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DNA methylation primarily occurs within human cells as a 5-methylcytosine (5mC)
modification of the cytosine bases in CpG dinucleotides. 5mC has proven to be an
important epigenetic mark that is involved in the control of gene transcription for
processes such as development and differentiation. However, recent studies have
identified an alternative modification, 5-hydroxymethylcytosine (6hmC), which is formed
by oxidation of 5mC by ten-eleven translocation (TET) enzymes. The overall levels of
5hmC in the mammalian genome are approximately 10% of 5mC levels, although higher
levels have been detected in tissues of the central nervous system (CNS). The functions
of BhmC are not yet fully known, but evidence suggests that 5hmC may be both an
intermediate product during the removal of 5mC by passive or active demethylation
processes and also an epigenetic modification in its own right, regulating chromatin or
transcriptional factors involved in processes such as neurodevelopment or environmental
stress response. This review highlights our current understanding of the role that 5hmC
plays in neurodegenerative diseases, including Alzheimer’s disease (AD), amyotrophic
lateral sclerosis (ALS), fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich
ataxia (FRDA), Huntington's disease (HD), and Parkinson’s disease (PD).
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INTRODUCTION
Methylation of mammalian DNA occurs by DNA methyltrans-
ferase (DNMT) enzymatic conversion of cytosine residues in CpG
dinucleotides to 5-methylcytosine (5mC) (Robertson, 2001).
CpG sites are clustered together as CpG islands (CGIs), which
locate to distinct gene regions, and the DNA methylation pro-
file of a gene has been shown to have a significant impact upon
its level of expression (Bird and Wolffe, 1999). Furthermore,
aberrant DNA methylation profiles are known to be associated
with many different human diseases, including Rett syndrome
(Amir et al., 1999) and cancer (Kulis and Esteller, 2010), where
there are alterations of global DNA methylation patterns, and
Fragile X syndrome (FXS), where there is specific methylation of
the CCG repeat mutation in the fragile X mental retardation-1
(FMR1) gene (Naumann et al., 2009). Abnormal global or local-
ized DNA methylation patterns have also been associated with
certain neurodegenerative diseases (Pook, 2012; Lu et al., 2013).
In 2009, two independent studies simultaneously
reported the existence of an alternative modification, 5-
hydroxymethylcytosine (5hmC), formed due to oxidation
of 5mC by ten-eleven translocation (TET) enzymes, a family of
2-oxoglutarate- and Fe(II)-dependent dioxygenases, consisting of
three proteins, TET1, TET2, and TET3 (Kriaucionis and Heintz,
2009; Tahiliani et al., 2009). Highly conserved homologous
proteins have also been identified in mouse, designated Tetl,
Tet2, and Tet3. Initial studies demonstrated roles for Tet enzymes,

converting 5mC to 5hmC, in pluripotency and developmental
reprogramming (Ito et al., 2010; Branco et al., 2011; Ficz et al,,
2011; Guetal., 2011; Inoue and Zhang, 2011). Subsequent studies
in mouse embryonic stem (ES) cells suggested that Tet enzymes
could control DNA methylation both by the conversion of 5mC
to 5ShmC and by binding to CpG rich regions to prevent DNMT
activity (Xu et al., 2011). More recently, outside of developmental
reprogramming, TET1 has been shown to act in differentiated
cells as a maintenance demethylase that prevents aberrant
methylation spreading into unmethylated or hypomethylated
CGIs (Jin et al., 2014). The overall levels of 5hmC in the mam-
malian genome have been reported to be approximately 10%
of 5mC levels (Branco et al., 2011), although higher levels have
been detected in tissues of the CNS (Globisch et al., 2010). For
example, 5hmC is approximately 40% as abundant as 5mC in the
DNA of Purkinje cells of the cerebellum (Kriaucionis and Heintz,
2009). Subsequent to the identification of 5hmC, two other
modifications of cytosine have been discovered, 5-formylcytosine
(5fC) and 5-carbamylcytosine (5caC). These are less abundant
than 5hmC and they are recognized as intermediates generated
by TET enzyme activity in the 5hmC to cytosine conversion
pathway (Ito et al., 2011).

