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Memristors have recently emerged as promising circuit elements to mimic the function
of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale
memristive synapses, that feature continuous conductance changes based on the timing
of pre- and postsynaptic spikes, has however turned out to be challenging. In this article,
we propose an alternative approach, the compound memristive synapse, that circumvents
this problem by the use of memristors with binary memristive states. A compound
memristive synapse employs multiple bistable memristors in parallel to jointly form
one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the
computational implications of synaptic plasticity in the compound synapse by integrating
the recently observed phenomenon of stochastic filament formation into an abstract
model of stochastic switching. Using this abstract model, we first show how standard
pulsing schemes give rise to spike-timing dependent plasticity (STDP) with a stabilizing
weight dependence in compound synapses. In a next step, we study unsupervised
learning with compound synapses in networks of spiking neurons organized in a
winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP
implements generalized Expectation-Maximization in the spiking network. Specifically,
the emergent synapse configuration represents the most salient features of the input
distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s
spike response to spiking input streams approximates a well-defined Bayesian posterior
distribution. We show in computer simulations how such networks learn to represent
high-dimensional distributions over images of handwritten digits with high fidelity even in
presence of substantial device variations and under severe noise conditions. Therefore,
the compound memristive synapse may provide a synaptic design principle for future
neuromorphic architectures.
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1. INTRODUCTION
A characteristic property of massively parallel computation in
biological and artificial neural circuits is the need for intensive
communication between neuronal elements. As a consequence,
area- and energy consumption of neuromorphic circuits is often
dominated by those circuits that implement synaptic transmis-
sion between neural elements (Schemmel et al., 2008). Biological
synapses are highly dynamic computational entities, exhibiting
plasticity on various time scales (Malenka and Bear, 2004). In
order to capture the most salient of these aspects, silicon synapses
thus demand extensive circuitry if implemented in CMOS tech-
nology. On this account, novel nanoscale circuit elements have
recently gained interest in the field of neuromorphic engineer-
ing as a promising alternative solution for the implementation
of artificial synaptic connections. In particular, for mixed-signal
neuromorphic CMOS architectures, which combine traditional
digital circuits with analog components, memristors are consid-
ered a promising class of circuit elements due to high integra-
tion densities, synapse-like plasticity dynamics, and low power

consumption (Choi et al., 2009; Jo et al., 2010; Kuzum et al.,
2011; Indiveri et al., 2013). One particularly important feature of
memristors is that their electrical resistance (often termed “mem-
ristance”) can be altered in a persistent manner by applying a
voltage to its terminals, leading to the eponymous perception
of memristors as resistors with memory. As an important appli-
cation of this property, it was shown that the memristance can
be changed based on the spike timings of the pre- and post-
synaptic neurons in a manner that approximates spike-timing
dependent plasticity (STDP), a plasticity rule that is believed to
represent a first approximation for the changes of synaptic effi-
cacies in biological synapses (Markram et al., 1997; Caporale
and Dan, 2008; Markram et al., 2012). On the level of single
synapses, this important property has been confirmed experi-
mentally in real memristors (Mayr et al., 2012) and has been
included into computational models of memristive plasticity
(Serrano-Gotarredona et al., 2013). On the network level, models
of memristive STDP were employed in computer simulations to
demonstrate the potential applicability of neuromorphic designs
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with memristive synapses to pattern recognition tasks (Querlioz
et al., 2011).

In practice however, the production of functional memristive
synapses with nanoscale dimensions has proven difficult, mainly
due to large device variations and their unreliable behavior. It
turned out to be particularly challenging to fabricate reliable
nanoscale memristive synapses that feature a continuous spec-
trum of conductance values. As an alternative solution, it was pro-
posed to employ bistable memristors as neuromorphic synapses
instead since they exhibit a high degree of uniformity (Fang et al.,
2011) and high durability (Jo et al., 2009b). For switching between
their two stable conductance states, bistable memristors can be
operated in a deterministic as well as in a stochastic regime (Jo
et al., 2009b).

Using machine learning theory, we show in this article that
stochastically switching bistable memristors become compu-
tationally particularly powerful in mixed-signal neuromorphic
architectures when multiple memristors are combined to jointly
form one synapse. Such a joint operation of multiple memris-
tors can be interpreted as the collective function of ion channels
in biological synapses (Indiveri et al., 2013). Concretely, we pro-
pose the compound memristive synapse model which employs
M bistable memristors operating in parallel to form a single
synaptic weight between two neurons. To implement synaptic
plasticity, we employ standard STDP pulsing schemes (Querlioz
et al., 2011; Serrano-Gotarredona et al., 2013) and exploit the
stochastic nature of memristive switching (Jo et al., 2009b; Gaba
et al., 2013; Suri et al., 2013; Yu et al., 2013). For the analy-
sis of the resulting plasticity dynamics, we perceive individual
memristors as binary stochastic switches. This abstract descrip-
tion was previously utilized to capture the most salient features of
experimentally observed memristive switching (Suri et al., 2013)
and appears compatible with pivotal aspects of the experimental
literature (Jo et al., 2009b; Gaba et al., 2013).

We show analytically and through computer simulations that
the change of the synaptic efficacy for a given pairing of pre-
and postsynaptic spikes follows an STDP-like plasticity rule such
that the expected weight change depends on the momentary
synaptic weight in a stabilizing manner. The resulting compound-
synapse STDP enables a synapse to attain many memristive states
depending on the history of pre- and postsynaptic activity. A
stabilizing weight dependence of synaptic plasticity exists in bio-
logical synapses (Bi and Poo, 1998) and has been shown to
facilitate learning and adaptation in neural systems (Van Rossum
et al., 2000; Morrison et al., 2007). In particular, it has been shown
in Nessler et al. (2013) that in stochastic winner-take-all (WTA)
architectures, STDP with stabilizing weight dependence imple-
ments an online Expectation-Maximization algorithm. When
exposed to input examples, neurons in the WTA network learn
to represent the hidden causes of the observed input in a well-
defined generative model. This adaptation proceeds in a purely
unsupervised manner. We adopt a similar strategy here and
apply the compound memristive synapse model in a network of
stochastically spiking neurons arranged in a WTA architecture.
We show analytically that compound-synapse STDP optimizes
the synaptic efficacies such that the WTA network neurons in
the hidden layer represent the most salient features of the input

distribution in a Mixture-of-Gaussians generative model. After
training, the network performs Bayesian inference over the hid-
den causes for the given input pattern. We show in computer
simulations that such networks are able to learn to represent
high-dimensional distributions over images of handwritten dig-
its. After unsupervised training, the network transforms noisy
input spike-patterns into a sparse and reliable spike code that
supports classification of images. It turns out that even small com-
pound synapses, consisting of only four bistable constituents per
synapse, are sufficient for reliable image classification in our sim-
ulations. We furthermore show that the proposed model is able
to represent the input distribution with high fidelity even in the
presence of substantial device variations and under severe noise
conditions. These findings render the compound synapse model
a promising design principle for novel high-density, low-power
mixed-signal CMOS architectures.

2. RESULTS
2.1. STOCHASTIC MEMRISTORS AS PLASTIC SYNAPSES
Memristors have gained increasing attention in neuromorphic
engineering as possible substrates for plastic synapses (Jo et al.,
2010) due to the possibility to change their electrical con-
ductance without the requirement of extensive supporting cir-
cuitry. Recently, Zamarreño-Ramos et al. (2011) and Querlioz
et al. (2011) have proposed a pulsing scheme to realize spike-
timing dependent plasticity (STDP) with memristive synapses
in response to pre- and postsynaptic activity as sketched in
Figure 1A: Pre-synaptic spikes trigger a rectangular voltage pulse
of duration τ (shown in green) that is sent to the memristor’s
presynaptic terminal. Similarly, postsynaptic neurons send back a
copy of their spikes to the postsynaptic terminal as a brief volt-
age pulse (shown in blue). The combined effect of these pulses
was shown to trigger STDP-type plasticity in the memristor as
illustrated in Figure 1B, where we adopted the convention to
measure the voltage drop at the memristor as “presynaptic minus
postsynaptic potential.” If only the postsynaptic neuron spikes
(Figure 1B, left), the voltage pulse exceeds the lower thresh-
old of the memristor, leading to long-term depression (LTD).
Conversely, if a postsynaptic spike follows a presynaptic spike
within duration τ (Figure 1B, right), the combined voltage trace
exceeds the memristor’s upper threshold, thus resulting in long-
term potentiation (LTP). Pre-synaptic pulses alone do not trigger
any plasticity. Overall, the memristor’s conductance obeys an
STDP-type plasticity rule.

The direct implementation of the above plasticity rule in
mixed-signal neuromorphic architectures, however, faces practi-
cal challenges due to the continuous spectrum of the conductance
values it relies on. Memristors that support a (quasi-) continu-
ous spectrum of memristive states often suffer from instabilities
to maintain their conductance value (“volatility”) and typically
show unreliable changes under repetitive application of identical
pulses.

Here we explore an alternative approach that employs multiple
bistable memristors, that support only two distinct conductance
states per memristor, to jointly form one synapse. Such devices
were reported to exhibit a high degree of uniformity (Fang et al.,
2011). Concretely, we propose a synapse model which employs
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FIGURE 1 | Compound memristive synapse model with stochastic

memristors. (A) STDP pulsing scheme. Input spikes elicit a rectangular
voltage trace (green, left) that is sent to the presynaptic terminal of the
memristor synapse. Post-synaptic spikes elicit a brief voltage pulse (blue)
which is sent back to the synapse. (B) Solitary postsynaptic spikes trigger
LTD since the voltage exceeds the lower threshold of the memristor.
Simultaneous pre- and postsynaptic spikes trigger LTP since the voltage
exceeds the upper threshold. (C) Compound memristive synapse model. A
synapse is composed of M bistable memristors operating in parallel. Each
memristor can either be active (weight ω) or inactive (weight 0). The total
synaptic weight Wki between input neuron yi and network neuron zk is the
sum of the individual memristor weights. (D) Bistable memristors switch

stochastically between the active and inactive state depending on the applied
voltage difference across its terminals. Switching to the active state (inactive
state) occurs with probability πup (πdown) if a certain threshold voltage (dotted
line) is exceeded. (E) Summary of stochastic transitions for
compound-synapse STDP. (F) In an STDP pairing experiment, the stabilizing
weight dependence of compound synapse plasticity governs convergence to
a dynamic equilibrium. 10,000 plasticity pulses were applied to a synapse
with M = 10 constituents. During the first half, 80% (20%) of the events
were of LTP (LTD) type. During the second half, the probability for LTP (LTD)
events was inverted to 20% (80%). Thin lines: number of active memristors
mki (t) for two example simulation runs. Thick line: Average 〈 mki (t) 〉 over 100
runs. The average weight converges to a dynamic equilibrium.

