-
ity of decoding error-related potentials and using the information
they carry to improve the performance of BMI and HCI systems.
There are, however, several challenges that need to be overcome
until efficient and fully working applications can be implemented
in the real world.

First of all, there is a clear need for further evaluation of
the online exploitation of ErrPs. Although there is an increasing
amount of studies showing online decoding of error-related sig-
nals, in particular for P300 applications, they typically rely on a
small number of subjects. These studies have already highlighted
how individual differences may affect the overall performance
of the error-correction mechanism (Perrin et al., 2012; Schmidt
et al., 2012; Spüler et al., 2012). Therefore caution should be
taken in the design of such studies. In particular, this includes the
number of subjects involved in the study, the control conditions
against which the performance will be evaluated, as well as the
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effects of subject learning and fatigue when testing over several
sessions.

Further studies are also needed to evaluate the detection of
these potentials in people with severe disabilities, which is the
principal target user group of BMI today (one of the main
potential applications of BMIs is the restoration or substitution
of motor and communication capabilities). Spüler et al. (2012)
reported encouraging results, showing that reliable ErrPs are
elicited in patients with ALS and their decoding can improve per-
formance of a P300-speller. Nonetheless, there is clearly a need for
more studies characterizing these signals in different populations.
Some studies have already pointed out age-related changes in the
ERN (Davies et al., 2004; Wiersema et al., 2007), but it is yet to
be assessed how these changes affect the discriminability between
error and correct trials. Similarly, longitudinal studies may be
necessary to identify how ErrPs change in the case of degener-
ative diseases. In addition, several works have pointed out that
feedback modalities other than visual may be suitable for users in
the locked-in state as they do not rely on volitional gaze control
(Schreuder et al., 2010; Treder et al., 2011; Kaufmann et al., 2013).
Preliminary evidence suggests that ErrPs can be elicited and, to
some extent, decoded after tactile stimulation (Lehne et al., 2009;
Chavarriaga et al., 2012) in healthy users. This possibility remains
to be further tested, in particular in users with disabilities.

Another issue of interest concerns the evaluation of the
performance of hybrid BMI systems exploiting ErrP-decoding.
Typically, authors have reported changes using diverse metrics
including accuracy, information transfer rate (Wolpaw et al.,
2000), efficiency (Quitadamo et al., 2012) or utility value (Seno
et al., 2010). This denotes a lack of a formal framework for per-
formance assessment –a problem common to the overall BMI
field– and prevents the comparison of results across different
studies (Thomas et al., 2013; Thompson et al., 2014). It is advis-
able that future works provide a comprehensive evaluation of
performance reporting different metrics to enable such compar-
isons. Moreover, performance can be affected by protocol-specific
parameters. For instance, in the case of ErrP-based correction,
each command correction will have a cost (e.g., time required
to undo the last action), and the overall benefit of the correction
mechanism will depend on both: this cost and the specificity of
the ErrP decoder (Parra et al., 2003).

This is intrinsically linked to the sensitivity and specificity of
the decoding performance. The impact of the falsely decoded tri-
als will be highly dependent on the application and the actions
taken upon error detection. A clear difference is observed between
the corrective and learning use of the ErrPs. In the first case,
ErrP classification errors are explicitly perceived by the user. This
can be counterproductive if the false detections appear to impair
proper use of the interface (e.g., by rejecting or changing cor-
rect commands), even if improved performance is achieved in
the long-term. As an example, Perrin et al. (2012) reported that
some users, despite having good ErrP decoding performance, still
preferred the implementation of the P300 speller without the cor-
rection, since they perceived no benefit with respect to use of the
P300 alone.

In contrast, the learning approach where the classifier or the
device controller is updated according to the outcome of the

ErrP decoding may mask these false detections. Moreover, it has
been shown that reinforcement learning algorithms can converge
toward optimal policies even in the case of noisy estimation of
the reward signals, provided that the estimation performance is
above chance level (Sutton and Barto, 1998). One can expect,
thus, that the use of ErrPs for learning has lower requirements
in terms of the minimal acceptable performance than immediate
command correction. This holds, of course, provided that the ini-
tial performance of the control interface is already acceptable for
the user. Future work assessing these requirements from a human
factors perspective is certainly needed for effectively designing
interaction systems that exploit these error-related signals.

