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Devising efficient strategies for exploration in large open-ended spaces is one of the most
difficult computational problems of intelligent organisms. Because the available rewards
are ambiguous or unknown during the exploratory phase, subjects must act in intrinsically
motivated fashion. However, a vast majority of behavioral and neural studies to date have
focused on decision making in reward-based tasks, and the rules guiding intrinsically
motivated exploration remain largely unknown. To examine this question we developed
a paradigm for systematically testing the choices of human observers in a free play
context. Adult subjects played a series of short computer games of variable difficulty, and
freely choose which game they wished to sample without external guidance or physical
rewards. Subjects performed the task in three distinct conditions where they sampled
from a small or a large choice set (7 vs. 64 possible levels of difficulty), and where they
did or did not have the possibility to sample new games at a constant level of difficulty.
We show that despite the absence of external constraints, the subjects spontaneously
adopted a structured exploration strategy whereby they (1) started with easier games and
progressed to more difficult games, (2) sampled the entire choice set including extremely
difficult games that could not be learnt, (3) repeated moderately and high difficulty games
much more frequently than was predicted by chance, and (4) had higher repetition rates
and chose higher speeds if they could generate new sequences at a constant level of
difficulty. The results suggest that intrinsically motivated exploration is shaped by several
factors including task difficulty, novelty and the size of the choice set, and these come into
play to serve two internal goals—maximize the subjects’ knowledge of the available tasks
(exploring the limits of the task set), and maximize their competence (performance and
skills) across the task set.

Keywords: intrinsic motivation, decision making, exploration, novelty, video games

INTRODUCTION
Common experience shows that people voluntarily take on new
challenges without the benefits of external rewards (e.g., money),
suggesting that they are intrinsically motivated to learn and mas-
ter new tasks. Intrinsic motivation is arguably an important
engine behind human creativity and success in development and
adult life (Csikszentmihalyi, 1997; Ryan and Deci, 2000; Deci
et al., 2001), but it remains poorly understood. Important ques-
tions remain about its fundamental mechanisms, including the
factors that give rise to intrinsic motivation and the roles that it
plays in behavior.

Among the most influential theories of intrinsic motiva-
tion is the principle of optimal challenge—also referred to as
the autotelic principle (Steels, 2004)—which states that people
avoid activities that are too easy or too difficult (and produce,
respectively, boredom and frustration), and instead focus on
activities with an intermediate level of challenge (Berlyne, 1960;
Csikszentmihalyi, 1997). Engagement in optimally challenging

tasks can at times induce a highly pleasurable state of “flow,”
characterized by feelings of being relaxed, absorbed and in con-
trol (Keller and Bless, 2008; Abuhamdeh and Csikszentmihalyi,
2012), suggesting that it triggers internal rewards. This idea is
consistent with evidence that the neural networks recruited dur-
ing intrinsic motivation include subcortical dopamine-recipient
structures that process primary (extrinsic) rewards (Kang et al.,
2009; Murayama et al., 2010, 2013; Lee et al., 2012; Satterthwaite
et al., 2012; Schouppe et al., 2014; Ulrich et al., 2014).

A primary function of systems of intrinsic motivation is
thought to be guiding task selection in conditions where exter-
nal rewards are absent or unknown, such as during explo-
ration. Human beings, along with other intelligent animals,
are remarkable in their drive to actively explore their environ-
ment, whether in adult activities such as scientific research, or
during the extended period of growth and development (Ryan
and Deci, 2000; Deci et al., 2001; Gottlieb et al., 2013; Mirolli
and Baldassarre, 2013; Gweon et al., 2014; Taffoni et al., 2014;
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Oudeyer and Smith, in press). Achieving efficient exploration
in such open-ended conditions poses significant computational
challenges, which stem from the fact that the agent explores in
conditions of limited knowledge and time, the fact that it is faced
with vast numbers of possible tasks, and the fact that many of
these tasks are random or unlearnable and would optimally be
avoided (e.g., one would ideally not spend much effort in trying
to predict the stock market from the traffic pattern). To explore
efficiently under these conditions (i.e., in a way that increases
knowledge), agents may rely in part on low level heuristics such
as novelty bias or random action selection, but also require sys-
tems of intrinsic motivation that assign value to learnable tasks
(Schmidhuber, 2006; Oudeyer and Kaplan, 2007; Oudeyer et al.,
2007; Lopes and Oudeyer, 2012; Gottlieb et al., 2013; Mirolli and
Baldassarre, 2013).