M bistable memristors operating in parallel to form a single
synaptic weight Wki between the i-th input neuron yi and the k-th
network neuron zk. The model which we refer to as compound
memristive synapse is sketched in Figure 1C. Each memristor is
assumed to provide two stable states: a high-conductive (active)
state and a low-conductive (inactive) state. Since the dynamic
range of memristors typically covers several orders of magnitude,
the weight contribution of inactive memristors is almost negligi-
ble. In line with this notion, each inactive memristor contributes
weight 0 in the synapse model and each active memristor con-
tributes weight ω. Since parallel conductances sum up, the total
weight of the compound memristive synapse reads

Wki = ω · mki (1)

with mki ∈ {0, 1, . . . , M} denoting the number of active memris-
tors. As a consequence, a compound memristive synapse supports
M + 1 discrete weight levels, ranging from 0 to the maximum
weight Wmax = ω · M.

Plasticity in this synapse model naturally emerges from tran-
sitions between the active and inactive state of the bistable
constituents. However, deterministic transitions, which are, for
instance, desirable in memristor-based memory cells, impair the
performance in a neuromorphic online learning setup with com-
pound memristive synapses: If all constituents of a synapse,
that experience the same pre- and postsynaptic spikes, change
their state simultaneously, the compound weight toggles between
Wki = 0 and Wki = Wmax depending on the latest pulse pair, not
showing any gradual trace of memory formation as required for
STDP.

A possible remedy to this issue can be found in memristors that
exhibit stochastic rather than deterministic switching between
their stable states. Yu et al. (2013), for instance, reported stochas-
tic transitions in HfOx/TiOx memristors (from the class of anion-
based memristors) and explored in computer simulations how
stochastic bistable memristors could be used in a neuromorphic
learning architecture. Similar studies explored the usability of
stochastically switching bistable cation-based memristive materi-
als (Jo et al., 2009b; Gaba et al., 2013; Suri et al., 2013). In these
nanoscale devices, changes in the memristance were shown to be
dominated by the formation of a single conductive filament (Jo
et al., 2009b). Stochastic switching was demonstrated for both
directions (active ↔ inactive) (Suri et al., 2013) with switching
probabilities being adjustable via the duration (Gaba et al., 2013;
Suri et al., 2013) and amplitude (Jo et al., 2009b; Gaba et al., 2013)
of the voltage applied across the terminals. These observations
have led to the conclusion that “switching can be fully stochas-
tic” with switching probabilities being almost unaffected by the
rate at which consecutive plasticity pulses are delivered (Gaba
et al., 2013). Furthermore, bistable memristors can be extremely
durable, not showing any notable degradation over hundreds of
thousands of programming cycles (Jo et al., 2009b). Owing to
these pivotal properties, Suri et al. (2013) proposed an STDP-
type plasticity rule that perceives bistable memristors as simple
stochastic switches.

Here we generalize this idea to compound memristive synapses
and investigate the computational function of the arising plastic-
ity rules in spiking networks from a machine learning perspective.
Figure 1D illustrates a simple model of stochastic switching of
individual memristors that employs the STDP-pulsing scheme
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from Zamarreño-Ramos et al. (2011) and Querlioz et al. (2011)
discussed above: If the voltage between the pre- and postsynap-
tic terminal of a device exceeds a certain threshold (dotted lines)
for the duration of the back-propagating spike signal, stochastic
switching may occur. Inactive memristors jump to the active state
with probability πup provided a sufficiently strong positive volt-
age, resulting in stochastic LTP. Similarly, active memristors turn
inactive with probability πdown given a sufficiently strong negative
voltage, leading to stochastic LTD. No switching occurs if only a
small (or zero) voltage is applied, or if the memristor is already in
the respective target state. Since the applied pre- and postsynaptic
pulse amplitudes are free parameters in the model, the jumping
probabilities πup and πdown can be controlled, to a certain extent,
by the experimenter. This simple model captures the most salient
aspects of stochastic switching in bistable memristive devices as
discussed above, cp. also Suri et al. (2013) and the Discussion sec-
tion. In order to distinguish the abstract memristor model from
physical memristive devices, we will in the following refer to the
model memristors as “stochastic switches,” “constituents,” or sim-
ply as “switches” for the sake of brevity. Furthermore, we refer
to the resulting stochastic plastic behavior of compound memris-
tive synapses in response to pre-post spike pairs, summarized in
Figure 1E, as compound-synapse STDP.

From the transition probabilities of individual stochas-
tic switches we can calculate the expected temporal weight
change 〈 d

dt Wki 〉 of the compound memristive synapse as a func-
tion of pre- and postsynaptic activity. Formally, we denote the
presence of a rectangular input pulse (green in Figure 1A) of
the i-th input by yi(t) = 1 (and the absence by yi(t) = 0). The
brief pulses that are sent back from a postsynaptic neuron zk

to the synapse (blue in Figure 1A) are formally treated as point
events at the spike times of the postsynaptic neuron. We denote

the spike time of the f th spike of neuron zk by t
f
k . The spike

train sk(t) of a neuron zk is formally defined as the sum of Dirac

delta pulses δ( · ) at the spike times: sk(t) = ∑
f δ(t − t

f
k). When

a synaptic efficacy Wki is subject to a stochastic LTP update, there
are (M − mki) constituents in the compound memristive synapse
that are currently inactive and could undergo an LTP transi-
tion. Each constituent independently switches to its active state
with probability πup, thereby contributing ω to the compound
weight Wki. Hence, the expected weight change for the LTP con-
dition reads (M − mki) ω πup. A similar argumentation applies
to the LTD case. In summary, considering that plasticity always
requires a postsynaptic spike, and that LTP is induced in the pres-
ence of a presynaptic pulse (yi(t) = 1), while LTD is induced in
the absence of a presynaptic pulse (yi(t) = 0), the expected weight
change of the compound memristive synapse reads:

〈 d

dt
Wki 〉 = sk(t) ·

⎡
⎢⎣(M − mki) ω πup yi(t)︸ ︷︷ ︸

LTP

− mki ω πdown (1 − yi(t))︸ ︷︷ ︸
LTD

⎤
⎦ (2)

= sk(t) · [
Mωπup yi(t) − mkiωπup yi(t)

− mkiωπdown + mkiωπdown yi(t)
]

= sk(t) · [
Wmax πup yi(t) − Wkiπdown

]

+ sk(t) Wki yi(t) · (πdown − πup) .

In order to obtain a simple closed form solution of the weight
changes, we set πup = πdown, i.e., the probability of potentiation
of a single switch under LTP equals its probability of depression
under LTD. This choice will facilitate the theoretical analysis of
learning in a spiking network, later on. In a hardware implemen-
tation, the switching probabilities could be adjusted via the pre-
and postsynaptic amplitudes of the STDP pulses. We obtain the
following closed form solution for the expected weight change:

〈 d

dt
Wki 〉 = πup Wmax · sk(t) · [

yi(t) − Wki/Wmax
]

. (3)

Notably, the plasticity rule (3) differs from standard additive
STDP rules in that it includes the weight dependent term
Wki/Wmax. This weight dependence has its origin in the varying
number of (in-)active stochastic switches mki that could actu-
ally undergo plastic changes and is in line with a prominent
finding from neurobiology (Bi and Poo, 1998): Relative changes
�Wki/Wki become weaker for strong weights under LTP, while
under LTD the relative change is weight-independent. Studies in
computational neuroscience, see e.g., Van Rossum et al. (2000),
found that this type of weight dependence facilitates the forma-
tion of stable connections in spiking networks.

In Figure 1F, we illustrate the stochastic convergence of a
compound synaptic weight to a stable, dynamic equilibrium
in a simple STDP pairing experiment. The synapse consists
of M = 10 bistable switches with switching probabilities set to
πup = πdown = 0.001. These synapse parameters will also be
used in network level simulations, later on. In a small com-
puter simulation, 5 of the 10 constituents are initially set active
(mki(t = 0) = 5). Then, 5000 postsynaptic spikes are sent to
the postsynaptic terminal of the synapse for triggering stochas-
tic switching in the bistable constituents. 80% of these events
are randomly paired with a presynaptic pulse, i.e., 80% of the
events are of LTP type and 20% are of LTD type. After 5000
plasticity pulses, the statistics are inverted to 20% LTP and 80%
LTD events for another 5000 plasticity pulses. The thin lines
in Figure 1F show the evolution of mki(t) in this STDP pair-
ing experiment for two independent simulation runs. In the first
half, the synaptic weight tends to settle around higher weight val-
ues, while in the second half, it stochastically declines toward
lower weight values. The gradual convergence of the average
weight, as suggested by Equation (3), becomes apparent by taking
the mean over 100 simulation runs (thick line). The stabilizing
weight dependence of the STDP rule leads to convergence to a
dynamic equilibrium such that the mean value shows slow, con-
tinuous changes as expected from the theory. Individual synapses
fluctuate stochastically around this mean.

Equation (3) is reminiscent of a theoretically derived synaptic
plasticity rule for statistical model optimization in spiking neu-
ral networks proposed by Nessler et al. (2013). Building upon
the theoretical approach developed by Nessler et al. (2013), we
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will next turn to the question how to conceive stochastic learning
with compound memristive synapses from a Bayesian perspective
as unsupervised model optimization via a powerful optimiza-
tion method that is known as Expectation-Maximization in the
machine learning literature.