Following basic studies on the ERN and FRN, BMI efforts
of decoding error-related signals have so far mostly focused on
the time-locked response generated by a discrete feedback stim-
ulus. In consequence, exploitation of the ErrPs has been largely
restricted to discrete tasks such as the P300-based speller or step-
wise movements (c.f. section 3). Besides limiting the range of
applications and their naturalness, this approach also limits the
throughput of the system since after each command a time inter-
val of several hundred milliseconds is required for evaluating the
presence of an ErrP. Consequently, further research is required
toward decoding in more continuous setups.

Although not an easy task, several lines of progress seem to be
open. One alternative is to increase the pace at which the stim-
uli are presented. Typically, experiments exploiting ErrPs have an
inter-stimulus interval of 2 s or more. In contrast, experiments
using rapid serial visual presentation (RSVP) have shown single-
trial decoding of EEG correlates of visual recognition with stim-
ulus presentation rates higher than 4 Hz (Gerson et al., 2006). It
still to be tested whether ErrPs can be detected in such fast-paced
feedback presentations.

Another approach is combining usage of continuous feed-
back with additional discrete sensory events, used to time-lock
ErrPs (Kreilinger et al., 2011, 2012). The first study used a game
application where the decoding of MI-related patterns controlled
lane changes in a continuously moving animated car. It provided
feedback for correct or wrong changes in the form of multi-
ple predictable collisions with point tokens (positioned on the
correct lane) or barriers (on the wrong lane). The second work
applied an interesting approach to the BMI-control of a robot
arm, combining the performance of a continuous mental task
with discrete feedback to elicit ErrPs. Subjects had to perform
MI during a given period, then the robot arm moved and after
that users should assess whether the robot’s movement lasted the
same amount of time as the MI task. Visual cues provided infor-
mation of the robot movement duration. Offline analysis showed
ErrP decoding above random level; however the performance in
both studies was lower than those reported in purely discrete
paradigms.

Besides the previous approaches employing, in essence, some
strategy of circumvention of the continuous feedback problem,
one can also try to directly tackle the possibility of decoding
error-related signals in a purely asynchronous (non-time locked)
manner. An example of such attempt with invasive electrocor-
ticographic recordings (ECoG), benefiting from better signal-to-
noise ratio than scalp EEG, demonstrated that error events can
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potentially be detected with good accuracy during a continuous
task, given a temporal tolerance of several hundred millisec-
onds (Milekovic et al., 2013). For EEG, a potential avenue to
explore is the use of the spectral content instead of temporal
features. As shown in Figure 2 the event-related ErrPs are char-
acterized by positive theta modulations. Interestingly, it has been
shown that erroneous manual responses elicit increases in both
phase- and non-phase-locked theta activity (Trujillo and Allen,
2007). Moreover, the power increase in non-phase locked activity
was higher than for the phase-locked activity. Noticeably, ErrP-
decoding performance based on theta-power features was shown
to be less sensitive to task changes (Omedes et al., 2013). As
already mentioned the main ErrP changes across these tasks can
be explained by latency shifts (Iturrate et al., 2014). Thus support-
ing the notion that oscillatory activity can allow asynchronous
detection of erroneous events in continuous tasks.

To summarize, different studies have repeatedly demonstrated
the feasibility of decoding error-related EEG signals on a single-
trial basis. This has been achieved both when the errors are
committed by the user, as well as when the errors are intro-
duced by the interfacing device, in particular a BMI. The decoding
accuracy of these signals is typically about 80%. This perfor-
mance levels have been shown to usually be sufficient to improve
the information transfer rate in different applications including
motor-imagery based BMIs, P300 spelling and manual labeling
of visual stimuli (c.f. section 4). Moreover, ErrPs can success-
fully be used as a learning signal to improve BMI decoders or the
controller of an external device (c.f., section 5). All these results
support the potential of error-related correlates to provide natu-
rally elicited information about the user cognitive state that can
be used to adjust the machine’s behavior.

Despite these successful studies, several aspects remain to be
further explored, as detailed above. These include improvement
in decoding of these signals in more complex applications, as well
as their further characterization in subjects with disabilities. More
importantly, large scale evaluations involving end-users have to
be performed from a user-centered perspective to identify per-
formance requirements and design criteria that allow for optimal
exploitation of these correlates in practical applications.
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