However, beyond these theoretical considerations, our under-
standing of intrinsically motivated exploration is limited by a
paucity of empirical work. Among the rare laboratory studies
relevant to this question, Kidd et al. showed that attentional
resources can be targeted to visual stimuli of intermediate com-
plexity in free viewing contexts (Kidd et al., 2012), and Taffoni
et al. showed that free play in children can be influenced by nov-
elty and the learning of action-outcome contingencies (Taffoni
et al., 2014). However, no study has examined the question of how
adult humans spontaneously organize their exploration in a free
play context, and how these choices depend on fundamental fac-
tors such as the number, difficulty and novelty of the available
tasks.

Here we began to examine these questions using a new
paradigm where human observers played a series of ∼70 short
computer games (lasting 5–30 s each), and were allowed to choose
freely the difficulty of the games that they wished to sample. Our
focus was on the ways in which the subjects organized their explo-
ration when presented with small or large choice sets—containing
7 or 64 games of variable difficulty—and when they did or did
not have the option to generate new games at a constant diffi-
culty. We show that, despite the absence of external constraints,
subjects adopted consistent exploration strategies characterized
by several features. Subjects started with easier games and pro-
gressed to more difficult games, tended to explore the entire
choice set (including extremely difficult games that could not
be learnt), repeated moderately and high difficulty games much
more frequently than was predicted by chance, and had even
higher repetition rates if they could generate new games at a con-
stant level of difficulty. The results are consistent with theoretical
predictions that intrinsically motivated exploration is shaped by
several factors including task difficulty, novelty and the size of
the choice set. They suggest an underlying model whereby the
subjects attempt to maximize their knowledge of the available
tasks (by exploring the limits of the choice set), as well as their
competence (performance and skills) across the range of these
tasks.

METHODS
We tested a total of 52 subjects (29 women), who were recruited
from the Columbia University community and were compensated
for their participation at the rate of $12 per hour. All methods

were approved by the Institutional Review Board of the New York
State Psychiatric Institute.

TASK
Subjects were comfortably seated in front of a computer screen
and played a series of simple games freely chosen during the
course of a session. In each game the subjects saw a stream of
dots that moved from right to left and pressed the space bar to
intercept each dot as it crossed a vertical line at the screen center
(Figure 1A). Each game consisted of 25 dots that were positioned
at variable inter-dot spacings (selected randomly with uniform
probability among the values of 1.78◦, 3.56◦, 7.1◦, and 10◦) and
moved at a constant speed (1◦/s–75◦/s across different task ver-
sions). A game lasted between 5 and 30 s depending on dot speed.
Each dot was 0.5◦ in diameter, and the entire sequence spanned
33◦ horizontal distance (the right half of the screen). (We give
the distances in degrees of visual angle based on an eye-to-screen
distance of 50 cm that corresponded to the subjects’ approxi-
mate position; however, the subjects’ heads and bodies were not
restrained during the task.)

The key variable of interest was how the subjects chose which
game to play as a function of difficulty (speed) and the prop-
erties of the choice set. Three groups of subjects experienced
3 choice sets as illustrated in Figure 1, and could freely choose
which game to sample. In the 7-game version, the subjects
could choose among 7 games represented by distinctly colored
boxes randomly arranged in a circular array (Figure 1B). In the
64-game (Figure 1C) and 64N-game versions (Figure 1D), they
chose among 64 games arranged in a rectangular array. Each game
in the 7 and 64-game versions was characterized by a unique
dot sequence and speed. In the 7-game version, game speed was
arranged randomly in the choice array, whereas in the 64-game
version it increased monotonically along the rows from the top
left to the bottom right corners. The 64N version was identical
to the 64-game version except that the subjects were given an
additional option to request a new sequence at a given speed.
Thus, after the subjects selected a box indicating speed, they were
prompted to press “N” if they wanted to play a new sequence
(Figure 1D), or to press return if they wanted to repeat the same
sequence at that speed. If the subjects pressed “N,” a new sequence
was generated by randomly shuffling the inter-dot spacings at the
requested speed.