2.2. COMPOUND MEMRISTIVE SYNAPSES IN WINNER-TAKE-ALL
NETWORKS

The winner-take-all (WTA) network structure is a ubiquitous
circuit motif in neocortex (Douglas and Martin, 2004; Lansner,
2009) and is often utilized in neuromorphic engineering (Mead
and Ismail, 1989; Indiveri, 2000). Recently, WTA networks
attracted increasing attention in theoretical studies on statistical
learning (Habenschuss et al., 2012; Keck et al., 2012; Habenschuss
et al., 2013; Nessler et al., 2013; Kappel et al., 2014) because their
comparatively simple network dynamics facilitate a comprehen-
sive mathematical treatment. In this section, we introduce the
WTA architecture that we will use to study the learning capa-
bilities of spiking neural networks with compound memristive
synapses subject to STDP.

The WTA network architecture is sketched in Figure 2A. The
network consists of N spiking input neurons y1, . . . , yN and K
spiking network neurons z1, . . . , zK with all-to-all connectivity
in the forward synapses. Lateral inhibition introduces competi-
tion among the network neurons. Network neurons are stochastic
spike response neurons (Gerstner and Kistler, 2002) with the
membrane potential uk of network neuron zk being given by

uk(t) = bk +
N∑

i = 1

Wki · yi(t) . (4)

The membrane potential uk(t) integrates the inputs yi(t), i.e.,
the rectangular voltage pulses following each input spike, linearly
through the synaptic weights Wki. The parameter bk denotes the
intrinsic excitability of the neuron and controls its general dispo-
sition to fire. In Methods we outline how the linear membrane
potential (4) can be realized with leaky integrators, a common
neuron model in neuromorphic designs. For the spike response

of the network neurons zk, a stochastic firing mechanism is
employed. In the WTA network, neurons zk spike in a Poissonian
manner with instantaneous firing rate ρk(t) that depends on the
membrane potential uk(t) and on lateral inhibition uinh(t):

ρk(t) = rnet · euk(t) − uinh(t) , (5)

with a constant rnet > 0 that scales the overall firing rate of
the network. In other words, the neuron spikes with probability
ρk(t) · δt in a small time window δt → 0. The inhibitory con-
tribution uinh(t) := log

∑K
j = 1 exp (uj(t)) summarizes the effect

of lateral inhibition in the network and introduces WTA-
competition between the network neurons to fire in response
to a given stimulus y1(t), . . . , yN (t). Notably, the exponential
relationship (5) between an idealized membrane potential and
neuronal firing is consistent with biological findings about the
response properties of neocortical pyramidal neurons (Jolivet
et al., 2006).

The feed-forward synapses from inputs yi to network neu-
rons zk are implemented as compound memristive synapses and
their synaptic weights Wki are adapted through stochastic STDP
as described above. The intrinsic excitabilities bk are adapted
according to a homeostatic plasticity rule (Habenschuss et al.,
2012) that ensures that all network neurons take part in the
network response and thus facilitates the emergence of a rich
neural representation that covers the entire input space. Besides
its observed stabilizing effect (Querlioz et al., 2011), homeostatic
intrinsic plasticity plays a distinct computational role when com-
bined with synaptic learning: Network neurons that maintain
many strong synapses Wki gain an “unrightful advantage” during
WTA competition over neurons that are specialized on low-
activity input patterns (and therefore maintain weaker weights).
A detailed analysis of the learning dynamics in the network
shows that, in order to compensate for this advantage, the for-
mer must be burdened with a lower excitability bk than the
latter. A formal definition of the homeostatic plasticity mecha-
nism and a discussion of its computational role from a theory

FIGURE 2 | Spiking network for probabilistic inference and online

learning. (A) Winner-take-all network architecture with lateral inhibition
and synaptic weights Wki . (B) Network neurons zk implicitly maintain a
Gaussian likelihood function for each input yi in their afferent synaptic
weights Wki . The mean μki of the distribution is encoded by the fraction
Wki/Wmax = mki/M of active switches in the compound memristive

synapse, i.e., stronger synaptic weights Wki correspond to higher mean
values μki . Inset: Local implicit graphical model. (C) Illustration of
Bayesian inference for two competing network neurons zk , zj and one
active input yi (t) = 1. Different means μki , μji encoded in the weights
give rise to different values in the likelihood function and shape the
posterior distribution according to Bayes rule.
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perspective are provided in Methods, see also Habenschuss et al.
(2012).

2.3. MEMRISTIVE SYNAPSES SUPPORT INFERENCE AND ONLINE
LEARNING

In this section, we thoroughly analyze the learning effects of
STDP in compound memristive synapses in the stochastic WTA
network model. For the mathematical analysis, we describe the
inputs yi(t) and the stochastic neuron responses sk(t) with the
help of probability theory. To this end, we perceive the spiking
activity of the input neurons yi and network neurons zk as sam-
ples of random variables (RVs) Yi and Zk respectively. Consistent
with the assumption that spikes from input neurons produce
voltage pulses of duration τ in the circuit implementation (see
Figure 1A), we set Yi = yi(t), i.e., Yi = 1 if input neuron yi spiked
within [t − τ, t] and Yi = 0 otherwise. The assignment of out-
put spikes sk(t) to RVs Zk is different: The random variable Zk

labels the winner of the WTA network at spike times of network
neurons. Hence, the value of Zk is only defined at the moments
when one of the K network neurons spikes, i.e., when the spike
train sj(t) �= 0 for some neuron zj. In this case, Zk encodes which
neuron spiked, and we set Zk = 1 if k = j and Zk = 0 if k �= j.

Using this interpretation of neural activity as realiza-
tions of RVs, the network’s stochastic response sk(t) to an
input configuration y(t) = (y1(t), . . . , yN (t)) gives rise to a
conditional probability distribution pnet(Z | Y) over the net-
work RVs Z := (Z1, . . . , ZK ) conditioned on the input RVs
Y := (Y1, . . . , YN ). In line with the definition of the RVs Zk,
the distribution pnet(Z | Y) describes the network response only
when one of the network neurons zk fires. The response distribu-
tion pnet(Z | Y = y(t)) for any fixed input configuration y(t) can
directly be calculated from Equations (4) and (5) (note that the
probability pnet(Zk = 1 | Y = y(t)) for an individual RV Zk to be
active is proportional to the firing rate ρk(t) of neuron zk):

pnet(Zk = 1 | Y = y(t)) = ρk(t)/rnet = euk(t) − uinh(t)

= ebk + ∑N
i = 1 Wki · yi(t)

∑K
j = 1 ebj +

∑N
i = 1 Wji · yi(t)

. (6)

Equation (6) fully characterizes the network response distribu-
tion pnet(Z | Y) for any given input Y = y(t). We next turn to
the question how the response distribution pnet(Z | Y) can be
understood as the result of a meaningful probabilistic compu-
tation. Specifically, we will show that the spike response of the
WTA network approximates the Bayesian posterior distribution
during inference in a well-defined probabilistic model. This prob-
abilistic model is implicitly encoded in the synaptic weights Wki,
and synaptic plasticity can thus be perceived as an ongoing refine-
ment of the involved probability distributions. Indeed, the STDP
rule (3) of the compound memristive synapses turns out to be
optimal in the sense that it instantiates generalized Expectation-
Maximization in the WTA network, a powerful algorithm for
unsupervised learning from machine learning theory. Our find-
ings build upon theoretical work on synaptic learning in spiking
neural networks from Nessler et al. (2009, 2013) and Habenschuss
et al. (2012, 2013).

The key idea for identifying the response distribu-
tion pnet(Z | Y) as the result of a Bayesian computation, is
to hypothetically reverse the network computation and view
the spike response of a network neuron zk as the hidden
cause behind the observed input y(t). In this view, the net-
work is treated as a generative model that implicitly defines
a prior distribution p(Z) over hidden causes Zk and a set of
likelihood distributions p(Y |Zk = 1), one for each hidden
cause Zk. The shape of the distributions is defined by the
parameters of the network, e.g., the synaptic weights Wki. An
important property of these implicitly encoded distributions–
that also motivates the term “generative model”–is that they
give rise to a (hypothetical) distribution over the inputs,
p(Y = y(t)) = ∑K

k = 1 p(Y = y(t)|Zk = 1) · p(Zk = 1). This
equation also explains why a RV Zk is called a hidden cause:
If we observe an input vector y(t), that has high probability
only in one of the likelihood distributions p(Y = y(t)|Zk = 1),
then we can consider the RV Zk as a likely (but unobservable)
cause for the observation according to the generative model.
A common objective in machine learning theory, known as
Maximum-Likelihood learning, is to find parameters that bring
the implicit distribution p(Y) of the generative model as close
as possible to the distribution of the actually observed input.
Then the hidden causes of the generative model are expected
to represent important features of the observed input (e.g.,
some typical input clusters). Leaving the hypothetical generative
perspective again, in the network’s real operation an input y(t)
is presented to the network and the hidden causes Zk need to
be inferred (e.g., the cluster the input y(t) belongs to). The
mathematically correct result of this inference is given by Bayes
rule

p(Zk = 1 | Y = y(t)) ∝ p(Zk = 1) · p(Y = y(t) | Zk = 1) (7)

which combines the likelihood p(Y = y(t) | Zk = 1) with the
prior p(Zk = 1).

Nessler et al. (2013) showed that in a WTA network archi-
tecture, that evolves according to Equations (4) and (5), the
synaptic weights Wki can be understood as an implicit neural
encoding of likelihood distributions p(Y | Zk = 1), and that the
network response pnet(Z | Y) approximates the posterior distri-
bution according to Equation (7). Hence, WTA networks can be
regarded as implicit generative models. Furthermore–and even
more importantly from a theoretical perspective–Nessler et al.
(2013) showed that the implicit likelihood model, that is encoded
in the weights Wki, can be optimized in an unsupervised man-
ner by a weight-dependent STDP rule. Indeed, there exists a tight
link between the type of weight dependence in the STDP rule
and the type of implicit likelihood model it optimizes. The expo-
nential weight dependence in Nessler’s rule, however, differs from
the linear weight dependence we identified for the plasticity rule
in Equation (3). This raises the question what type of implicit
likelihood model is encoded and optimized by the compound
memristive synapses.