Several research groups have studied the distribution of 5hmC
throughout the genome. In brain tissue, 5ShmC is particularly
enriched within synaptic genes, exhibiting tissue-specific
differences at exon-intron boundaries, suggesting a potential
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role for 5hmC in the differential splicing of these genes (Khare
et al., 2012). Conversely, in human and mouse ES cells, 5ShmC
is enriched at specific gene bodies, promoters and enhancers,
particularly at promoters marked with H3K4me3 and H3K27me3
and at enhancers marked with H3K4mel and H3K27ac, suggest-
ing a role for 5ShmC in the epigenetic regulation of transcription
(Pastor et al., 2011; Stroud et al., 2011; Szulwach et al., 2011a).
Furthermore, enrichment of 5hmC at both gene bodies of actively
transcribed genes and promoter regions of Polycomb-repressed
developmental regulator genes has provided evidence of a dual
role for 5hmC in pluripotent stem cells (Wu et al., 2011).
5hmC is also found in mitochondrial DNA (Tacobazzi et al.,
2013), which has implications for disorders of mitochondrial
dysfunction, including neurodegenerative diseases. Due to the
CNS-selective tissue distribution of 5hmC and its involvement
in epigenetic gene regulation during neurodevelopment, several
recent investigations have focused on uncovering potential roles
for 5hmC in neurodegenerative diseases. Here we summarize the
findings of this recent epigenetic-based neurological research.

THE FUNCTIONS OF 5hmC

Although the functions of 5hmC within the cell are not yet fully
known, evidence emerging from recent 5ShmC protein binding
studies supports the existence of multiple roles (Figure1).
Several proteins have now been shown to bind to 5hmC,
including UHRF1 (ubiquitin-like, containing PHD, and RING
finger domain 1) (Frauer et al, 2011), MBD3 (methyl-CpG

binding domain protein 3) (Yildirim et al, 2011), MeCP2
(methyl-CpG binding protein 2) (Mellen et al., 2012), UHRF2
(ubiquitin-like, containing PHD and RING finger domain 2)
and a number of other proteins identified by proteomics analysis
(Spruijt et al., 2013). These studies suggest that ShmC is involved,
both indirectly and directly, in the dynamic interplay between
DNA methylation status and gene transcription.

Firstly, 5hmC acts as an intermediate in both the passive and
the active DNA demethylation conversion of 5mC to cytosine,
and thus is indirectly involved in regulating gene transcrip-
tion. Passive DNA demethylation occurs due to poor binding of
UHRF1 to 5ShmC. Usually UHRF1 and its partner, DNMT1, act
together to bind to 5mC and carry out maintenance DNA methy-
lation (Bostick et al., 2007). However, UHRF1 has a reduced bind-
ing affinity for ShmC compared to 5mC (Frauer et al., 2011), and
therefore DNMT1 may not be recruited to maintain levels of DNA
methylation and hence passive demethylation occurs. Shortly
after the discovery that TET enzymes mediated the conversion of
5mC to 5hmC, other studies revealed that TET enzymes could
further oxidize 5hmC to 5fC and then 5caC (Ito et al., 2011).
This led to the understanding that active DNA demethylation can
occur through sequential stages of TET enzyme-mediated oxida-
tion, 5mC to 5hmC to 5fC to 5caC, followed by the action of
TDG to form an abasic site, which is then repaired to a cytosine
residue by BER activity (Guo et al., 2011; He et al., 2011; Maiti
and Drohat, 2011). An alternative active DNA demethylation
pathway that involves deamination of 5hmC to a hydroxyuracil
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FIGURE 1 | Functions of 5hmC. 5hmC has several different functions that
impact upon gene transcription: (1) acting as an intermediate in passive DNA
demethylation due to poor binding between 5hmC and UHRF1, the partner of