After selecting and playing a game, the subjects received feed-
back indicating their % correct, defined as the fraction of dots that
they had successfully intercepted in the preceding game. The feed-
back was shown graphically through the length of a green hor-
izontal bar superimposed on the selected game (Figures 1B,C).
The feedback remained visible on the choice screen through-
out the session and was updated only if the subject repeated the
game with the performance value for the immediately preceding
game.

INSTRUCTIONS AND PROCEDURE
At the start of each session the subjects were given a verbal and
written explanation of the task and were allowed to play as many
practice games as they felt they need (typically, 1 or 2). Thereafter,
the subjects were instructed that their only requirement was to
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FIGURE 1 | Task design. (A) Individual game. The subjects pressed a key to intercept a stream of moving dots (arrow) as they crossed the screen center.
(B–D) Selection screens in the 7-game, 64-game, and 64N-game versions.

play a minimum of 70 games and a minimum of 20 min. This dual
requirement was meant to prevent a strategy of simply minimiz-
ing time on the task by selecting only the shortest games. Beyond
these basic requirements, there were no additional constraints,
and the instructions emphasized that the payment for the session
was fixed and entirely independent of the game performance or
the chosen games.

At the end of the sessions testing the 64-game version we con-
ducted an additional procedure, administered without warning,
to determine whether the subjects monitored their progress in the
task. After a subject completed the session, we selected 5 games
that the subject had played at least twice and which spanned the
range of difficulties that he/she had sampled. We asked the sub-
ject to play each game once more and then asked him/her to
rate (1) how much they estimate that their performance changed
over the repetitions of the game, and (2) how much do they
believe they could improve if they had five more tries. In each
case the subjects gave their rating on a scale ranging from −5
(a large decrease in performance) to +5 (a large improvement in
performance).

DATA ANALYSIS
For the analyses in Figures 1–6 the unit of analysis was one sub-
ject; we obtained the appropriate measure for one subject and
then pooled across the sample. To generate the colormaps in
Figures 3A,B, we divided each subject’s first 70 games into a
sliding window of 2 games stepped by 1 game throughout the

FIGURE 2 | General performance. (A) Performance as a function of speed
in the 3 versions. Each bin represents the average and standard error
(s.e.m.) of the fraction correct for the corresponding dot speed across all
the subjects tested. (B) The distribution of performance levels in the
7-game condition. The points show the average and s.e.m. (across
subjects) of the number of games in each of 6 performance bins.

session, computed the subject’s distribution of selected speeds
and fraction correct in each bin, and then computed the averages
across subjects. To examine the performance-dependent choice
strategy (Figure 5), we assigned each game that a subject played
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FIGURE 3 | Selection and performance in the 3 task versions. (A)

Evolution of the selected speed during a session. Each colormap indicates
the probability of selection of a given speed, measured across all subjects in
a sliding window over the session. The bottom panel shows the average dot

speed in each time bin (average and s.e.m. from the corresponding
colormaps). (B) Evolution of performance during a session. Same as in (A),
except that the grayscale indicates the probability of playing at a given
fraction correct in each time bin.

to one of 6 performance bins (e.g., fractions correct of 0–0.167,
0.168–0.33, etc.), computed the fraction of the following games
that were an increase, repeat or decrease in dot speed relative to
the previous game, and finally computed the average and standard
error of the mean (s.e.m.) across subjects. For the simulations
(dotted lines in Figure 5), we simulated a set of 300 subjects who
selected the game difficulty randomly on each trial. After the vir-
tual subject chose a game, that game was assigned a performance
(fraction correct) that was randomly selected (with replacement)
from the set of values that were generated by the real subjects
for the corresponding dot speed. We then computed the selec-
tion rate per subject and mean and s.e.m. across the simulated
subjects, as for the real data set. In the analysis of subjective rat-
ings (Figure 7) the unit of analysis is one game. For each of the 5
games tested for each subject, we measured the objective improve-
ment (the slope of a linear regression of the % correct across
game repetitions), and pooled the data across all subjects and
games.