An intuition about an appropriate probabilistic interpretation
of compound-synapse STDP can be obtained from the equi-
librium points of the plasticity rule (3). We first observe, that
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plasticity is always triggered by a postsynaptic spike, i.e., Zk = 1
for some neuron zk. In the spirit of spike-triggered averaging
(Simoncelli et al., 2004), we can then study the conditional distri-
bution p(Yi = yi(t) | Zk = 1) of an input yi at the moment of the
network response since the coincidence of pre- and postsynap-
tic spiking activity is the driving force behind any weight change
in the STDP rule. By assuming that plasticity has converged to
a dynamic equilibrium, the average contributions of LTP and
LTD cancel each other, i.e., 〈 d

dt Wki 〉p(Yi | Zk = 1) = 0. From this
condition, we obtain the following relation between the synaptic
weight Wki and the conditional input distribution p(Yi | Zk = 1):

0
!= 〈 d

dt
Wki 〉p(Yi | Zk = 1)

= 〈 πup Wmax · [Yi − Wki/Wmax] 〉p(Yi | Zk = 1)

⇒ Wki = Wmax · 〈 Yi 〉p(Yi | Zk = 1) . (8)

According to this analysis, the synaptic weight Wki represents the
expected value of input neuron yi at the moment of a postsy-
naptic spike in network neuron zk in a linear manner. In the
compound memristive synapse, this expectation is encoded in
the M + 1 possible weight states Wki = 0, ω, . . . , Wmax of the
synapse. The linear encoding (8) is compatible with the conver-
gence points which we observed previously in the small STDP
pairing experiment in Figure 1F.

The above analysis only serves as an intuition and is no sub-
stitute for a thorough mathematical treatment of the learning
process. A rigorous formal derivation that, for instance, also takes
into account the dynamically changing response properties of
the network neurons due to recurrent interactions and plastic
changes in the weights, is provided in Methods. It reveals that
the above intuition holds. More precisely, the likelihood dis-
tributions p(Y | Zk = 1) that are optimized in a WTA circuit
with compound-synapse STDP are given by the product of the
likelihoods of individual inputs

p(Y = y(t) | Zk = 1) =
N∏

i = 1

p(Yi = yi(t) | Zk = 1) , (9)

and the likelihood for each individual input channel yi is given by
a Gaussian distribution

p(Yi = yi(t) | Zk = 1) = 1√
2πσ 2

· e
− (yi(t) −μki)2

2σ2 . (10)

The mean values μki and the standard deviation σ of the likeli-
hood distributions (10) are identified as

μki = Wki/Wmax = mki/M and σ = 1/
√

(Wmax) .(11)

Hence, the mean μki of the distribution for input channel yi

is given by the fraction of active constituents in the compound
memristive synapse. The width σ = 1/

√
(Wmax) of the distribu-

tion is determined by the maximum weight Wmax = M · ω and
could, for instance, be controlled by the weight contribution ω of
an individual stochastic switch. The resulting probabilistic model

of the WTA network is a Mixture-of-Gaussians generative model
(see Methods for a formal definition).

In order to illustrate the computational properties of this gen-
erative model, the likelihood distribution p(Yi | Zk = 1) for a
single input yi and a single active hidden cause Zk = 1 is sketched
in Figure 2B. An active hidden cause Zk = 1 assigns probabil-
ities to all possible instantiations yi(t) of Yi. In principle, the
Gaussian likelihood distribution supports arbitrary real-valued
input instantiations yi(t) ∈ R. We will come back to this obser-
vation in the Discussion section where we address possible exten-
tions of the WTA network to support more complex input types.
In this article, we consider only binary inputs that take on the
value 0 (input pulse absent) or 1 (input pulse present), see the
presynaptic pulses in Figure 1A. The corresponding likelihood
values p(Yi = 0 | Zk = 1) and p(Yi = 1 | Zk = 1) are determined
by the mean μki and the variance σ of the likelihood distribu-
tion, see Equations (10) and (11). The task of the network when
presented with an input y(t) is to infer the posterior distribu-
tion over hidden causes p(Zk = 1 | Y = y(t)) and produce spikes
according to this distribution. The optimal solution is given by
Bayes rule (7) with the likelihood p(Y = y(t) | Zk = 1) given by
Equations (9) and (10), and an (input independent) a priori prob-
ability p(Zk = 1). As we prove in Methods, the response distribu-
tion pnet(Z | Y = y(t)) of the spiking WTA network implements
a close and well-defined variational approximation of this poste-
rior distribution. A minimal example of such Bayesian inference
is sketched in Figure 2C, where we consider a small WTA network
with only one input yi and two network neurons zk and zj. For a
given input instantiation yi(t) the values p(Yi = yi(t) | Zk = 1)
and p(Yi = yi(t) | Zj = 1) measure the likelihoods of the two
competing hypotheses that neuron zk or neuron zj is the hidden
cause of the observed input yi(t). These likelihood values shape
the Bayesian posterior distribution (7) by contributing one factor
to the product in Equation (9).

As a consequence, a network neuron zk is particularly respon-
sive to those input configurations y(t) that are associated with
high likelihood values p(Y = y(t) | Zk = 1). The likelihood dis-
tributions are determined by the means μki, i.e., by the number
mki of active switches in the synapses that change according to the
compound-synapse STDP rule. Through this mechanism, synap-
tic plasticity governs the emergence of prototypic patterns that
the network neurons are most responsive to, and thereby turns
each neuron zk into a probabilistic expert for certain input con-
figurations y(t). The aim of learning in the WTA network is to
distribute the probabilistic experts zk such that the likelihood
of the presented input is (on average) as high as possible. This
objective is an equivalent formulation of Maximum-Likelihood
learning, and the log-likelihood function, which measures the aver-
age (logarithm of the) input likelihood, is a widely-used measure
to determine how well a learning system is adapted to the pre-
sented input. Formally, the learning process can be described
within the framework of generalized Expectation-Maximization
(Dempster et al., 1977; Habenschuss et al., 2012; Nessler et al.,
2013). In Methods we show that the generalized Expectation-
Maximization algorithm is implemented in the WTA network via
the interplay of the compound-synapse STDP rule (3), that adapts
the synaptic weights Wki, and the homeostatic intrinsic plasticity
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rule, that regulates the intrinsic excitability bk of the neurons
such that each neuron maintains a long-term average firing rate.
The interplay of synaptic and intrinsic plasticity achieves the aim
of Maximum-Likelihood learning in the WTA network in the
following sense:

The expected synaptic weight changes 〈 d
dt Wki 〉 of the compound

memristive synapses on average increase a lower bound of the log-
likelihood function in a Mixture-of-Gaussians generative model
during online learning until a (local) optimum is reached.

2.4. DEMONSTRATION OF UNSUPERVISED LEARNING
We tested the learning capabilities of the compound memristive
synapse model in a standard machine learning task for hand-
written digit recognition. In a computer simulation, we set up
a WTA network with N = 24 × 24 input neurons and K = 10
network neurons. Each synaptic weight Wki was composed of
M = 10 stochastic bistable switches, each contributing ω = 0.1 in
its active state. The switching probabilities πup = πdown = 0.001
were set to a quite low value. This corresponds to a long inte-
gration time for gradual memory formation in order to assess
the general ability of the synapse model in online learning tasks.
Before training, the stochastic switches were initialized randomly
as shown in Figure 3A. The network was then exposed to hand-
written digits 0–4 from the MNIST training data set (LeCun
et al., 1998). Examples from the data set are shown in Figure 3B.
Each pixel was encoded by one input neuron yi. Digits were pre-
sented as Poisson spike trains with firing rates depending on
pixel intensities. Overall, the network was trained in an unsu-
pervised setup for 5000 s with a new digit being presented every
100 ms. Figure 3C shows the weight matrix in an early stage of
learning at t = 200 s. At this stage, the synapses begin to integrate

salient statistical features of the input, such as the generally low
activity along the frame. Furthermore, a specialization to cer-
tain digit classes becomes apparent for some of the network
neurons.

Over the course of learning, the synapses continuously
improve the network’s implicit generative model of the pre-
sented input. This refinement is reflected in the log-likelihood
function shown in Figure 3D that measures how well the prob-
abilistic model is adapted to the input distribution. The ongo-
ing refinement also becomes apparent by a more intuitive–and
practically more relevant–measure, namely the classification per-
formance of the network on an independent test set of hand-
written digits. The classification error (blue in Figure 3D; see
Methods for details) continuously decreases as training pro-
gresses. The improved performance on an independent test set
furthermore indicates that the network develops a generally
well-suited representation of the input and evades the risk of
over-fitting.

At the end of training, after t = 5000 s, a set of prototypic
digits has emerged in the compound memristive synapses as
shown in Figure 3E. The well-adapted synapse array turns each
network neuron into a probabilistic expert for a certain digit
class. As a consequence, the network has learned to transform
the N-dimensional, noisy spike input into a sparse and reliable
spike code, as shown in Figure 3F. Typically, exactly one network
neuron zk fires in response to the input. But also the seem-
ingly unclear cases, when two neurons respond simultaneously,
carry meaningful information in a Bayesian interpretation:
Since network spikes approximate the posterior distribu-
tion p(Z | Y = y(t)) through sampling, an ambiguous spike
response encodes the level of uncertainty during probabilistic
inference.

FIGURE 3 | Learning of hand-written digits. (A) Synaptic weights at
time t = 0 s after random initialization. Color intensities show the number
mki ∈ [0, 10] of active switches for each connection. The indices k of the
postsynaptic neurons are indicated in the top-left corners. (B) Examples
from the MNIST data set. Pixel intensities of the digits were encoded as
Poisson spike trains and presented to the network. Digits 0–4 were
presented with a new digit being shown every 100 ms. (C) Weight
matrix at time t = 200 s. Memristive synapses start to integrate salient
features of the input stream. (D) Over the course of learning the
log-likelihood function (red) increases, indicating that the network

continuously refines its implicit statistical model of the presented data.
This refinement leads to an improved classification performance (blue) on
an independent test set. (E) At the end of the learning experiment at
t = 5000 s, the synapses have specialized on different prototypes of the
presented digits, rendering each network neuron a probabilistic expert for
a certain digit. (F) Network response for 1 s at the end of learning. The
presented digit is shown at the top. The input is transformed into a
sparse and reliable spike code. Some digits invoke a spike response of
more than one neuron. This ambiguous response encodes uncertainty in
the variational posterior distribution.
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2.5. INFLUENCE OF SYNAPTIC RESOLUTION
In the previous section, we have demonstated that the compound
memristor synapse model is able to learn statistical regulari-
ties in the input stream and enables the spiking WTA network
to perform probabilistic inference in a well-defined generative
model. The demonstration employed compound synapses with
M = 10 stochastic switches per synapse. Notably, the number
of constituents M is a free parameter of the model and deter-
mines the weight resolution of the compound synapse. Increasing
the synaptic resolution by recruiting more bistable switches per
synapse is generally expected to improve the accuracy of the input
representation, but comes at the cost of reduced integration den-
sity in a neuromorphic design. In the following, we therefore
explore the opposite direction, i.e., unsupervised learning with a
low weight resolution.