DNMT1; (2) acting as an intermediate in TET/TDG/BER-based active DNA
methylation; (3) altering the ratio of 56mC-binding proteins (5mC-BPs) to
5hmC-binding proteins (5hmC-BPs) that impair or activate gene transcription.
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(5hmU) intermediate has also been proposed (Cortellino et al.,
2011). In addition, there is preliminary in vitro evidence that
the de novo DNA methyltransferases DNMT3A and DNMT3B
can act as DNA dehydroxymethylases, which may be able to
directly convert 5ShmC to cytosine (Chen et al., 2012). Therefore,
changes in 5hmC status may simply reflect changes in the bio-
logical processes that require DNA demethylation, such as the
development of pre-implantation embryos or the reprogramming
of primordial germ cells (PGCs) (Kohli and Zhang, 2013). Global
DNA demethylation occurs during two stages of embryogene-
sis: (1) in zygotes where there is preferential DNA demethylation
of the parental genome, (ii) in PGCs during the establishment
of gender-specific DNA methylation patterns (Inoue and Zhang,
2011). Tetl is not responsible for global demethylation in PGCs,
but has been shown to mediate locus-specific demethylation of
a subset of meiotic genes (Yamaguchi et al., 2012) and to have a
critical function in the erasure of genomic imprinting (Yamaguchi
etal.,, 2013).

Secondly, 5hmC binds chromatin regulator proteins, which
suggests that it is not merely an intermediate in DNA demethyla-
tion, but that it can more directly influence the regulation of gene
transcription in processes such as neurodevelopment (Szulwach
et al., 2011Db) or cellular responses to oxidative stress (Chia et al.,
2011). For example, 5hmC may modulate the relative binding
of methyl-CpG-binding domain proteins, such as MeCP2 and
MBD3, to produce a more open chromatin state and activation
of gene transcription (Yildirim et al., 2011; Mellen et al., 2012).
Furthermore, 5ShmC can be associated with, or affected by, par-
ticular histone modifications that influence gene transcription.
For example, tight correlations of 5hmC localization have been
reported with both histone H3K4me2, an epigenetic mark of
euchromatin, and H3K27me3, an epigenetic mark of heterochro-
matin, across a variety of somatic tissues (Haffner et al., 2013;
Chen et al., 2014). In addition, recent studies have shown that the
conversion of 5mC to 5ShmC can be prevented by binding of PGC7
(also known as Dppa3 or Stella) to histone H3K9me2 (Nakamura
et al., 2012). Furthermore, as with 5hmC, it is possible that 5fC
and 5caC may also have independent functions in the regulation
of gene transcription (Raiber et al., 2012).

5hmC, NEURODEVELOPMENT AND NEURODEGENERATIVE
DISEASES

Several studies have suggested a role for 5hmC in the epige-
netic regulation of transcription, mediating brain development
and functional maintenance of the adult brain. At the outset,
comparatively high levels of 5hmC were detected in CNS tissues,
which contain predominantly non-proliferating cells (Globisch
et al., 2010). Thus, 5hmC was found to be approximately 40%
as abundant as 5mC in the DNA of Purkinje cells of the cerebel-
lum (Kriaucionis and Heintz, 2009). In contrast, loss of global
5hmC has been associated with cancer, suggesting that 5hmC
cannot be well maintained in highly proliferating cells (Pfeifer
et al., 2013). Throughout the stages of mouse neurodevelopment
from embryonic to adult brain, 5ShmC has been shown to be not
merely an intermediate metabolite of DNA demethylation, but a
long-lasting but dynamic epigenetic mark that is distinct from
5mC. Thus, while 5mC differentially binds MBD1 and MeCP2,

and recruits H3K9me3 and H3K27me3, 5ShmC progressively co-
localizes with MBD3 and recruits H3K4me2 (Chen et al., 2014).
Furthermore, a positive correlation has been reported between
5hmC levels and human cerebellum development (Wang et al.,
2012) and 5hmC has been reported to regulate transcriptional
factors involved in neurodevelopment (Szulwach et al., 2011b).
Finally, alterations of 5hmC have been implicated in a number
of neurodevelopmental diseases, including Rett syndrome, autism
spectrum disorders, schizophrenia and fetal alcohol syndrome
(Cheng et al., 2014).