RESULTS
GENERAL PERFORMANCE
We describe the data from 23, 19, and 22 subjects who com-
pleted, respectively, the 7-game, 64-game, and 64N versions. Most
subjects completed only one version, while 12 subjects com-
pleted the 7 and the 64-game versions, and one subject completed
the 64 and 64N versions. We discarded the data from a sin-
gle subject who selected a single (fast) dot speed throughout
the entire session, suggesting that he was trying to minimize
time on the task. For the remaining subjects, we verified that
they followed the dot speed rather than indiscriminately press-
ing the bar by comparing the average rate of key presses to the
average rate of dot crossings across games of moderate speed
that could be reasonably followed (<45◦/s). The two rates were
equivalent and highly correlated (linear regression slope 0.896 ±
0.05 (average and s.e.m.), p < 0.05 in 93% of subjects), show-
ing that the subjects adjusted their presses to the sequence
of dots.
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FIGURE 4 | Range of selected games. (A) Distribution of the
selected speeds (top) and fraction correct (bottom) across an entire
session. The values show the mean and s.e.m. across subjects.
(B) Choices of individual subjects. Each line represents one subject

and shows the maximum, minimum and average dot speed selected
by that subject. Subjects are ordered according to the task version
(or task combination) that they performed, and in chronological order
within a task group.

FIGURE 5 | Local strategy for game selection. Each point shows
the average and s.e.m. of the probability to repeat, increase or
decrease difficulty as a function of prior game performance.

Solid colored traces show the empirical data, dotted black traces
show the results of simulations using a random game selection
strategy.
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FIGURE 6 | Repetition rates. (A) The likelihood of repeating a speed
calculated as in Figure 5, but only for the first 1/3 of games in each session.
(B) The fraction of repetitions, in the 64N versions, where subjects requested

the same or a novel sequence. The points show the mean and s.e.m., across
subjects, of the tendency to choose a new or familiar sequence when
repeating a game of given speed.

FIGURE 7 | Subjective rating of learning progress in the 64-game

task. (A) Subjective improvement rating as a function of actual
improvement. Each point represents a game that was rated by a
subject after the end of the session, and the data are pooled across
subjects. The y axis shows the subject’s rating of his/her own

improvement and the x axis shows the objective improvement in units
of %correct/game. The lines show best fit linear regression across
subjects. (B) The probability of selecting a game as a function of the
subjective improvement rating. (C) Subjective rating as a function of
average performance.

As shown in Figure 2A, the 7-game version afforded fewer
options and a smaller range of dot speeds relative to the
64- and 64N- versions (6◦/s–29◦/s vs. 1◦/s–75◦/s). However,
games of equivalent speed elicited equivalent performance
in the three versions (p = 0.72 for effect of task version,
p < 0.05 for effect of speed, Two-Way ANOVA for speeds