For estimating the influence of the weight resolution on
the learning capabilities of the WTA network, we repeated the
above computer simulation for different values of M, while
holding the maximum weight Wmax = ω · M, and thus the vari-
ance σ = 1/

√
(Wmax) of the implicit generative model, fixed.

Figure 4A shows examples of the digits stored in the synapse
array after 5000 s of learning for M = 1, 2, 4, and 100 stochastic

FIGURE 4 | Influence of the synaptic resolution. (A) Examples of learned
weight matrices with different numbers of constituents M per synapse.
Even binary weights with only one stochastic switch learn to maintain a
coarse image of prototypic digits. In the limit of large M, compound
synapses support a quasi-continuous weight spectrum. (B) Classification
error for different weight resolutions after 5000 s of learning, based on 20
independently trained networks for each value of M. Errorbars: SD among
networks.

switches per synapse. Even binary synapses with M = 1 success-
fully identify noisy archetypes of the input digits. This obser-
vation is in line with previous studies on learning with binary
weights (Fusi, 2002). The accuracy of the representation quickly
increases with higher M-values. As an (academic) reference, we
also included a simulation with M = 100 switches per synapse
which support a quasi-continuous state spectrum.

The resulting ability of the WTA network to recognize hand-
written digits is shown in Figure 4B in terms of the classification
error on a test set. Each bar depicts the mean performance of 20
independently trained networks per M-value, errorbars show the
standard deviation among networks. Taking the academic exam-
ple with M = 100 as a reference for the performance achievable
by the small WTA network, the computer simulations suggest that
as few as M = 4 constituents per synapse may be sufficient for
practical applications. While individual weights Wki only store lit-
tle information (ca. 2.3 bits in case of M = 4) about the expected
input in channel yi, the partial evidence received from each of the
N = 576 input channels is integrated by the network in a statisti-
cally correct manner to form a sharply peaked posterior, most of
the time.

2.6. ROBUSTNESS TO DEVICE VARIATIONS
We have demonstrated so far that spiking networks with com-
pound memristive synapses can learn a faithful representation
of their input when synapses consist of idealized bistable con-
stituents. Large-scale physical implementations, however, are
likely to exhibit substantial device variabilities and imperfections.
Plasticity in the compound synapse model depends on two device
properties that are likely to be distorted in physical implementa-
tions: the conductance of each individual constituent ω and the
switching probabilities πup/πdown. In the following, we address
the impact of distortions in these two properties on the WTA
network learning capabilities, separately.

We first turned to the conductance value ω of individual
switches and investigated the robustness of learning to two fun-
damentally different types of noise in ω, namely spatial noise and
temporal noise:

• Spatial noise describes device-to-device variations and
addresses peculiarities of individual memristors that remain
stable over time.

• Temporal noise refers to trial-to-trial variations and covers
device instabilities over the course of learning.

Both types of noise can be suspected to induce serious dis-
turbances during learning: In case of spatial noise, although
device-to-device variations could average out if many memristors
are employed, any remaining deviations give rise to sustained sys-
tematic errors that may build up over the course of learning. In
case of temporal noise, while trial-to-trial variations could aver-
age out over time, any synaptic update rests upon a disturbed
instantiation of the weight matrix, i.e., on a noisy (and false)
assumption. In computer simulations, we accounted for these
types of noise separately by disturbing the active-state weight
value ω of the switches as sketched in Figure 5A. To model spa-
tial noise, the weight ω was randomly drawn prior to training for
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FIGURE 5 | Robustness to spatial and temporal noise. (A) Noise was
added by drawing the weight ω of the active state from a normal
distribution. Three types of noise were tested: For spatial noise, a
value ω ∼ N (ω; ω̄, σ 2

ω ) was assigned to each switch and maintained
throughout the experiment. For temporal noise, the value ω was
redrawn after every LTP transition. For spatial + temporal noise, the

device specific spatial weight value determined the mean for
redrawing ω after LTP transitions. (B–D) Number mki of active switches
after learning at t = 5000 s. Shown are example networks for all three
noise types. (E) Classification error after learning, based on 20
independently trained networks per noise type. Errorbars denote
standard deviation among networks.

each stochastic switch from a normal distribution N (ω ; ω̄, σ 2
ω)

with mean ω̄ and standard deviation σω. To capture the effect
of temporal noise, in contrast, the weight ω was redrawn from
N (ω ; ω̄, σ 2

ω) whenever the constituent switched to its active state
in an LTP transition. Furthermore, we examined the combined
effect of both noise types being present simultaneously. In this
combined case, the mean value for temporal noise was deter-
mined by the device-specific spatially perturbed weight value of
each constituent. In any case, the range of perturbed weights was
truncated to ω ≥ 0 to rule out negative conductances.

We repeated the experiment of Figure 3 under each of these
noise conditions. The mean ω̄ = 0.1 was set to the undisturbed
weight value of the previous, idealized experiment. The noise level
was set to σω = 0.05, i.e., to 50% of the mean. Example cases of
weight matrices after learning (shown are the mki’s from individ-
ual simulation runs) are presented in Figures 5B–D for the three
noise conditions “spatial,” “temporal” and “spatial+temporal,”
respectively. Surprisingly, hardly any difference to the idealized
setup is observable. Nevertheless, under 20 repetitions of the
learning simulation the detrimental influence of noise becomes
visible in the classification performance (see Figure 5E) as noise
appears to slightly increase the mean of the classification error. In
summary, these results reveal a remarkable robustness of learn-
ing with compound memristive synapses to substantial device
variability and severe temporal instability.

We next turned to the question how distorted switching
probabilities πup and πdown influence the learning dynamics
in the WTA network. In the theory section, we had assumed
that πup = πdown, i.e., that the switching probabilities underly-
ing LTP and LTD are balanced. This assumption, which could
to some extent be achieved in a calibration step, yielded the
elegant learning rule (3) and thereby facilitated the theoretical
analysis. A physical implementation, however, will likely exhibit

unbalanced switching probabilities in the majority of memris-
tors. We examined the influence of unbalanced switching, in two
ways. First, we applied spatial noise to the switching probabilities
of individual constituents by drawing πup and πdown (separately)
from normal distributions with 50% noise level (truncated to
0 ≤ πup, πdown ≤ 1). Thus, about half of the stochastic switches
were more responsive to LTP pulses, the other half more to
LTD pulses; even more, some of the constituents only showed
switching in one direction, or were completely unresponsive.
Nevertheless, synapses developed a faithful representation of pro-
totypic digits in a repetition of the experiment in Figure 3 (data
not shown). Also the classification performance was only mildly
impaired (classification error: 8.7 ± 2.7% based on 20 networks)
compared to ideal, noisefree synapses (classification error: 7.5 ±
1.9%).

In a second step, we pursued a slightly different–more
principled–approach that permits a theoretical interpretation of
how the altered synapse dynamics give rise to a different encoding
of the expected input by the synaptic weights. Instead of draw-
ing random parameters for each constituent, we systematically
chose the LTD switching probability πdown larger (or smaller)
than the LTP probability πup throughout the synapse array. This
systematic imbalance displays a worst-case scenario during learn-
ing since all synapses either favor (or suppress) LTD over LTP.
We denote the relative imbalance between πup and πdown by
� := (πup − πdown)/πup. For instance, � = −0.5 means that
the probability for LTD transitions is 50% higher than for LTP
transitions. Figure 6A shows examples of weight matrices after
5000 s of learning in a repetition of the experiment in Figure 3.
In the top row, � = +0.5, LTP transitions are favored over LTD
transitions, resulting in generally stronger weights in compari-
son with balanced STDP (� = 0.0, middle row). Conversely, in
the bottom row, � = −0.5, the systematic strengthening of LTD
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FIGURE 6 | Robustness to unbalanced switching probabilities. (A)

Examples of learned weight matrices when the switching probabilities πup

and πdown are systematically unbalanced. The parameter
� := (πup − πdown)/πup measures the relative imbalance between LTP and
LTD transitions. The top (bottom) row shows weight matrices resulting
from a 50% decrease (increase) of the LTD switching probability. The
balanced case is shown in the middle row for comparison. (B) Systematic
imbalance (� �= 0) leads to changed equilibrium points in the STDP rule and
can be theoretically understood as a non-linear encoding of the expected
input by the synaptic weights.

leads to weaker weight patterns. Nevertheless, synaptic weight
values converged to a dynamic equilibrium in either case since
the STDP rule preserves its general stabilizing weight depen-
dence. As can be expected from the prototypic digits that emerged
in the weight matrices, the classification performance of the
WTA networks was not considerably impaired by the unbalanced
switching (classification errors estimated from 20 networks:
6.7 ± 0.8% for � = +0.5; 7.5 ± 1.9% for � = 0; 11.8 ± 4.0%
for � = −0.5). Indeed, positive �-values even performed slightly
(but not significantly) better than balanced switching. A con-
ceptual understanding of the altered learning dynamics can be
obtained from the equilibrium points of the unbalanced STDP
rule. The short calculation, that had led to Equation (8) for the
balanced case, can be repeated for unbalanced switching proba-
bilities. Figure 6B shows the resulting encoding of the expected
input value 〈 Yi 〉p(Yi | Zk=1) by the synaptic weight Wki for differ-
ent �-values. The example digits shown in panel A correspond
to the red, green and blue graph in panel B, respectively. This
analysis illustrates how unbalanced switching probabilities give
rise to a non-linear encoding of the input in the WTA network.