Such growing evidence clearly indicates that 5ShmC has an
important role to play in normal neurodevelopment and main-
tenance of adult CNS function. Thus, it is intuitive that abnor-
malities of 5ShmC distribution or function may also be important
factors for neurodegenerative diseases. Indeed, a genome-wide
study of 5hmC distribution in mouse cerebellum has revealed
an age-related gene expression level-dependent enrichment of
5hmC in specific gene bodies that are linked to neurodegenerative
diseases in mice and humans, including ataxia and disorders of
Purkinje cell degeneration (Song et al., 2011b). The following sec-
tions describe the specific 5ShmC studies that have been performed
in relation to individual neurodegenerative diseases.

AD

Alzheimer’s disease (AD) is the most common neurodegenera-
tive disorder, characterized by progressive decline of cognitive
functions, neuronal cell loss, and two hallmarks of pathology,
extracellular amyloid beta plaques and intracellular neurofib-
rillary tangles composed of hyperphosphorylated tau protein
(Tanzi, 2012). The causes of AD are unknown, but some evi-
dence has been gained from identifying abnormalities in selected
genes, including the beta-amyloid precursor protein gene, APP,
and the presenilin genes, PSENI and PSEN2. In addition, it
has been suggested that there may be alterations of epigenetic
factors due to aging or in response to environmental stresses
(Wang et al., 2008; Coppieters and Dragunow, 2011; Bihagqi et al.,
2012). Several studies have recently investigated the global lev-
els of DNA methylation-based enzymes and chromatin marks,
DNMT1, TET1, 5mC, 5hmC, 5fC, and 5caC, in AD brain tis-
sues using a variety of immunohistochemical detection methods,
with somewhat contradictory results (Table 1). Initial studies of
human brain samples, specifically the entorhinal cortex layer II
of the medial temporal lobe, revealed evidence of decreased lev-
els of 5mC and DNMT1 in neurons of AD patients (Mastroeni
et al., 2010). Similar decreases in 5mC, together with decreased
levels of 5ShmC, were subsequently identified in the hippocampal
region of AD brains (Chouliaras et al., 2013). However, fur-
ther studies have shown exactly the opposite effects, reporting
increased levels of both 5mC and 5hmC in AD brains (Table 1).
Firstly, increased levels of 5mC have been detected in frontal cor-
tex of AD patients (Rao et al., 2012). Secondly, increased levels
of TET1, 5mC, and 5hmC, accompanied by decreases in the lev-
els of 5fC and 5caC, have been detected in the hippocampus
of AD patients, while no changes were detected in cerebellum
tissues (Bradley-Whitman and Lovell, 2013). Finally, increased
levels of both 5mC and 5hmC have been detected in the frontal
and temporal cortex of AD patients (Coppieters et al., 2014).
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The reasons for the discrepancies between the different studies
will require further investigation, but they may be due to the
analysis of different regions of the brain and the use of different
immunohistochemical quantification techniques. It will also be
interesting to investigate levels of locus-specific 5ShmC at specific
genes related to AD pathology, such as the APP and PSENT1 genes,
which have previously shown AD-related changes in 5mC levels
(Rogaev et al., 1994; Tohgi et al., 1999; Barrachina and Ferrer,
2009). Only after such studies will the role of 5hmC in either the
causes or consequences of AD pathogenesis become apparent.