of 6◦/s–29◦/s). In addition, the average fraction correct on
the 7-game version did not fall below 0.4, but the games
that the subjects played in this condition spanned the entire
performance range (Figure 2B). Thus, the subjects’ abilities
and performance ranges were matched across the 3 task
versions.
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SUBJECTS GRADUALLY INCREASE GAME DIFFICULTY
In all three task versions, the subjects tended to start by sam-
pling easier games and increase game difficulty as the session
progressed. This is shown in Figure 3, which shows the dot speed
(Figure 3A) and %correct (Figure 3B) averaged across subjects in
a sliding window of 2 consecutive games. In the 7-game version
the subjects’ initial exploration was random, as expected given
that dot speeds were randomly organized in the choice display
(Figure 3A, top colormap, games ∼1–10); however, in the 64 and
64N versions the subjects showed a clear bias to begin sampling at
the easiest levels located at the top left corner of the choice arrays
and gradually progressed to more difficult games (Figure 3A,
middle and lower colormaps). Linear regression on the average
speed of the selected games (Figure 3A, bottom panel) showed
a significant increase for the 7-game, 64-game, and 64N-game
versions (with slope coefficients of, respectively, 0.053◦/s/game
(standard error (SE) 0.0089, p < 10−5), 0.193◦/s/game (SE 0.019,
p < 10−10) and 0.578◦/s/game (SE 0.042, p < 10−14). In parallel,
performance significantly decreased with time for all three con-
ditions (Figure 3B; linear regression for the 7-game, 64-game,
and 64N versions gave slopes of, respectively, −0.093◦/s/game
(SE 0.027, p < 0.02), −0.323◦/s/game (SE 0.050, p < 10−6)
and −0.402◦/s/game (SE 0.03, p < 10−13; all values in units of
%points/game).

SUBJECTS SAMPLE ALL THE AVAILABLE TASKS
In addition to gradually increasing game speed, the subjects
tended to sample the entire range of the available tasks (col-
ormaps in Figure 3A). Consistent with this trend, the overall
distribution of game speeds across the session in the 64-game
condition showed a long tail and a significantly higher mean
relative to the 7-game condition (Figure 4A; means and s.e.m.
of 25.63 ± 0.57◦/s vs. 19.86 ± 0.24◦/s, p < 10−18, One-Way
ANOVA). Moreover, subjects tended to sample the most diffi-
cult games: each subject did so in the 7-game version, and a
majority did so even in the 64-game and 64-N game versions
(Figure 4B) where the games were extremely difficult and could
not be mastered (∼10% correct in Figure 2A). Thus, subjects
seemed motivated to discover the entire range of the available
tasks.

The availability of novel sequences produced a further increase
in speed, suggesting that novelty provided an additional impetus
for exploration. Game speed was significantly higher in the 64N
vs. the 64-game condition across the entire session (Figure 4A;
average speed (and s.e.m.) was 29.48 ± 0.63◦/s vs. 25.63 ± 0.57◦/s,
p < 10−4, One-Way ANOVA). As shown in Figure 3A, this differ-
ence was especially pronounced during the last 20 games, when
the subjects showed a large increase in speed (36.37 ± 1.24◦/s
vs. 29.54 ± 1.23◦/s, p < 10−3, One-Way ANOVA) and a signif-
icantly lower performance in the 64N relative to the 64 version
(41 ± 0.06%correct vs. 50 ± 0.06%correct, p < 10−3, One-Way
ANOVA). Thus, especially toward the end of the sessions, the
availability of novel sequences motivated subjects to sample more
difficult games.

SUBJECTS SHOW A PRONOUNCED PREFERENCE TO REPEAT GAMES
To further understand the subjects’ behavior, we examined
whether their choices may be influenced by a local strategy—i.e.,

whether they tended to increase, decrease or repeat game dif-
ficulty according to their performance on the preceding game
(Figure 5). We divided each subject’s games into 6 performance
ranges and for each game computed the likelihood that the sub-
ject will increase, decrease or repeat difficulty level on the next
game (see Methods for details). To estimate how this analysis is
constrained by the bounds of the choice set, we simulated the
performance of a set of virtual subjects who were matched for per-
formance with the real subjects but had a random choice strategy
(see Methods for details).

