
ORIGINAL RESEARCH ARTICLE
published: 21 November 2014
doi: 10.3389/fnins.2014.00379

FPGA implementation of a biological neural network based
on the Hodgkin-Huxley neuron model
Safa Yaghini Bonabi1*, Hassan Asgharian2, Saeed Safari3 and Majid Nili Ahmadabadi1,4

1 Cognitive Robotic Lab., School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 Research Center of Information Technology, Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
3 High Performance Embedded Computing Lab., School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
4 School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran

Edited by:

Tim Pearce, University of Leicester,
UK

Reviewed by:

Alejandro Linares-Barranco,
University of Seville, Spain
Guillaume Garreau, Johns Hopkins
University, USA

*Correspondence:

Safa Yaghini Bonabi, Cognitive
Robotic Lab., School of Electrical
and Computer Engineering, College
of Engineering, University of Tehran,
North Kargar, Tehran 14395-515, Iran
e-mail: safa.yaghini@ut.ac.ir

A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of
a neural network on FPGA (Field Programmable Gate Array) is presented. The central
implementation challenge is H-H model complexity that puts limits on the network
size and on the execution speed. However, basics of the original model cannot be
compromised when effect of synaptic specifications on the network behavior is the
subject of study. To solve the problem, we used computational techniques such as
CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration
in the implementation of arithmetic circuits. In addition, we employed different techniques
such as sharing resources to preserve the details of model as well as increasing the
network size in addition to keeping the network execution speed close to real time
while having high precision. Implementation of a two mini-columns network with 120/30
excitatory/inhibitory neurons is provided to investigate the characteristic of our method
in practice. The implementation techniques provide an opportunity to construct large
FPGA-based network models to investigate the effect of different neurophysiological
mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a
neural network in an appropriate execution time. Additional to inherent properties of
FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system
a proper candidate for study on neural control of cognitive robots and systems as well.

Keywords: Hodgkin-Huxley, neural pool, neural network, digital hardware implementation, FPGA

INTRODUCTION
Developing computational tools for simulating the brain net-
works is of a very special interest, because the models provide
powerful means for investigating different characteristics of the
neural system. For example, they can be used to find the effect of
malfunctioning voltage-gated channels on network level behav-
iors in specific brain diseases or are employed to track effects
of learning on synaptic efficacies and neural behavior. Using the
computational tools before undertaking biological experiments
can also give some insights into the results of experiments. In
addition, computational models can be used as controllers for
cognitive robots.

Neurons and neural pools are basis of computational mod-
els. Neurons receive sensory signals, process the information,
excite/inhibit each other through a complex electrochemical pro-
cess (Kandel et al., 2000). A neural pool is a group of neurons
sharing excitatory or inhibitory property. Neural pools can inhibit
or excite each other by means of output signals. Therefore, activity
of each neuron can affect the behavior of its pool and other pools
in the brain, so specific behavior of the neural networks emerge
from interaction of neurons and neural pools (Buzsáki, 2004).

A neural network can be implemented on software or hard-
ware. Due to the sequential execution of software, the parallel

nature of neural networks is affected which leads to reduc-
tion of execution speed. Implementing neurons on hardware
can provide several benefits; including high-speed modeling of
big neural networks and preparing responses in real-time, etc.
(Indiveri et al., 2011). In the hardware implementation tech-
niques, digital implementations are more preferred vs. analog
implementations, based on some of the digital advantages such
as noise-robustness, more flexibility, simple real-world interfaces,
and easier testability (Muthuramalingam et al., 2008). In addi-
tion, digital implementations are more cost-effective and less
time consuming (Gatet et al., 2009). One of the other bene-
fits of the digital implementations is their capability for fast
development (Indiveri et al., 2011). There are different methods
for digital implementation such as ASIC (Application Specific
Integrated Circuit), DSP (Digital Signal Processing), and FPGA
(Field Programmable Gate Array). DSP-based implementations
are not suitable for modeling the parallel behavior of the neurons
because of their sequential nature. ASIC implementation is more
efficient than FPGA in terms of power and area, but it suffers from
lack of re-configurability (Wanhammar, 1999). FPGA has some
benefits over DSP and ASIC that we are interested in: it is recon-
figurable, so it is useful for rapid prototyping of neural networks
(Wang et al., 2014), and it has parallel processing architecture.

www.frontiersin.org November 2014 | Volume 8 | Article 379 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00379/abstract
http://community.frontiersin.org/people/u/173912
http://community.frontiersin.org/people/u/194024
http://community.frontiersin.org/people/u/194013
http://community.frontiersin.org/people/u/138617
mailto:safa.yaghini@ut.ac.ir
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

Therefore, FPGA could be an appropriate solution for hardware
implementation of neural networks (Muthuramalingam et al.,
2008).