In particular, it can be seen how the same expected input value
〈 Yi 〉p(Yi | Zk = 1) leads to stronger weights for � > 0, and weaker
weights for � < 0.

3. DISCUSSION
We have proposed the compound memristive synapse model for
neuromorphic architectures that employs multiple memristors in
parallel to form a plastic synapse. A fundamental property of the
synapse model is that individual memristors exhibit stochastic
switching between two stable memristive states rather than obey-
ing a deterministic update rule. Yet, the expected weight change of
the compound memristive synapse, as it arises from the stochas-
tic switching of its constituents, yielded an STDP-type plasticity
rule with a stabilizing, linear weight dependence. We exam-
ined the computational capabilities of the compound-synapse
STDP rule in WTA networks, a common circuit motif in cortical
and neuromorphic architectures, by analyzing the network and
synapse dynamics from the perspective of probability theory and
machine learning. The comprehensive mathematical treatment
revealed that compound memristive synapses enable a spiking
network to perform Bayesian inference in and autonomous sta-
tistical optimization of a Mixture-of-Gaussians generative model
via generalized Expectation-Maximization. Accompanying com-
puter simulations demonstrated the practical capability of the
synapse model to perform unsupervised classification tasks and,
furthermore, revealed a remarkable robustness of the compound
synapses to substantial device variations and imperfections.

3.1. COMPREHENSIVE LEARNING THEORY OF MEMRISTIVE
PLASTICITY

Our work contributes a theoretical foundation for memristive
learning in neural networks to the endeavor to employ memris-
tors as plastic synapses in self-calibrating systems. Snider (2008);
Querlioz et al. (2011), and Serrano-Gotarredona et al. (2013) have
investigated how different pre- and postsynaptic waveforms can
shape a memristive STDP learning window. Jo et al. (2010) and
Mayr et al. (2012) have demonstrated STDP-type plasticity in
Ag/Si and BiFeO3 memristors. Yu et al. (2013) reported stochas-
tic switching between stable states in oxide-based memristive
synapses. Gaba et al. (2013) studied the parameter dependence
of switching probabilities in metal filament based memristors,
indicating a renewal process that is independent of the overall net-
work firing rate. A strategy for integrating nanoscale memristive
synapses into a hybrid memristor-CMOS network architecture
was proposed by Indiveri et al. (2013). The beneficial contri-
bution of stochasticity to learning with CMOS synapse circuits
was explored by Chicca et al. (2014). Here we have established a
firm link between the emergent synapse configurations observed
in such architectures (see e.g., Querlioz et al., 2011) and a rig-
orous mathematical description of memristive learning on the
system level using machine learning theory. Our findings on
memristive learning from a Bayesian perspective build upon a
series of theoretical contributions on synaptic learning in spiking
neural networks: Nessler et al. (2009, 2013) identified a gen-
eral link between STDP-type synaptic plasticity and statistical
model optimization for probabilistic inference in WTA networks.
Habenschuss et al. (2012) extended this work to incorporate also
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homeostatic intrinsic plasticity, thereby overcoming several limit-
ing assumptions on the input presentation. Finally, Habenschuss
et al. (2013) investigated how the learning framework can be
generalized to support a broad class of probability distributions.
We expect that utilizing machine learning theory for describing
the effects of specific memristor synapse models can signifi-
cantly promote our understanding of memristive learning and its
computational prospects.

3.2. HEADING FOR A FULL HARDWARE INTEGRATION
Plasticity in the compound memristor synapse model relies on
stochastic transitions between two stable states. Such bistable
devices–or more generally, devices with a clearly discrete state
spectrum–were reported to exhibit a high degree of uniformity
(Lee et al., 2006a; Fang et al., 2011) and temporal stability
(Indiveri et al., 2013). Notably, the theoretical approach we have
persued in this work could likely be extended to cover memristors
with more than two stable states and to support more complex
input and plasticity mechanisms. For instance, the Gaussian like-
lihood distributions p(Y | Z) identified in the present study, in
principle support inference over arbitrary real-valued input states
y(t). Such states could arise if the input is presented in the form of
exponentially decaying or additive postsynaptic potentials. Such
more complex input types could afford more versatile STDP puls-
ing schemes, and the resulting memristor plasticity rules could
likely be incorporated in an adapted model of statistical learn-
ing. The reason we restricted the input to binary values yi(t) is
found in the STDP pulsing scheme that employs binary presy-
naptic waveforms. In this case, the theoretically derived generative
model reveals how active and inactive inputs contribute to the
network’s spike response by means of a Gaussian likelihood dis-
tribution p(Yi = yi(t) | Zk = 1) that is sampled only at yi(t) = 0
and yi(t) = 1.

In this article, we have employed a simple model for stochas-
tic switching in memristive devices where switching occurs with
probabilities πup, πdown which depend on the applied voltage dif-
ference across the memristor terminals. This phenomenological
model captures the most salient aspects of switching in real mem-
ristive materials (Jo et al., 2009b; Gaba et al., 2013) and was used
as an abstraction of memristive switching in a recent experimental
study (Suri et al., 2013). In future research, it will be important to
evaluate the effectiveness of this model either with physical mem-
ristors or in simulations based on detailed memristor models.
The authors of Suri et al. (2013) raised the concern that the pre-
cise switching probabilities of individual devices are potentially
hard to control in large-scale systems. In this regard, our simu-
lation results indicate that learning with compound memristive
synapses tolerates significant noise levels in the switching prob-
abilities. We expect the origin for the observed robustness to be
twofold: Firstly, imbalances in πup, πdown between different con-
stituents are expected to partly average out in compound synapses
according to the central limit theorem; secondly, the stabiliz-
ing weight dependence of compound-synapse STDP ensures that
even unbalanced switching leads to stable weight configurations,
albeit with slightly shifted convergence points.

Another potential issue for learning with compound memris-
tive synapses is the absolute value of the switching probability.

The product πup · Wmax can be linked to a learning rate in the
theory domain (see Table 1) which controls how many samples
from the input history are integrated into the implicit genera-
tive model during online learning. A slow and gradual memory
formation, which is desirable for developing a representation of
large and complex input data sets, relies on small learning rates,
i.e., on small switching probabilities. It has to be seen if memris-
tive materials that exhibit stochastic switching provide sufficiently
small switching probabilities. A possible remedy in a hardware
integration could be to multiplex the back-propagating signals
from network neurons such that only a random subset of the
memristors is notified of a network spike at a time (Fusi, 2002).

Regarding the physical model neurons of a hybrid memristor-
CMOS architecture, two types of currents occur in the WTA
network. The input integration via forward-synapses is spike
based and could be realized with standard leaky integrators (see
Methods). Lateral inhibition, in contrast, depends on the neu-
ronal membrane potentials, and the involved inhibitory circuits
should ideally transmit potentials instead of spikes. Alternatively,
the effect of lateral inhibition could be approximated in a spike-
based manner by populations of inhibitory neurons. Independent
of the specific implementation of lateral inhibition, the result-
ing potential uk − uinh controls the stochastic response of the
WTA neurons that could either be implemented genuinely with
a stochastic firing mechanism or be emulated with integrate-and-
fire neurons (Petrovici et al., 2013).

3.3. INHERENTLY STOCHASTIC NATURE OF COMPOUND-SYNAPSE
STDP

The spiking WTA network architecture with compound memris-
tive synapses exploits stochasticity in various ways, in that the
stochastic firing of network neurons in response to a transient
input trajectory triggers stochastic STDP updates in the synaptic
weights. From a learning perspective, the high degree of stochas-
ticity contributes to the network’s ongoing exploration for poten-
tial improvements in the parameter space. While the learning the-
ory only guarantees convergence to a local optimum of the weight
configuration, the stochastic nature of the ongoing exploration
enables the network to evade small local optima in the param-
eter landscape, and thereby improves the robustness of learning
(compared to traditional batch Expectation-Maximization).

For the derivation of the learning algorithm, we have focused
on the weight-dependent STDP rule (3) which describes the
expected temporal weight change 〈 d

dt Wki 〉 of the compound
synapse. The stochasticity of memristive switching, however,
gives rise to a probability distribution over the weights, as well.

Table 1 | Correspondence of synapse parameters between the

hardware and theory domain.

Parameter name Hardware Theory

Learning rate πup · Wmax ηW

Max. weight Wmax ω · M 1/σ 2

Likelihood mean μki mki/M σ 2 · Wki

Synaptic resolution ω 1/(M · σ 2)
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Indeed, in equilibrium we expect that the number of active con-
stituents mki follows a binomial-type weight distribution. This
points to a potential knob for adjusting the amount of stochas-
ticity used during online learning: when many memristors are
recruited per synapse, i.e., for large M, we expect a reduced
variance in the weight distribution.

Besides the level of stochasticity, the parameter M also con-
trols the weight resolution of the compound synapse. In Figure 4,
we have investigated the impact of the weight resolution on the
learning capabilities of the WTA network. Notably, we observed
that even with M = 4, i.e., with synapses that feature only 5
weight levels, the network performed reasonably well in the hand-
written digit recognition task. The observation that even a low
synaptic weight resolution can yield a satisfactory performance
has important practical implications for nanoscale circuit designs,
where integration density and power consumption impose crucial
constraints, since the area allocated by the synapse array grows
linearly in the synaptic size M. For instance, SRAM cells can be
fabricated with a cell size of 0.127 μm2 (Wu et al., 2009), cor-
responding to a memory density of � 1 Gb/cm2. Importantly,
this estimate does not include any additional plasticity circuits for
implementing STDP or similar plasticity mechanisms. Functional
Ag/Si memristive crossbars with 2 Gb/cm2 memory density were
demonstrated by Jo et al. (2009a), with densities up to 10 Gb/cm2

being envisioned (Jo et al., 2009a,b). In the long term, memris-
tive crossbars are expected to combine the advantages of SRAM
and Flash memory regarding energy efficiency, non-volatility and
integration density (Yang et al., 2013).