As shown in Figure 5, under a random selection strategy, there
is a consistent relationship between %correct on the current trial
and the likelihood of increasing/decreasing difficulty on the next
trial, which is trivially imposed by the limits of the choice sets.
If the subjects are already playing a difficult game (low %cor-
rect) they tend to reduce rather than increase difficulty on the
next trial (left vs. middle columns) simply because they run
out of options for more difficult games. Similarly if the subjects
are already playing an easy game (high %correct) they tend to
increase rather than decrease difficulty on the next trial (left vs.
middle columns) simply because they run out of options for eas-
ier games. As expected, the subjects’ performance also showed
these basic trends (Figure 5, solid colored traces), but their per-
formance differed from a random strategy in two important ways.
First, the subjects showed a lower tendency to change (decrease or
increase) game difficulty than was predicted by chance (left and
middle columns), and a much higher likelihood to repeat a level
(right column). Second, while a random strategy predicts a uni-
form distribution of repetition rates, the subjects’ repetitions were
biased toward more challenging games.

To further examine this result we tested how the subjects’ rep-
etition rates interacted with their time-dependent choice strategy
(Figure 3) by calculating the fraction of repetitions in the first,
second and last 1/3 of the games in a session. The repetition pat-
tern changed during the course of a session and was dependent
on the choice set (Figure 6). In the first 1/3 of the games in a
session, the repetition rate showed an inverse-U function that
peaked for intermediate difficulty games regardless of the choice
set (Figure 6A, top). A Two-Way ANOVA on these early games
showed a significant effect of performance (p < 0.0023) but no
effect of task version (p = 0.312 for main effect, p = 0.831 for
interaction).

However, during the second and last thirds of the games,
the repetition pattern became dependent on the choice set (p <

0.0013 for effect of task version, p = 0.777 for effect of per-
formance, p = 0.45 for interaction; Two-Way ANOVA on the
pooled data). One important factor driving this effect was the
fact that repetition rates were biased toward the most difficult
games in the 7-game version but not in the 64-game and 64N ver-
sions. Linear regression of repeat probability vs. performance gave
slopes of −0.274 for the 7-game version (SE 0.139, p = 0.053),
vs. only 0.249 (SE 0.154, p = 0.112) for the 64-game version and
0.139 (SE 0.145, p = 0.343) for the 64N version. The bias in the
7-game version can also be appreciated from the top colormap
in Figure 3A, which shows a focus on the most difficult games
toward the end of the session, and from the fact that, while the
mean of the speed distribution was lower in the 7-game relative
to the 64-game version, the mode of the distribution was higher
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(Figure 4A, modes of, respectively, 25◦/s vs. 17◦/s). Thus, subjects
tended to repeat more difficult games, especially late in the session
and in the smaller task set.

A second factor affecting repetition rate was novelty, as sub-
jects had overall higher repetition rates in the 64N relative to
the 64-game conditions (Two-Way ANOVA, p = 0.066 for task,
p = 0.200 for % correct, p = 0.47 for interaction). This effect
seemed most apparent for games of moderate and high difficulty
(Figure 6A) consistent with the overall increase in speed in the
64N relative to 64-game condition (Figure 4A). Importantly how-
ever, the subjects requested novel sequences selectively according
to performance: within the set of repeated games, they preferred
novel sequences for the easier games, but tended to repeat the
same exact sequence for more difficult games (Figure 6B; Two-
Way ANOVA revealed a significant interaction between perfor-
mance and repetition type (p = 0.0479) with no main effects of
the two factors (respectively, p = 1.0 and p = 0.496). Therefore,
the subjects were not automatically attracted to novel sequences,
but requested them strategically when they had mastered a game.

MONITORING OF LEARNING PROGRESS
A strategy that was found to be effective for guiding robotic
exploration is based on the maximization of learning progress,
whereby robots monitor their own learning and focus on tasks
where their abilities most rapidly improve (Oudeyer et al., 2007;
Mirolli and Baldassarre, 2013). To see whether we could find
evidence for such a strategy in the present task, for the sub-
jects that played the 64-game version we selected a subset of the
played games and asked the subjects, at the end of the session,
to rate their subjective estimate of how much they had pro-
gressed in a game and how much they expect to progress in the
future.