FPGAs have limited usable area and design tool chains, which
create difficulty in implementation of large neural networks.
Therefore, designs should be optimized in size to be implemented
on an FPGA with limited number of resources. In this paper,
we design and implement a biologically plausible neural network
on an FPGA. There are different biological neuron models; how-
ever, we opt for Hodgkin-Huxley (H-H) neural model because
of its biological plausibility and inclusion of synaptic details.
Due to the FPGA area limitation, we use the reduced order of
the previous implementation (Bonabi et al., 2012a). The imple-
mented neural network in this work is a modified model used
in Moldakarimov et al. (2005). The implemented network is the
basic component of many neural networks; it has two mini-
columns, each has two neural pools: an excitatory pool with 60
neurons and an inhibitory pool with 15 neurons. The reason
that we are interested in this model is that this model can be
used to investigate the competition between neural pools in the
brain (Bakhtiari et al., 2012). Using the hardware as an acceler-
ator for reducing the computation time of such neural networks
is our main objective. The basis of single pool implementation
are stated in Bonabi et al. (2012b). We use MATLAB simulations
for high-level design of neural network and the results of sim-
ulations are used as a golden model to check correctness of our
implementation.

In Materials and Methods, we introduce the model at the neu-
ral and the network levels. FPGA implementation of the network
is introduced in this section, too. In Results, the validation pro-
cesses and the implementation results for a set of variables are
given. In addition, the hardware system and the speed of process-
ing are discussed. Discussions and Conclusions are given in the
last section.

MATERIALS AND METHODS
NEURON MODEL
The neuron model used in this implementation is the reduced
version of the model introduced in Traub and Miles (1991).
Ermentrout and Kopell (1998) and Börgers et al. (2005) also
used the reduced model to investigate the dynamical behaviors
of neural networks. The structure of the model for both of the
inhibitory and excitatory neurons is the same. The membrane
potential of the neurons follows the H-H equations (Hodgkin
and Huxley, 1952). The ionic current that is mainly composed
of sodium and potassium ions controls the membrane voltage.
Moreover, this voltage regularizes the current flow of the ions by
means of voltage-dependent ion channels. There are other ionic
currents such as chloride, which their gating variables are inde-
pendent of the membrane voltage. These ions constitute the leak
current. Inside and outside of the membrane do not have equal
concentration of ions, which results in an electrical potential.
Both concentration gradient and electrical potential controls the
current flow. The H-H model is shown in Figure 1.

According to Börgers et al. (2005); Izhikevich (2007) the
relationship between input current, membrane voltage, and the
complete set of H-H equations come in (1a–4c):

FIGURE 1 | Hodgkin and Huxley proposed circuit for squid giant axon.

gK and gNa, are voltage-dependent conductance (Hodgkin and Huxley,
1952).

CdV

dt
= I − INa − IK − IL (1a)

INa = gNam3h (V − VNa) (1b)

IK = gK n4 (V − VK) (1c)

IL = gL (V − VL) (1d)

Where,

m = m∞ (V) = αm (V)

[αm (V) + βm (V)]
(2a)

αm (V) = 0.32 (V + 54)

1 − exp [−0.25 (V + 54)]
(2b)

βm (V) = 0.28 (V + 27)

exp [0.2 (V + 27)] − 1
(2c)

h = max (1 − 1.25n, 0) (3)

dn

dt
= 0.7 (αn (V) (1 − n) − βn (V) n) (4a)

αn (V) = 0.01 (V + 34)

1 − exp [−0.1 (V + 34)]
(4b)

βn (V) = 0.125exp [−0.0125 (V + 44)] (4c)

The typical values and units of the parameters that used in
the above equations according to Börgers et al. (2005) are as
follows: C = 1 μF/cm2, gNa = 100 mS/cm2, VNa = 50 mV , gK =
80 mS/cm2, VK = −100 mV , gL = 0.1 mS/cm2, VL = −67 mV .

The units of the letters V, t, and I are mV, ms, and μA/cm2

respectively.

NEURAL NETWORK MODEL
The implemented neural network is composed of two similar
mini-columns. Figure 2 shows the network model. Each mini-
column has an excitatory and an inhibitory pool. All of the

Frontiers in Neuroscience | Neuromorphic Engineering November 2014 | Volume 8 | Article 379 | 2

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

FIGURE 2 | The structure of neural network, consist of two competitive

mini-columns.

neurons in each pool are connected to each other. By means of
specialized structures called synapses, the information is trans-
mitted among neurons. According to Börgers et al. (2005) neu-
rons in each pool are related to each other with neurotransmitter,
AMPA (E → E and E → I) and GABAA receptors (I → I and
I → E). In order to create a relationship between the two mini-
columns, an excitatory synaptic current is given to the inhibitory
pool in the adjacent mini-column. In Figure 2, Jee, Jie, Jii, Jei, and
Jexternal
ie are the weights of neuron connections. These coefficients

indicate the strength of synaptic connections of the excitatory
neurons to each other, the synaptic strength of the excitatory neu-
rons to the inhibitory neurons in the same mini-column, the
strength of synaptic connections of the inhibitory neurons to
each other, the synaptic strength of the inhibitory neurons to the
excitatory neurons, and the synaptic strength of the excitatory
neurons to the inhibitory neurons in the adjacent mini-column,
respectively.

Each excitatory pool receives two synaptic currents: one from
its own neurons and the other from the neurons of the inhibitory
pool in the same mini-column (see Figure 2). Equation (5) shows
these currents. In this equation, Vee and Vei are equal to 0
and −80, respectively.