3.4. GENERALIZATION TO OTHER MATERIALS AND FUTURE RESEARCH
In recent years, a plethora of (in a broader sense) memris-
tive materials has been discovered, and the characterization and
refinement of their switching dynamics is evolving rapidly. At
least four types of stochastically switching memristive devices can
be distinguished: Switching in (1) anion-based (e.g., HfOx/TiOx

Yu et al., 2013) and (2) cation-based (e.g., Ag/GeS2 Suri et al.,
2013) devices mainly originates from conductive filament for-
mation (Yang et al., 2013). In contrast, (3) single-electron latch-
ing switches [e.g., CMOS/MOLecular (CMOL) CrossNets Lee
et al., 2006b] rely on electronic tunneling effects and, thus, their
stochastic switching dynamics arise directly from the underly-
ing physical process. Similarly, (4) magnetoresistive devices (e.g.,
spin-transfer torque magnetic memory (STT-MRAM) Vincent
et al., 2014) can inherit stochastic switching dynamics from
fundamental physical properties. Some manufacturing processes
related to these ideas (like conductive-bridging RAM and STT-
MRAM) reached already an early industrial stage, others are still
primarily subject of academic research. While the microscopic
origins of plasticity in these memristor types are fundamentally
different, they all share stochastic, persistent switching between
bistable memory states on a phenomenological level. We therefore
believe that the compound memristive synapse model displays a
promising concept for future work in diverse research fields.

Independent of the underlying switching mechanism, any
nanoscale synaptic crossbar will likely exhibit imperfections and
imbalances due to process variations. Here, we have investi-
gated spatial and temporal noise in the weight values as well as

deviations in the switching probabilities under unbiased, uni-
form conditions. However, physical implementations can be
expected to also suffer from more systematic imperfections, such
as structural imbalances (e.g., one corner of the array being more
reactive) or crosstalk between neighboring devices. While our
computer simulations indicate a remarkable general robustness
against device variations of various types, additional research
is required to estimate the influence of such systematic, and
potentially coupled, deviations.

3.5. CONCLUSIONS
In this article, we have introduced the compound memris-
tive synapse model together with the compound-synapse STDP
rule for weight adaptation. Compound-synapse STDP, a stabi-
lizing weight-dependent plasticity rule, naturally emerges under
a standard STDP pulsing scheme. In addition, by employing
memristors with bistable memristive states, compound memris-
tive synapses may circumvent practical challenges in the design
of reliable nanoscale memristive materials. Both, our theo-
retical analysis and our computer simulations confirmed that
compound-synapse STDP endows networks of spiking neurons
with powerful learning capabilities. Hence, the compound mem-
ristive synapse model may provide a synaptic design principle for
future neuromorphic hardware architectures.

4. METHODS
4.1. PROBABILISTIC MODEL DEFINITION
The probabilistic model that corresponds to the spiking network
is a mixture model with K mixture components and Gaussian
likelihood function. Formally, we define a joint distribution
p(Y = y(t), Z = z(t) | θ) over K hidden binary random variables
Z = (Z1, . . . , ZK )T with values zk(t) ∈ {0, 1}, and N real-valued
visible random variables Y = (Y1, . . . , YN )T with values yi(t) ∈
R. The parameter set θ = {b̂, W} consists of a real-valued bias

vector b̂ = (b̂1, . . . , b̂K )T and a real-valued K × N weight matrix
W . The hidden RVs Zk display an unrolled representation of
a multinomial RV Z̃ ∈ {1, . . . , K} that enumerates the mixture
components, and we identify Z̃ = k ⇔ Zk = 1, i.e., exactly one
binary RV Zk is active in the random vector Z. In the following,
we stick to the unrolled vector notation Z, and, for readability,
omit the time-dependent notation and further shorten the nota-
tion by identifying the RVs with their values, e.g., we write p(z | θ)
for p(Z = z(t) | θ).

The likelihood distribution fulfills the naïve Bayes property,
i.e., all statistical dependencies between visible RVs yi, yj are
explained by the hidden state z. More precisely, the generative
model has the following structure:

p(y, z | θ) = p(z | θ) ·
K∏

k = 1

N∏
i = 1

p
(
yi | zk = 1, θ

)zk , (12)

with the prior

p(z | θ) = ezTb̂

∑K
j = 1 eb̂j

(13)
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and the likelihood

p
(
yi | zk = 1, θ

) = 1√
2πσ 2

· e
− (yi − μki)2

2σ2 , (14)

with σ 2 denoting an arbitrary (but fixed) variance which displays
a constant in the model. Equation (14) defines a Gaussian likeli-
hood model for each input RV yi with mean μki which is selected
by the active hidden cause zk = 1 in Equation (12). For theoret-
ical considerations, it is convenient to reorganize Equation (14)
according to its dependency structure:

p
(
yi | zk = 1, θ

) = e−y2
i /(2σ 2)

√
2πσ 2

· e
μki
σ2 · yi · e−μ2

ki/(2σ 2) (15)

=: h(yi) · eWki · yi · e−Aki , (16)

where we set Wki = μki/σ
2 and Aki = μ2

ki/(2σ 2) = σ 2W2
ki/2.

The first factor does neither depend on the hidden causes zk

nor on the weight Wki and will play no role during inference
and learning. The second factor describes the coupling between
the visible RV yi and the active latent RV zk through the mean
Wki = μki/σ

2. Finally, the third factor solely depends on the
weight Wki (and not on yi) and ensures correct normalization of
the distribution.

4.2. INFERENCE
The posterior distribution given an observation y follows directly
from Bayes rule:

p
(
z | y, θ

) = p(z | θ) · p
(
y | z, θ

)
/ Norm. (17)

= e zTb̂
K∏

k = 1

N∏
i = 1

h(yi)
zk ·

e zk · Wki · yi · e−zk · Aki / Norm. (18)

= e
zT·

[
b̂ − A + W · y

]
·

N∏
i = 1

h(yi) / Norm. (19)

with A := (A1, . . . , Ak, . . . , AK )T and Ak := ∑N
i = 1 Aki. We eval-

uate the posterior for a specific hidden RV zk to be active and
provide the normalization constant explicitly:

p
(
zk = 1 | y, θ

) = eb̂k − Ak + ∑N
i = 1 Wki·yi · ∏N

i = 1 h(yi)∑K
j = 1 eb̂j − Aj +

∑N
i = 1 Wji · yi · ∏N

i = 1 h(yi)
(20)

= eûk

∑K
j = 1 eûj

(21)

where we defined ûk = b̂k − Ak + ∑N
i = 1 Wki · yi. The quanti-

ties ûk are reminiscent of neuronal membrane potentials which
consist of bias terms b̂k − Ak and synaptic input

∑N
i = 1 Wki yi.

However, implicitly the bias terms depend on all afferent synaptic

weights since b̂k − Ak = b̂k − σ 2

2

∑
i W2

ki and, thus, rely on infor-
mation not locally available to the neurons. This issue will be

resolved in the context of learning: We will identify update rules
for both biases and synapses which only use information avail-
able locally and thereby make a neural network implementation
feasible.

4.3. LEARNING VIA GENERALIZED EXPECTATION-MAXIMIZATION
We investigate unsupervised learning of the probabilistic model
based on generalized online Expectation-Maximization (EM)
(Dempster et al., 1977), an optimization algorithm from machine
learning theory. To this end, we impose additional constraints on
the posterior distribution (Graça et al., 2007) which will enable a
neural network implementation via homeostatic intrinsic plastic-
ity (Habenschuss et al., 2012) and STDP-type synaptic plasticity
(Habenschuss et al., 2013; Nessler et al., 2013). Since the deriva-
tion is almost identical to Habenschuss et al. (2012), we only
outline the key steps and main results in the following and refer
to Habenschuss et al. (2012) for a the details.

The algorithmic approach rests upon the generalized EM
decomposition:

F(W, q(z|y)) = L(θ) − 〈
DKL

(
q(z|y) || p(z|y, θ) 〉

p∗(y)

→ E-step (22)

= 〈 log p(y, z|θ) 〉p∗(y)q(z|y) + 〈 H(q(z|y)) 〉p∗(y)

→ M-step (23)

with the log-likelihood L(θ) = 〈 log p(y | θ) 〉p∗(y), the Kullback-
Leibler divergence DKL

(
q(z) || p(z)

) = ∑
z q(z) · log

(
q(z)/p(z)

)
and the entropy H(q(z)) = − ∑

z q(z) · log q(z). The distribu-
tion p∗(y) denotes the input distribution actually presented to
the system. The distribution p( · | θ) is the probabilistic model
defined above. The distribution q(z|y) is called variational poste-
rior and will ultimately be implemented by the spiking network.
The short hand notation 〈 · 〉p∗(y)q(z|y) denotes the concatenated
average 〈 〈 · 〉q(z|y) 〉p∗(y) with respect to the input distribution and
the resulting variational posterior. In principle, the above decom-
position holds for any choice of q, and since the Kullback-Leibler
divergence in Equation (22) is strictly non-negative, the objective
function F is a lower bound of the log-likelihood L. During opti-
mization the algorithm will persue two goals: to increase L, i.e.,
to better adapt the probabilistic model to the data, and to keep
〈 DKL

(
q || p

) 〉 small, i.e., to maintain a reliable approximation
q(z|y) of the exact posterior p

(
z | y, θ

)
.

We first impose a homeostatic constraint on the variational
posterior q(z|y), namely that the long term average activation
of any hidden RV zk matches a predefined target value ck (with∑

k ck = 1). Formally, we define a set of constrained distribu-
tions Q = {q : 〈 zk 〉p∗(y)q(z|y) = ck ∀ 1 ≤ k ≤ K} and demand
q(z|y) ∈ Q. The optimization algorithm then relies on the joint
application of an E(expectation)-step and an M(aximization)-
step: During the E-step, we aim to minimize the Kullback-Leibler
divergence with respect to q ∈ Q in Equation (22); during the M-
step, we perform gradient ascent on 〈 log p(y, z | θ) 〉 with respect
to the weights Wki in Equation (23). The E- and M-step will be
discussed separately.