ALS

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegen-
erative disease characterized by selective loss of motor neurons
within the brain and spinal cord (Calvo et al., 2014). The cause
of ALS is largely unknown, although defective genes have been
identified in a small percentage of familial ALS cases, including
those encoding superoxide dismutase 1 (SOD1), TAR DNA-
Binding Protein (TARDBP), fused in sarcoma (FUS), Ubiquilin2
(UBQLN2) and C9ORF72 (Chen et al., 2013). For the much
larger percentage of sporadic ALS cases, it has been suggested
that environmental factors, such as exposure to toxins or dietary
factors, may be driving more global epigenetic changes (Ahmed
and Wicklund, 2011). Therefore, it is interesting to note that one
recent study has reported global increases in both 5mC and 5hmC
levels in postmortem sporadic ALS spinal cord, but not in blood
samples (Figueroa-Romero et al., 2012) (Table 1). The differences
between spinal cord and blood samples suggest that neither 5mC
nor 5ShmC would currently be suitable as biomarkers of ALS, but
further studies will no doubt follow to shed further light onto the
role of 5hmC in ALS.

FXTAS

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-
onset neurodegenerative disease caused by CGG repeat expansion
mutations within the 5 untranslated region (UTR) of the FMRI
gene (Hagerman et al., 2001). FXTAS patients carry 55-200 CGG
repeats, regarded as premutation alleles, and although they do
not exhibit signs of disease in early life, they generally develop
severe tremor, ataxia and progressive cognitive decline in the
fifth decades of life. In contrast, individuals who carry over 200
CGG repeats, regarded as full mutations, develop FXS, which
is the commonest form of inherited mental retardation (Bagni
and Oostra, 2013). In FXS, the CGG repeat expansion muta-
tion becomes hyermethylated, as does the CpG island within the
FMRI promoter region, resulting in reduced expression of FMRI
(Naumann et al., 2009). However, in FXTAS there is increased
expression of FMRI, and a toxic RNA gain of function is con-
sidered to be the primary disease mechanism (Jacquemont et al.,
2003; Jin et al., 2003). To the best of our knowledge, there have
not yet been any reports describing the levels of 5hmC at the
FEMRI locus in either FXS or FXTAS. However, one study has
investigated global levels of 5ShmC in the rCGG mouse model
of FXTAS, which is characterized by overexpression of human
CGG repeats within the 5 UTR of the FMRI gene in Purkinje
neuronal cells, leading to cell death and subsequent behavioral
deficits (Hashem et al., 2009). The results showed there to be a
genome-wide decrease in 5hmC levels in the cerebellum tissues
of rCGG mice compared with age-matched wild-type controls,
mainly within gene bodies and CGIs (Yao et al., 2014). However,
there were also increases of 5hmC levels in repetitive elements
and cerebellum-specific enhancers that correlated with genes and
transcription factors known to be involved in neurodevelopment

Table 1| Alterations of 5hmC in neurodegenerative diseases.

Disease = 5hmC effect Other epigenetic effects References
AD Not tested Decreased global DNMT1 and 5mC in AD temporal ~ Mastroeni et al., 2010
cortex
Decreased global 5hmC in AD hippocampus Decreased global 5mC in AD hippocampus Chouliaras et al., 2013
Not tested Increased global 5mC in AD frontal cortex Rao et al., 2012
Increased global 5hmC in AD hippocampus, but no Increased global Tet1 and 5mC, and decreased Bradley-Whitman and Lovell,
change in cerebellum global 5fC and 5caC in AD hippocampus, but no 2013
change in cerebellum
Increased global 5hmC in AD frontal and temporal Increased global 5mC in AD frontal and temporal Coppieters et al., 2014
cortex cortex
ALS Increased global 5hmC in sporadic ALS spinal cord Increased global 5mC in sporadic ALS spinal cord Figueroa-Romero et al., 2012
FXTAS Decreased global 5hmC in rCGG FXTAS mouse Yao et al., 2014
model cerebellum
FRDA Increased 5hmC at the 5" GAA repeat region of the Increased 5mC at the 5" GAA repeat region and Al-Mahdawi et al., 2008, 2013
FXN gene in FRDA cerebellum and heart decreased 5mC at the 3" GAA repeat region of the
FXN gene in FRDA cerebellum and heart
HD Decreased 5hmC in the ADORA2A gene in HD Increased 5mC in the ADORAZ2A gene in HD VillarMenendez et al., 2013
putamen putamen
Decreased global 5hmC in YAC128 HD mouse Wang et al., 2013
model striatum and cortex
PD No change in 56hmC in 6-OHDA PD rat model Zhang et al., 2013

striatum
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(Table 1). These findings strongly suggest a potential function for
5hmC as part of the disease mechanism for FXTAS.