I(1)
syne = Jeeg(1)

e

(
Vee − Ve

[
j
]) + Jeig

(1)
i

(
Vei − Ve

[
j
])

(5)

Each inhibitory pool receives three synaptic currents as described
in Equation (6). One synaptic current is exerted from the exci-
tatory pool in the same mini-column, the second one is from its
own neurons, and the last one is from the excitatory pool of the
adjacent mini-column.

I(1)
syni = Jieg(1)

e

(
Vie − Vi

[
j
]) + Jiig

(1)
i

(
Vii − Vi

[
j
])

+ Jexternal
ie g(2)

e

(
Vie − Vi

[
j
])

(6)

In Equation (6) Vie is 0 and Vii is −80. Equation (5) is added to
Equation (1a) for excitatory pools and Equation (6) is added to
Equation (1a) for inhibitory pools. As Vii and Vei are considered
less than the minimum value of the action potential of a neu-
ron, the corresponding synaptic current is always negative, so it
is always opposed to increase the voltage value. Thus, this can be
an expression of the inhibitory synaptic current.

The total effect of the synaptic variable of the excitatory and
inhibitory pools on post-synaptic neurons is shown by gX, X ∈
{e, i} in Equation (7). Based on all-to-all connections in each pool,
gX is equal for all neurons in the same pool and it is obtained
by the average of pre-synaptic neurons effects in each pool. In
Equation (7), NX is the number of neurons in each pool.

gX =
∑NX

k = 1 sX[k]
NX

(7)

According to Börgers et al. (2005), sX[k] is the gating variable,
which is calculated by the following equation. τR and τD for
AMPA receivers are equal to 0.2, 2 and for GABAA receivers are
equal to 0.5, 10, respectively.

ds

dt
= 1 + tan h

( V
10

)

2

1 − s

τR
− s

τD
(8)

The data transmission rate of neurotransmitters between the pre-
synaptic and post-synaptic neurons is modeled by the mechanism
of synapse. The term [1 + tanh(V/10)]/2 can be assumed as a
normalized neurotransmitter concentration (Börgers et al., 2005).

FPGA IMPLEMENTATION
In this section, the FPGA implementation of the neural network,
shown in Figure 2, is described. According to Figure 2, this net-
work is made of two similar mini-columns, each has two neural
pools: excitatory and inhibitory. The neurons of the excitatory
and inhibitory pools have the same structure and there is no
significant difference in their synaptic mechanisms. The selected
single neuron model for implementation is described completely
in Bonabi et al. (2012a) and we made a few changes in the model
in this work. We reduced the order of dynamics of the system
to make it simpler for the implementation of big neural net-
works. As Equations (1a–4c) describe, the dynamics of m and h
are neglected. The most difficult part in the implementation of
equations is the implementation of the exponential function. The
accuracy and performance in the implementation of the expo-
nential function has an intensive impact on the results. We use
hyperbolic Coordinate Rotation Digital Computer (CORDIC)
algorithm, which could be implemented using simple shifters
and adders, to calculate the function. Equations (9a–c) shows the
CORDIC algorithm used in our implementation (Ercegovac and
Lang, 2003).

x
[
j + 1

] = x
[
j
] + σj2

−jy
[
j
]

(9a)

y
[
j + 1

] = y
[
j
] + σj2

−jx
[
j
]

(9b)

www.frontiersin.org November 2014 | Volume 8 | Article 379 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

z
[
j + 1

] = z
[
j
] − σjtanh−1(2−j) (9c)

In order to minimize the required FPGA resources, we use LUT
for implementing hyperbolic tangent inverse function in the
Equation (9c). Therefore, we achieve less running time, because
only a simple search is required instead of a mathematical calcu-
lation. CORDIC algorithm can calculate the value of functions
with a reasonable error only when the inputs are in a limited
range (Ercegovac and Lang, 2003). According to Equation (10),
in order to have a bigger range of inputs, we separate each input
into two parts: integer part and fractional part. We precalculate
the exponential of the integer part using MATLAB and save them
in a LUT. The exponential of the fractional part is calculated using
the implemented CORDIC module. Then, in order to produce
the final value of the exponential function, the output of LUT is
multiplied by the output of the implemented CORDIC module.

A = B + C �⇒ exp (A) = exp (B) · exp (C) (10)

Another module needed to produce new values of n, s, and V
from their dynamics is the integrator. The method used to imple-
ment this module is the same as our previous work (Bonabi et al.,
2012a). Equation (11) is used to implement the integrator.

x (t + �t) = x (t) + �t.ẋ(t) (11)

In this work, we add a multiplexer (Mux) in order to insert the
initial values for the dynamics n, s, V. Figure 3 shows the block
diagram of the implemented module for calculating the integral
function. In order to calculate the integral of each step, a register
is used to save the previous values of the integral.

The basis of implementations of the excitatory and the
inhibitory pools are the same and it is similar to the method
presented in Bonabi et al. (2012b). We only change the num-
ber of neurons and the number of synaptic currents in each
pool. Neurons are connected to each other with neurotransmit-
ters, which make synaptic current. Synaptic current, as shown
in Equations (5, 6), depends on the total effects of the synaptic
variable and the gating variable. Therefore, for calculating synap-
tic current, we have to implement a module that could calculate
the gating variable. The block diagram in Figure 4 is used to
implement the gating variable, s, which is shown in Equation (8).