The E-step is a constrained optimization problem, namely
the minimization of 〈 DKL

(
q || p

) 〉 such that q ∈ Q, that can be
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solved through Lagrange multipliers. Since we imposed K con-
straints (one per RV zk), we need K Lagrange multipliers βk. It
turns out that the solution to this optimization problem simply

adds the multipliers βk to the biases b̂k − Ak in Equation (20).
This convenient result gives rise to the definition of intrinsic

excitabilities bk := b̂k − Ak + βk which unify biases and multipli-
ers in a single quantity. Furthermore, it turns out that the optimal
values of the βk’s (and thus the bk’s) can be determined via itera-
tive update rules that solely rely on the hidden RVs zk under the
variational response q(z|y) and overwrite the non-local terms Ak.
In summary, we obtain the variational posterior distribution q
that solves the E-step:

q(z|y) = euk

∑K
j = 1 euj

with uk = bk +
N∑

i = 1

Wki · yi (24)

�bk ∝ 〈 ck − zk 〉p∗(y)q(z|y) . (25)

The variational posterior in Equation (24) is described in terms of
membrane potentials uk which consist of synaptic input

∑
i Wki yi

and intrinsic excitabilities bk. Equation (25) regulates the intrin-
sic excitabilities bk in a homeostatic fashion: When the average
response exceeds the target ck, the excitability is reduced, and vice
versa.

The M-step can be solved via gradient ascent on F with
respect to the weights Wki. The variational posterior q is a
constant during the M-step in EM, and thus the log-joint distri-
bution log p(y, z | θ) remains as the only Wki-dependent term in
Equation (23). By taking the derivative of the log-joint defined by
Equation (12), (13), and (16) with respect to Wki, we obtain:

dF
dWki

= 〈 ∂Wki log p(y, z | θ) 〉p∗(y)q(z|y) (26)

= 〈 ∂Wki zk · log p
(
yi | zk = 1, θ

) 〉p∗(y)q(z|y) (27)

= 〈 zk · (yi − σ 2 · Wki) 〉p∗(y)q(z|y) . (28)

The gradient with respect to the weights Wki yields Hebbian-type
update rules that use pre-(yi) and post-(zk) synaptic activity and
the current weight Wki given the input p∗(y) and the variational
response q(z|y). Importantly, only local information is required
during the E- and M-step.

4.4. SPIKING NETWORK IMPLEMENTATION
The spiking neural network model instantiates Equation (24),
(25), and (28), i.e., it represents the variational posterior q(z|y)
for probabilistic inference through its spike response and imple-
ments the derived update rules for generalized online EM learning
through intrinsic and synaptic plasticity.

Each of the RVs zk is represented by one of the K network
neurons, and each spike in the network is a sample from the vari-
ational posterior q(z|y) by identifying zk = 1 for a spike of the
k-th network neuron. By setting the instantaneous firing rate ρk

to be

ρk = lim
δt → 0

p(spike in[t, t + δt])/δt = rnet · euk−uinh (29)

with uinh := log
∑K

j = 1 exp (uj) the network thus implements
Equation (24) for any choice of rnet, i.e., pnet = q.

The learning rules (25) and (28) rely on expected values
〈 · 〉p∗(y)q(z|y). The expectations can be approximated from input
samples y ∼ p∗(y) and posterior samples z ∼ q(z|y) in response
to this input. The input vector y is defined at any time t in the
network as it measures the instantaneous presence or absence of
rectangular input pulses. Samples of the latent variable z, in con-
trast, are only defined at the spike times of the network. Hence
integrating expected values 〈 zk 〉 from the spike response can be
expressed most conveniently in terms of the spike train func-

tion sk(t) = ∑
f δ(t − t

f
k) of the network neurons. We obtain the

following plasticity rules:

dbk

dt
= ηb · [rnet · ck − sk(t)] (30)

dWki

dt
= ηW · sk(t) · [

yi − σ 2 · Wki
]

(31)

with small learning rates ηb and ηW . The homeostatic rule (30)
regulates the intrinsic excitabilities bk such that the average tar-
get activations 〈 zk(t) 〉 ≈ ck are maintained over the presentation
of many different input patterns y(t) ∼ p∗(y) in accordance with
Equation (25), and thereby implements the E-step. Building
on the network response shaped by the E-step, the synaptic
rule (31) on average increases the objective function F since
synaptic changes d

dt Wki on average point in the direction of the
W-gradient of F given by Equation (28), thereby implement-
ing the M-step. Since synaptic updates rely on a (sufficiently)
precise E-step which, in turn, needs to integrate any changes
in the network response due to synaptic plasticity, homeostatic
intrinsic plasticity is required to act on faster time scales than
synaptic plasticity. As a consequence, the learning rate ηb will
typically exceed the learning rate ηW in the spiking network
implementation.

The homeostatic intrinsic plasticity rule (30) can readily be
implemented by the spiking neurons: The intrinsic excitability
bk of each neuron increases linearly in time with a slow drift
ηb · rnet · ck and is lowered abruptly by ηb at the spike times of
neuron zk. Similarly, mapping the synaptic plasticity rule (31) to
the compound-synapse STDP rule (3) is straight-forward due to
the structural equivalence of Equations (3) and (31): The learn-
ing rate ηW in the theory domain corresponds to πup · Wmax in
the hardware domain, e.g., high jumping probabilities πup and
large weight contributions ω = Wmax/M of individual stochastic
switches lead to high learning rates ηW . Furthermore, the max-
imum weight Wmax can directly be identified with the precision
1/σ 2 of the likelihood distribution (14). In the theory domain, we
know that μki = σ 2 · Wki, and hence, μki = Wki/Wmax = mki/M
for the compound synapses. Finally, due to the structural equiv-
alence of Equations (3) and (31) we find that the compound
memristor plasticity rule (3) inherits the convergence prop-
erties from the theoretically derived plasticity rule (31) dur-
ing online learning. The resulting translation of memristor
synapse parameters to the abstract model is summarized in
Table 1.
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4.5. COMPUTER SIMULATIONS
All computer simulations were performed with customized
Python scripts. For the computer simulations, we employed
a network architecture with K = 10 network neurons and
N = 24 · 24 = 576 inputs. The simulation time step was
δt = 1 ms and the PSP time constant τ = 10 ms. The overall net-
work firing rate was set to rnet = 100 Hz, the homeostatic target
activation uniformly to ck = 1/K. Synapses were composed of
M = 10 constituents with weight ω = 0.1 each. Switching prob-
abilities were set to πup = πdown = 10−3. This corresponds to
a Gaussian likelihood model with variance σ 2 = 1 and learning
rate ηW = 10−3. The learning rate for homeostatic intrinsic plas-
ticity was set to ηb = 20 · ηW . For the simulations in Figures 4–6,
certain parameters deviated from the above, depending on
the simulation setup. For Figure 6, the switching probability
πup = 10−3 was kept fixed, and πdown was adapted for different
�-values. All other changes are described directly in the Results
section.

For learning experiments, digits 0, 1, 2, 3, 4 were extracted
in equal proportion from the MNIST training data set (LeCun
et al., 1998). A frame of two pixels width was removed, leaving
images of size 24 × 24. The images (indexed by s) were scaled
linearly to activity patterns xs

i ∈ [0.05, 0.9], with i = 1, . . . , N,
which were presented to the network as follows. For given activity
pattern xs = (xs

1, . . . , xs
N ), each input i spiked with probabil-

ity p
spike
i = 1 − (

1 − xs
i

)δt/τ
per time step δt. During training,

a new activity pattern xs was randomly drawn from the train-
ing set every 100 ms. Each network was trained for 5000 s. To
obtain the unweighted PSP values yi, the resulting spike patterns
were convolved with a box kernel of duration τ and ampli-
tude 1, and then clipped to values [0, 1]. This defined the input
y(t), and thus (implicitly) the data distribution y(t) ∼ p∗(y).

Notably, the spiking probability p
spike
i is chosen such that

〈 yi 〉 = xs
i .

The estimate of the log-likelihood in Figure 3D was based on
5000 input samples y(t), which were randomly drawn from the
training data, and assumed a uniform prior p(zk = 1 | θ) = 1/K
in accordance with the homeostatic target activation. The clas-
sification performance in Figures 3D, 4B, 5E was determined
as follows. For given configuration of the synapses and intrin-
sic excitabilities, 100 versions of each digit from the train-
ing data set were presented to the network for 1 s each. Each
neuron was labeled to be tuned to the digit class it was
most responsive to. Then 500 versions of each digit from the
MNIST test data set were presented to the network for 1 s
each. The network neuron that spiked most during the 1 s
period determined the network’s classification of the input digit.
The classification error is the fraction of wrongly classified
digits.

4.6. IMPLEMENTATION WITH LEAKY INTEGRATOR NEURONS
The idealized stochastic neurons in the WTA network model
feature abstact membrane potentials uk that integrate the input
y(t) through the weights Wki linearly. In a hardware integra-
tion, however, synaptic weights arise from the conductance of
memristors, and neurons are physical implementations based on
capacitors and various other circuit elements. Here, we outline

one possible hardware integration and consider a leaky integrator
with membrane potential Uk that obeys the following dynamics:

τm · dUk

dt
= −(Uk − Bk) + Ik/GL , (32)

with membrane time constant τm, leak conductance GL, rest-
ing potential Bk and synaptic input current Ik. In the setup
of Figure 1A, input spikes trigger a rectangular voltage pulse
of duration τ and with amplitude Upre. Denoting the conduc-
tance of the memristive synapse by G, this generates a synaptic
current I = Upre · G. The equilibrium membrane potential (i.e.,
d
dt Uk = 0) under this current is Uk = Bk + (Upre/GL) · G. For
small membrane time constant τm → 0, e.g., for a small neuron
capacitance, the fast membrane will closely resemble the rectan-
gular presynaptic pulse shape, and the PSP amplitude (Uk − Bk)
will be proportional to the weight G. This linear integration prop-
erty of Uk also holds in case of multiple memristive synapses
acting in parallel, and we find

Uk = Bk + Upre

GL
·
∑

i

Gki · yi . (33)

Consequently, the membrane potential Uk of the leaky integra-
tor matches the idealized membrane potential uk employed in the
Results section up to a linear function that serves to translate the
voltage-based potential Uk to the unitless potential uk. Using the
membrane potential Uk, the exponential firing behavior (29) of
the neurons could either be realized with an inherently stochastic
firing mechanism. Alternatively, deterministic leaky integrate-
and-fire neurons could be operated in a stochastic regime by
adapting, for instance, the approach taken in Petrovici et al.
(2013).
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