FRDA

Friedreich ataxia (FRDA) is a rare autosomal recessive neurode-
generative disorder caused by GAA repeat expansion mutation
within intron 1 of the FXN gene, leading to decreased expres-
sion of the essential mitochondrial protein frataxin (Campuzano
et al., 1996). The main sites of pathology are the large sensory
neurons of the dorsal root ganglia and the dentate nucleus of
the cerebellum (Koeppen, 2013), although non-CNS patholo-
gies are also evident, including hypertrophic cardiomyopathy
(Weidemann et al., 2013) and diabetes (Cnop et al., 2013). Several
studies have identified FRDA-related epigenetic changes, includ-
ing alterations of DNA methylation status, in the immediate
vicinity of the expanded GAA repeats of the FXN gene (Evans-
Galea et al., 2013; Sandi et al., 2014). An initial investigation of
DNA methylation revealed hypermethylation of specific CpG sites
upstream of the GAA repeat in FRDA patient lymphoblastoid
cells compared to unaffected controls (Greene et al., 2007). Our
group subsequently identified hypermethylation at the upstream
GAA repeat region in FRDA postmortem cerebellum and heart
tissues (Al-Mahdawi et al., 2008). Interestingly, we also identi-
fied reduced hypomethylation in the downstream GAA repeat
region in FRDA patient tissues compared with controls. These
findings were confirmed in blood and buccal cell samples from
alarge cohort of FRDA patients, where a significant inverse corre-
lation was also detected between the level of DNA methylation
in the upstream GAA region and the level of FXN expression
(Evans-Galea et al., 2012). Yet another study has shown that the
degree of DNA methylation in the upstream GAA repeat region
in FRDA patients correlates with the length of the GAA repeats
and inversely correlates with the age of disease onset (Castaldo
et al., 2008). Therefore, there is good evidence that DNA methy-
lation may have an, as yet unknown, role to play in the molecular
mechanism of FRDA. With this in mind, our group have recently
analyzed the 5ShmC status of one of the FXN upstream GAA CpG
sites in FRDA cerebellum and heart tissues using a restriction
enzyme-based procedure that allowed distinction between 5hmC
and 5mC and we found that the majority of the hypermethylated
DNA at this CpG residue comprises 5ShmC rather than 5mC (Al-
Mahdawi et al., 2013) (Table 1). It is possible that raised 5hmC
levels reflect an attempt to reverse GAA repeat-induced FXN gene
silencing, which is marked by increased DNA methylation at the
upstream GAA repeat region, rather than indicating any involve-
ment in the cause of disease. Therefore, it will be interesting to see
if there are further 5ShmC alterations of the FXN gene, or indeed
other genes, associated with FRDA.

HD

Huntington’s disease (HD) is an autosomal dominant progres-
sive neurodegenerative disease, characterized by chorea, dystonia,
and cognitive decline, with the main site of pathology being
the striatum. HD is caused by CAG repeat expansion mutation
within exon 1 of the HTT gene, leading to abnormal polyglu-
tamine formation within the amino-terminus of the HTT protein
(MacDonald et al., 2003). The mechanism of disease is unknown,