In order to calculate the hyperbolic tangent block in Figure 4,
we use Equation (12) by employing our implemented exponential
function.

tanh (x) = exp (2x) − 1

exp (2x) + 1
(12)

To reduce the number of multipliers, a one-bit left shifter is
used to duplicate the input of hyperbolic tangent. These cur-
rents are added to the implemented pools in order to make a
connection between the neurons in each pool, between excita-
tory and inhibitory pools in each mini-column, and excitatory
and inhibitory pools in the different mini-columns. Because of
the limited usable area, the implemented mini-column has five
neurons, four of them are in excitatory pool, and the last one is in
inhibitory pool. The block diagram of this neural pool is shown
in Figure 5.

Figure 6 shows the controller that is designed for this mini-
column. This mini-column finishes its work when both of the
pools finish their processing.

To implement the neural network with 150 neurons, two mini-
columns with 75 neurons are needed which are connected to each
other by a synaptic current. Because of the resource limitation
of FPGA, we share resources by multiplexing in time to imple-
ment this neural network on a single chip. Figure 7 shows the
architecture that is used to increase the number of neurons in
each mini-column. In this architecture, we use a ROM to put the

FIGURE 4 | Designed module to implement the gating variable s.

FIGURE 3 | Block diagram of implemented module for calculating the integral function.

Frontiers in Neuroscience | Neuromorphic Engineering November 2014 | Volume 8 | Article 379 | 4

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

FIGURE 5 | Block diagram of implemented mini-column with five neurons.

initial values of membrane voltages and gating variables for each
of the neurons. The RAM is used to write the responses of the
neurons and use them for the next executions of the system. Both
of the ROM and RAM have 15 rows; each row has data for all of
the five neurons in the mini-column. Each row is used in each
execution. The Mux is used to choose the data from ROM and
RAM. The address generator generates the address to read from
the ROM/RAM and write in the RAM.

The proposed architecture has a specific controller, shown in
Figure 8, which controls all the processes. We have a counter in
this controller, which manages the interactions of all components.
The proposed architecture and the controller work in these steps:

• At first, the controller resets the circuit in order to set the values
of all components to zero and the controller moves to the next
state.

• In the second state (Read Input) the select input of Mux is set
to zero and the inputs of the mini-column is read from the
first line of the ROM. For the next 15 executions of this sys-
tem, the select input of Mux is zero to choose the data from
ROM. After first 15 executions, the select input is changed to
one and data will be read from RAM. After reading the inputs
of mini-column, the controller moves to the next state.

• The controller will stay in this state (Process) until the
responses of neurons (five neurons in the mini-column) are
ready. When the ready output of the mini-column is activated,
the state of controller changes to the next state (Write Output).

• In the Write Output state, the answer of five neurons (mem-
brane voltages and gating variables) is written in the same row
of the RAM that data was read from it. If the address reaches to
15, the controller changes its state to Output Ready state; oth-
erwise, the next state will be Check Status. Then, after a clock

www.frontiersin.org November 2014 | Volume 8 | Article 379 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

cycle, the state of the controller will be changed to Read Input,
address generator points to the next row of the ROM/RAM,
and these steps will be repeated.

• If the value of the address generator reaches 15, the controller
changes its state to Output Ready. In this state, the ready out-
put of mini-column with 75 neurons is activated. Then, all

FIGURE 6 | Designed controller for the implemented mini-column.

of the synaptic currents will be calculated and given to the
pools. The controller resets the counter in the address gen-
erator, so address generator will point to the first row of the
RAM and these steps will be repeated until the desired final
time.

In the neural network, two mini-columns should be connected
to each other by synaptic currents. To implement this connec-
tion when gX is calculated in each mini-column, it will be entered
to the inhibitory pool of the adjacent mini-column by coeffi-
cient of Jexternal

ie and the synaptic current will be calculated in the
inhibitory pools. The block diagram of the implemented neural
network is shown in Figure 9.

Figure 10 shows the designed controller for the implemented
neural network. At first, the controller resets both of the mini-
columns and they start to work from the SStart state. Then,
mini-columns are activated together and work as a parallel sys-
tem until both of them prepare the response of their 75 neurons.
Each mini-column that finishes working, activates its ready out-
put (Rdy). According to the ready output of the mini-columns,
the controller changes its state. For example, if the ready output
of the first mini-column is activated (Rdy1 = 1), the controller
changes its state to SB

Rdy1. In the new state, the clock of this mini-
column is deactivated. Then, the controller changes its state to the
next state (SRdy1). State of the controller would not change until
the responses of all of the neurons in the other mini-column are
prepared. Then, the controller moves to the next state (SA

Rdy1), the

FIGURE 7 | The proposed architecture to increase the number of neurons in the mini-column.

Frontiers in Neuroscience | Neuromorphic Engineering November 2014 | Volume 8 | Article 379 | 6

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

clock pulse of both of the mini-columns are deactivated in this
state, and after a clock cycle the controller moves to the final state
(SFinish). In the final state, the results are written in the memories
of the mini-columns (RAM) and the controller changes its state
to the first state (SStart). The controller repeats this process until
the desired time.