As shown in Figure 7A, the objective learning rates in the task
were low, as the subjects showed small increases or even decreases
in performance over repeated games. Within this limited range
we found no correlation between the subjective estimates of
improvement and the true rates of improvement (Figure 7A;
r = 0.10, p = 0.43). Similarly, there was no correlation between
the subjects’ estimates and their tendency to choose a particular
game (Figure 7B; r = −0.06, p = 0.14). However, the subjects’
subjective sense of improvement was highly correlated with their
average performance on the set of games (Figure 7C; r = 0.58,
p < 10−8). A similar pattern was found for the estimates of
future improvement, which were not correlated with the actual
improvement (r = −0.00, p = 0.07) or with choices (r = −0.05,
p = 0.26), but showed a significant correlation with the average
fraction correct (r = 0.31, p = 0.003). Thus, at least under the
current task conditions, subjects did not seem to have a robust
sense of their rate of improvement and instead used a heuristic
based on average success.

DISCUSSION
We have shown that, even in the absence of explicit instructions
or primary rewards, human subjects spontaneously organize their
exploration in a consistent fashion based on several factors. First,
subjects are sensitive to task difficulty and gradually progress from
easier to more difficult tasks. At the same time, however, they are

sensitive to the size of the choice set and tend to sample the most
difficult tasks even if these tasks far exceed their skills. Second,
subjects repeat tasks much more often than predicted by chance,
suggesting a tendency to practice. However, at the same time they
are sensitive to novelty, reaching higher speeds and show higher
repetition rates if they can request novel games. These results
are consistent with theoretical and behavioral investigations sug-
gesting that intrinsically motivated exploration is shaped by a
number of factors, which may sometimes have opposing effects
and are integrated with different relative weights to achieve effi-
cient exploration in a range of contexts (e.g., Oudeyer and Kaplan,
2007; Düzel et al., 2010; Kidd et al., 2012; Gottlieb et al., 2013;
Mirolli and Baldassarre, 2013; Foley et al., 2014; Taffoni et al.,
2014).

Our results also suggest that the subjects used these heuris-
tics to serve two fundamental goals: maximize their knowledge
of the task space and maximize their competence across that
space, consistent with the computational distinction between
knowledge-based and competence-based intrinsic motivations
(e.g., Oudeyer and Kaplan, 2007; Mirolli and Baldassarre, 2013).
The role of knowledge-based motivation is suggested by the fact
that the subjects sampled novel sequences and explored even the
most difficult tasks in the 64-game versions (which they could
not have mastered). The role of competence-based motivation is
suggested by the fact that the subjects tended to repeat challeng-
ing games and requested novel sequences only if they performed
well, suggesting an inclination to practice. In other words, sub-
jects combined several heuristics– sensitivity to difficulty, novelty
and the size of the search space—to understand the limits of the
available choice set and to maximize their competence across the
entire set.

Among the more sophisticated algorithms that have been
proposed to guide artificial exploration are those motivated by
learning progress, whereby a robot tracks its learning—change
in competence—over time and uses this measure as an intrin-
sic reward to motivate sustained engagement with specific tasks
(Oudeyer et al., 2007; Gottlieb et al., 2013). While the present
experiment did not seek directly to confirm or refute this idea,
the results highlight some of the difficulties that may be asso-
ciated with such a strategy in biological organisms. We found
that the subjects had very poor subjective estimates of their
rates of progress, and instead reported heuristics based on
their success rates (i.e., performance, rather than its temporal
derivative). This finding most likely reflects the type of learn-
ing that we tapped into here—sensorimotor learning that was
implicit and slow over the course of the session—and is consis-
tent with a large body of literature showing that meta-cognitive
reports are unreliable under such conditions (Efklides, 2006;
Fleming et al., 2012a,b; Maniscalco and Lau, 2012). Therefore,
exploratory mechanisms based on the monitoring of learning
progress may be most beneficial conditions where the learn-
ing is fast, explicit or differs clearly across tasks, consistent with
computational models showing that the efficiency of different
exploration strategies differs across tasks (Lopes and Oudeyer,
2012).

In sum, our study describes features of the intrinsically moti-
vated exploratory strategies used by adult humans in a free-play
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context, and sets the stage for future studies testing to what extent
these strategies generalize to different conditions and what are
their underlying mechanisms.
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