although many studies have provided evidence for polyglutamine
or RNA toxic gains of function as well as haploinsufficiency or
alternative splicing of the HTT gene as potential causes (Landles
and Bates, 2004; Sathasivam et al., 2013). More recently, evi-
dence has been put forward from two studies to suggest the
potential involvement of 5hmC in HD by two distinct mecha-
nisms (Table 1). Firstly, increased levels of 5mC and decreased
levels of 5ShmC were identified in the 5 UTR of the ADORA2A
gene in the striatum (specifically the putamen) of HD patients
compared with age-matched controls (Villar-Menendez et al.,
2013). The ADORA2A gene encodes the adenosine Aj receptor,
a G-protein-coupled receptor that is normally highly expressed
in the basal ganglia, but severely reduced in HD (Glass et al.,
2000). Secondly, genome-wide loss of 5hmC has been reported in
YAC128 HD mouse striatum and cortex brain tissues compared
with age-matched wild-type controls (Wang et al., 2013). A closer
inspection of this data revealed 747 differentially hydroxymethy-
lated regions in the striatum of which 49 showed HD-related
increases of 5hmC, enriched in gene bodies and positively cor-
related with gene transcription, and 698 showed HD-related
decreases of 5ShmC. The authors speculate that 5ShmC is a novel
epigenetic feature in HD, involved in neurogenesis, neuronal
function and survival in HD brain.

PD

Parkinson’s disease (PD) is the second most common neurode-
generative disease after AD, characterized by the progressive loss
of substantia nigra dopaminergic neurons, resulting in mus-
cle rigidity, bradykinesia, tremor, and instability. The causes of
PD are unknown, but mutations in several genes have now
been identified in rare cases of inherited PD, including the
genes SNCA (alpha-synuclein), PARK2 (parkin), PTEN induced
Putative Kinase 1 (PINK1), PARK7 (DJ-1), Leucine Rich Repeat
Kinase 2 (LRRK2) and ATPI3A2 (Yang et al., 2009). Previous
studies have suggested the potential involvement of DNA methy-
lation in PD, particularly with regards to regulation of SNCA gene
expression, but without solid conclusions (Lu et al., 2013). More
recently, 5hmC levels have been studied in striatal brain tissues
of the 6-OHDA induced rat model of PD, but while 5hmC con-
tent generally increased with age, no changes in ShmC levels were
detected compared with controls (Zhang et al., 2013). Therefore,
any potential involvement of 5hmC in the causes or consequences
of PD remain to be identified.

CONCLUSIONS: IMPLICATIONS FOR DIAGNOSIS AND
THERAPY OF NEURODEGENERATIVE DISEASES

To date, the investigations of 5hmC in relation to neurodegener-
ative diseases can be considered to be within their early days. Of
the few studies that have been performed, no common features
have emerged regarding ShmC alterations and neurodegenerative
diseases; both global increases and decreases of 5ShmC levels have
been identified in different diseases, and in the case of AD, within
the same disease. It is likely that poorly reproducible techniques
of immunohistochemical quantification have contributed to this
lack of clarity. One impetus behind the recent studies of 5hmC is
the potential to identify changes in 5ShmC as a potential biomarker
of neurodegenerative disease. Alterations of 5ShmC levels may be
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useful, irrespective of whether they are considered to be a cause
or a consequence of the disease process. However, initial studies
of sporadic ALS have revealed no correlation between alterations
of 5hmC, or indeed in 5mC, in spinal cord and blood, suggesting
that these would not be suitable as biomarkers of this neurode-
generative disease (Figueroa-Romero et al., 2012). Another driver
behind 5hmC studies of neurodegenerative disease is the poten-
tial to identify novel targets for therapy. In this case, alterations
of 5hmC levels would have to be involved in the molecular dis-
ease process rather than being a consequence of disease. However,
if 5ShmC does indeed prove to be a significant epigenetic mark
involved in the causation of neurodegenerative disease, then it
may be possible to develop drugs that modify the 5ShmC sta-
tus, either to decrease 5hmC levels by inhibition of TET enzyme
activity (Xiao et al., 2012) or to increase 5hmC levels by enhance-
ment of TET enzyme activity (Yin et al., 2013). However, further
investigations of 5ShmC alterations are first required for all neu-
rodegenerative diseases, both at global and locus-specific levels.
Such studies will be enhanced by the development of state of the
art technologies, such as the recently described third-generation
sequencing and oxidative bisulfite (oxBs) BeadChip platforms
(Song et al., 2011a; Stewart et al., 2014).
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