In order to add the effect of stochastic factors, we add a
noise term to the input current of each neuron. This random
term creates small differences between neurons, which makes the
implementation more biologically plausible. The noises are gen-
erated from a zero mean Gaussian distribution for each neuron.
Then, they are saved in a ROM that is shown in Figure 9 (INoise).
Each given address to the ROM by the address generator gives
noises to the neurons of the two mini-columns.

RESULTS
To validate the implemented neural network on FPGA, the
deployed bit level simulations are compared with the numerical

FIGURE 8 | The designed controller for the implemented architecture

to increase number of neuron in the mini-column.

implementations of the mathematical models in MATLAB
Simulink.

All of the hardware components are designed and imple-
mented using VHDL modeling language. The main objective in
the design of the low-level implementation is the accuracy of the
output. Due to the hardware constraints, in the implementation
of all modules minimum number of bits are used. More details of
implementation are given in Table 1 as synthesis results.

The membrane voltage of the implemented single neuron
(blue line) and MATLAB simulation (red line) for Iext = 0.7 mA
are shown in Figure 11. According to this figure, there is a small
difference between the membrane voltages of the implemented
model on FPGA and MATLAB simulation, because of the round-
ing error in the digital implementation. However, the firing rates
of both of the signals are equal.

In an excitatory pool (when there is no connection between
the pools of a mini-column) each neuron receives an excitatory
synaptic current and external stimulus. Therefore, a neuron in an
excitatory pool receives two exciting current while a free single
neuron receives just an external stimulus. Thus, the firing rate of
a neuron in an excitatory pool is higher than a free single neuron.
Each neuron in the inhibitory pool receives an inhibitory synap-
tic current that reduces the effect of external stimulus. Therefore,
the firing rate of a neuron in the inhibitory pool would be less
than the firing rate of a free single neuron. In order to investigate
the effects of synaptic currents in the pools, we exerted a certain
stimulation (Iext = 0.7 mA) to a free single neuron, an excitatory
pool, and an inhibitory pool. The result shows that in the exci-
tatory pool the firing rate is more than the firing rate of the free
single neuron and in the inhibitory pool it is less than the firing
rate of the free single neuron. The firing rate in the single neuron,
excitatory pool, and inhibitory pool are shown in the Table 2.

In each mini-column, the excitatory pool receives an
inhibitory current from the inhibitory pool that reduces the firing
rates of the neurons. Figure 12 shows the membrane voltages of
one neuron in the excitatory and inhibitory pools, given IE =
0.8 mA, II = 0.7 mA, Jie = 0.7, and Jei = 0.2. According to the
voltages in this figure, when the neurons in the inhibitory pool
reach their maximum value, they prevent the neurons in the

FIGURE 9 | Block diagram of implemented neural network.

www.frontiersin.org November 2014 | Volume 8 | Article 379 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

FIGURE 10 | The designed controller, which is used to control the neural network.

Table 1 | Abstract of synthesis results.

Criteria Virtex-7

xq7k410t-2I-rf676

Used Utilization (%)

Frequency 63.386 MHz –

No. of LUTs 86032 33

No.of LUT-FF pairs 30528 28

No.of slice registers 50228 9

No.of DSP blocks 1112 72

No.of BRAM 14 1

excitatory pool to complete their firing. Therefore, as you can see
in Figure 12A small bumps are created in the shape of the volt-
ages of the excitatory neurons. In addition, the firing rate of the
neurons in the excitatory pools is reduced.

When mini-columns are connected to each other, and a stim-
ulation excites one of the excitatory pools in the network, both
of the inhibitory pools will be activated and they try to inhibit
their excitatory pools. For example, consider a case when the
excitatory pool in the second mini-column (E2) receives greater
stimulation than the excitatory pool in the first mini-column
(E1). E2 and E1 exert excitatory synaptic currents to both of the
second and first inhibitory pools (I2 and I1 respectively) (see
Figure 2). I1 and I2 try to suppress the effect of the stimulations
to E1 and E2. Since E1 is less stimulated than E2, the inhibiting
effect of I1 might be able to suppress the neural activity in E1. To
investigate this on the implemented system, we injected the same
currents to both of the inhibitory pools and E1 is stimulated with
less external current than E2. As rastergrams in Figure 13 shows,

FIGURE 11 | The voltage of single neurons, implemented single neuron

(blue line) and MATLAB simulation (red line).

the neurons in E1 are strongly suppressed by I1, while I2 is not
able to suppress E2. Rastergrams of I1 and I2 looks almost the
same, because both of them are excited by E1 and E2 and they
receive equal external stimulations. The external currents and
weights of neuron connections are as follow:

I(2)
E = 0.85 mA, I(2)

I = 0.7 mA, I(1)
E = 0.7 mA, I(1)

I = 0.7 mA

Jee = 0.1, Jie = 0.7, Jii = 0.02, Jei = 0.2, Jexternal
ie = 0.45.

DISCUSSION
There is a range of neuron models: from abstract to biophysically
plausible ones (Bailey et al., 2011). The computational efficiency

Frontiers in Neuroscience | Neuromorphic Engineering November 2014 | Volume 8 | Article 379 | 8

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

of models is inversely proportional to inclusion of details in them.
Therefore, simpler models are more widely used. Abstract neuron
models are usually used in the artificial neural network imple-
mentations; see Khan et al. (2006); Sahin et al. (2006); Çavuşlu
et al. (2011) as examples. Interest in implementation of spiking
neuron models is also increased in the recent years (Yang et al.,
2011; Ambroise et al., 2013).

Several implementations of biologically plausible neuron
models and neural networks have also been proposed. For exam-
ple, in Zou et al. (2006), the authors have implemented a neural
ınetwork based on the H-H neuron model using analog ASIC and
a computer. In another example, in Heo and Song (2012) a VLSI
implementation of a biological neuron model is presented. Each
specific ıimplementation has its own advantages over any general-
purpose implementation, like realization on FPGA. Nevertheless,
the inherent parallel processing nature of FPGA devices, in addi-
tion to their shorter design time and online re-configurability,

Table 2 | Firing rates of a neuron in single neuron and pools.

Single neuron Excitatory pool Inhibitory pool

Firing rate (HZ) 26 30 16

make them a good alternative for implementation of biologically
plausible neural networks.

There are FPGA implementations of simple neuron models;
see Chen and Wang (2002) and Yang et al. (2011) for Integrate-
and-Fire and Leaky Integrate-and-Fire models respectively. In
Bailey et al. (2011) Cellular Automata is implemented on FPGA.
In Cassidy and Andreou (2008); Mokhtar et al. (2008); Rice et al.
(2009); Ambroise et al. (2013) the Izhikevich model, which is
a compromise between biological and abstract neuron models,
has been implemented on FPGA. We are interested to have a
more biologically plausible neuron model; so the H-H neuron
model is chosen. There are different FPGA implementations of
the H-H neuron model (Graas et al., 2004; Zhang et al., 2009;
Pourhaj et al., 2010; Saïghi et al., 2010a,b; Grassia et al., 2011).
A LUT-based implementation of computing algorithms is used
in Graas et al. (2004), that has better time complexity, but
more area is needed compared to the direct implementation. In
addition, it has lower accuracy than direct algorithmic imple-
mentation. Therefore, a large size of memory is used to save the
pre-computed results with limited number of bits, which reduces
the final accuracy because of the limitations on memory size.
Moreover, in Graas et al. (2004) MATLAB System Generator (SG)
is used to implement a neuron and it is obvious that SG can-
not produce an optimal hardware. Pourhaj et al. (2010) used

FIGURE 12 | Membrane voltage of one of the neurons, (A) In the excitatory pool, (B) In the inhibitory pool of a mini-column.

www.frontiersin.org November 2014 | Volume 8 | Article 379 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

FIGURE 13 | Rastergrams of the implemented neural network, for (A) The excitatory pool in mini-column 2, (B) The inhibitory pool in mini-column 2,

(C) The excitatory pool in mini-column 1, (D) The inhibitory pool in mini-column 1.

LUT-based implementation in different parts of the model and
some equations with the exponential terms, which has a ıside
effect on the final accuracy of implementation. The authors of
Zhang et al. (2009) implemented a 32-bit floating point recon-
figurable somatic neuroprocessor on an FPGA. In Saïghi et al.
(2010a,b); Grassia et al. (2011) the H-H based neural network
has been implemented on a combination of systems: digital
hardware, analog hardware, and software. Due to data transmis-
sion between different interfaces, these kinds of implementations
are more sensitive to noise and have lower speed compared to
the network implemented on a single FPGA. Also, implemen-
tation, validation, and evaluation of these types of systems are
harder than pure digital design on FPGA devises. In Bonabi
et al. (2012b), a neural pool is implemented on FPGA. In this
paper, we have upgraded this pool to a network composed of
four different pools. It is done by improving our implementa-
tion method through using computational techniques, such as
CORDIC algorithm and step-by-step integration in the imple-
mentation of arithmetic circuits, in addition to sharing resources.
Our implementation makes increasing the network size possible
while keeping the network execution speed close to real time and
having high precision.

CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a method to implement a biologically
plausible neural network on an FPGA. The network consists of
four neural pools; two excitatory; and two inhibitory pools. Each
pool is implemented based on the H-H neuron model.

We used MATLAB simulation for validating our implemen-
tation. After simulating the network using MATLAB, we chose
suitable number of bits for each variable in mathematical com-
putations, in order to have less error in the results of the
implemented network.

We described each part of the H-H model equations
using VHDL as a hardware description language (Bottom-up
approach). In order to have a neural network with the maxi-
mum number of neurons and accurate responses, we focused on
having small error, rapid processing time, and using less hard-
ware resources. In the implementation, both of the full imple-
mentation and LUT-based implementation were used to obtain
high accuracy and low execution time. In addition, varieties of
computational circuits were tested to have an implementation
with optimal resource usage, such as CORDIC algorithm and
step-by-step integrator, which are beneficial in having accurate
response and low hardware resource usage. At every stages of the

Frontiers in Neuroscience | Neuromorphic Engineering November 2014 | Volume 8 | Article 379 | 10

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

implementation, range of the inputs and outputs are examined,
in order to achieve the appropriate data representation and to
have simplified arithmetic functions. For example, in the imple-
mentation of different modules, the LUT implementation is used
instead of complete functional implementation, where the func-
tion has limited range of changes in the values of inputs and
outputs. We achieved high-speed performance of running the
neural network, based on the parallel processing nature of FPGA,
which is practically impossible in sequential platforms. Moreover,
our design has high accuracy in its output; i.e., in membrane
voltage signals and firing rates.

The presented implementation technique has other benefits as
well, such as scalability and extendibility. The number of neu-
rons could be increased by increasing the number of repetitions
in the address generator. It results in linear increase in response
time of the system. The implemented network could be used as a
pipeline system to raise its speed in the next steps of this research.
Using our system for developing controllers for cognitive robots
is among our research plans.

REFERENCES
Ambroise, M., Levi, T., Joucla, S., Yvert, B., and Saïghi, S. (2013). Real-time

biomimetic central pattern generators in an FPGA for hybrid experiments.
Front. Neurosci. 7:215. doi: 10.3389/fnins.2013.00215

Bailey, J. A., Wilcock, R., Wilson, P. R., and Chad, J. E. (2011). Behavioral simu-
lation and synthesis of biological neuron systems using synthesizable VHDL.
Neurocomputing 74, 2392–2406. doi: 10.1016/j.neucom.2011.04.001

Bakhtiari, R., Sephavand, N. M., Ahmadabadi, M. N., Araabi, B. N., and Esteky,
H. (2012). Computational model of excitatory/inhibitory ratio imbalance
role in attention deficit disorders. J. Comput. Neurosci. 33, 389–404. doi:
10.1007/s10827-012-0391-y

Bonabi, S. Y., Asgharian, H., Bakhtiari, R., Safari, S., and Ahmadabadi, M. N.
(2012a). “FPGA implementation of Hodgkin-Huxley neuron model,” in IJCCI,
eds A. C. Rosa, A. D. Correia, K. Madani, J. Filipe, and J. Kacprzyk (SciTePress),
522–528.

Bonabi, S. Y., Asgharian, H., Bakhtiari, R., Safari, S., and Ahmadabadi, M. N.
(2012b). “FPGA implementation of a cortical network based on the Hodgkin-
Huxley neuron model,” in Neural Information Processing, eds T. Huang, Z. Zeng,
C. Li, and C. S. Leung (Berlin; Heidelberg: Springer), 243–250.

Börgers, C., Epstein, S., and Kopell, N. J. (2005). Background gamma rhythmicity
and attention in cortical local circuits: a computational study. Proc. Natl. Acad.
Sci. U.S.A. 102, 7002–7007. doi: 10.1073/pnas.0502366102

Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nat. Neurosci. 7,
446–451. doi: 10.1038/nn1233

Cassidy, A., and Andreou, A. G. (2008). “Dynamical digital silicon neurons,” in
IEEE Biomedical Circuits and Systems Conference, 2008. BioCAS 2008 (Baltimore,
MD), 289–292. doi: 10.1109/BIOCAS.2008.4696931

Çavuşlu, M. A., Karakuzu, C., S̨ahin, S., and Yakut, M. (2011). Neural network
training based on FPGA with floating point number format and it’s perfor-
mance. Neural Comput. Appl. 20, 195–202. doi: 10.1007/s00521-010-0423-3

Chen, K., and Wang, D. (2002). A dynamically coupled neural oscillator net-
work for image segmentation. Neural Netw. 15, 423–439. doi: 10.1016/S0893-
6080(02)00028-X

Ercegovac, M. D., and Lang, T. (2003). Digital Arithmetic. San Francisco, CA:
Elsevier.

Ermentrout, G. B., and Kopell, N. (1998). Fine structure of neural spiking and syn-
chronization in the presence of conduction delays. Proc. Natl. Acad. Sci. U.S.A.
95, 1259–1264. doi: 10.1073/pnas.95.3.1259

Gatet, L., Tap-Béteille, H., and Bony, F. (2009). Comparison between analog and
digital neural network implementations for range-finding applications. IEEE
Trans. Neural Netw. 20, 460–470. doi: 10.1109/TNN.2008.2009120

Graas, E. L., Brown, E. A., and Lee, R. H. (2004). An FPGA-based approach to
high-speed simulation of conductance-based neuron models. Neuroinformatics
2, 417–435. doi: 10.1385/NI:2:4:417

Grassia, F., Lévi, T., Tomas, J., Renaud, S., and Saïghi, S. (2011). “A neu-
romimetic spiking neural network for simulating cortical circuits,” in 45th
Annual Conference on Information Sciences and Systems (CISS), 2011 (Baltimore,
MD), 1–6. doi: 10.1109/CISS.2011.5766098

Heo, Y., and Song, H. (2012). Circuit modeling and implementation of a biolog-
ical neuron using a negative resistor for neuron chip. BioChip J. 6, 17–24. doi:
10.1007/s13206-012-6103-x

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.
117, 500.

Indiveri, G., Linares-Barranco, B., Hamilton, T., VanSchaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic sili-
con neuron circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.
00073

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting. Cambridge, MA: The MIT press.

Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (2000). Principles of Neural Science.
4th Edn. New York, NY: McGraw-Hill Medical.

Khan, F. A., Uppal, M., Song, W. C., Kang, M. J., and Mirza, A. M. (2006). FPGA
Implementation of a neural network for character recognition. Adv. Neural
Netw. 2006, 1357–1365. doi: 10.1007/11760191_197

Mokhtar, M., Halliday, D. M., and Tyrrell, A. M. (2008). Hippocampus-inspired
spiking neural network on FPGA. Evol. Syst. 5216, 362–371. doi: 10.1007/978-
3-540-85857-7_32

Moldakarimov, S., Rollenhagen, J. E., Olson, C. R., and Chow, C. C. (2005).
Competitive dynamics in cortical responses to visual stimuli. J. Neurophysiol.
94, 3388–3396. doi: 10.1152/jn.00159.2005

Muthuramalingam, A., Himavathi, S., and Srinivasan, E. (2008). Neural network
implementation using FPGA: issues and application. Int. J. Inform. Technol. 4,
86–92.

Pourhaj, P., Teng, D. Y., Wahid, K., and Ko, S. B. (2010). “A novel scalable paral-
lel architecture for biological neural simulations,” in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems (ISCAS) (Paris), 3152–3155.
doi: 10.1109/ISCAS.2010.5537951

Rice, K. L., Bhuiyan, M. A., Taha, T. M., Vutsinas, C. N., and Smith, M. C.
(2009). “FPGA implementation of izhikevich spiking neural networks for char-
acter recognition,” in International Conference on Reconfigurable Computing and
FPGAs, 2009. ReConFig’09 (Quintana Roo), 451–456. doi: 10.1109/ReConFig.
2009.77

Sahin, S., Becerikli, Y., and Yazici, S. (2006). “Neural network implementation in
hardware using FPGAs,” in Neural Information Processing, eds I. King, J. Wang,
L.-W. Chan, and D. Wang (Berlin; Heidelberg: Springer), 1105–1112.

Saïghi, S., Levi, T., Belhadj, B., Malot, O., and Tomas, J. (2010a). “Hardware sys-
tem for biologically realistic, plastic, and real-time spiking neural network
simulations,” in The 2010 International Joint Conference on Neural Networks
(IJCNN) (Barcelona), 1–7. doi: 10.1109/IJCNN.2010.5596979

Saïghi, S., Tomas, J., Bornat, Y., Belhadj, B., Malot, O., and Renaud, S. (2010b).
“Real-time multi-board architecture for analog spiking neural networks,” in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems
(ISCAS) (Paris), 1939–1942. doi: 10.1109/ISCAS.2010.5538039

Traub, R. D., and Miles, R. (1991). Neuronal Networks of the Hippocampus.
Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511
895401

Wang, R. M., Hamilton, T. J., Tapson, J. C., and van Schaik, A. (2014).
A mixed-signal implementation of a polychronous spiking neural net-
work with delay adaptation. Front. Neurosci. 8:51. doi: 10.3389/fnins.2014.
00051

Wanhammar, L. (1999). DSP Integrated Circuits. Academic Press.
Yang, S., Wu, Q., and Li, R. (2011). A case for spiking neural network simulation

based on configurable multiple-FPGA systems. Cogn. Neurodyn. 5, 301–309.
doi: 10.1007/s11571-011-9170-0

Zhang, Y., Nunez-Yanez, J., McGeehan, J., Regan, E., and Kelly, S. (2009). “A
Biophysically accurate floating point somatic neuroprocessor,” in International
Conference on Field Programmable Logic and Applications, 2009. FPL 2009
(Prague), 26–31. doi: 10.1109/FPL.2009.5272558

Zou, Q., Bornat, Y., Tomas, J., Renaud, S., and Destexhe, A. (2006). Real-time
simulations of networks of Hodgkin-Huxley neurons using analog circuits.
Neurocomputing 69, 1137–1140. doi: 10.1016/j.neucom.2005.12.061

www.frontiersin.org November 2014 | Volume 8 | Article 379 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Yaghini Bonabi et al. FPGA implementation of a biological neural network

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 17 July 2014; accepted: 05 November 2014; published online: 21 November
2014.
Citation: Yaghini Bonabi S, Asgharian H, Safari S and Nili Ahmadabadi M (2014)
FPGA implementation of a biological neural network based on the Hodgkin-Huxley
neuron model. Front. Neurosci. 8:379. doi: 10.3389/fnins.2014.00379

This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Yaghini Bonabi, Asgharian, Safari and Nili Ahmadabadi. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the orig-
inal publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroscience | Neuromorphic Engineering November 2014 | Volume 8 | Article 379 | 12

http://dx.doi.org/10.3389/fnins.2014.00379
http://dx.doi.org/10.3389/fnins.2014.00379
http://dx.doi.org/10.3389/fnins.2014.00379
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

	FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model
	Introduction
	Materials and Methods
	Neuron Model
	Neural Network Model
	FPGA Implementation

	Results
	Discussion
	Conclusions and Future Work
	References


