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The spatial coherence of spontaneous slow fluctuations in the blood-oxygen-level
dependent (BOLD) signal at rest is routinely used to characterize the underlying
resting-state networks (RSNs). Studies have demonstrated that these patterns are
organized in space and highly reproducible from subject to subject. Moreover, RSNs
reorganizations have been suggested in pathological conditions. Comparisons of RSNs
organization have been performed between groups of subjects but have rarely been
applied at the individual level, a step required for clinical application. Defining the notion of
modularity as the organization of brain activity in stable networks, we propose Detection
of Abnormal Networks in Individuals (DANI) to identify modularity changes at the individual
level. The stability of each RSN was estimated using a spatial clustering method: Bootstrap
Analysis of Stable Clusters (BASC) (Bellec et al., 2010). Our contributions consisted in (i)
providing functional maps of the most stable cores of each networks and (ii) in detecting
“abnormal” individual changes in networks organization when compared to a population
of healthy controls. DANI was first evaluated using realistic simulated data, showing that
focussing on a conservative core size (50% most stable regions) improved the sensitivity
to detect modularity changes. DANI was then applied to resting state fMRI data of six
patients with focal epilepsy who underwent multimodal assessment using simultaneous
EEG/fMRI acquisition followed by surgery. Only patient with a seizure free outcome
were selected and the resected area was identified using a post-operative MRI. DANI
automatically detected abnormal changes in 5 out of 6 patients, with excellent sensitivity,
showing for each of them at least one “abnormal” lateralized network closely related
to the epileptic focus. For each patient, we also detected some distant networks as
abnormal, suggesting some remote reorganization in the epileptic brain.
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INTRODUCTION
Connectivity analysis in resting-state functional magnetic reso-
nance imaging (rs-fMRI) is a promising tool to study neuro-
logical disorders. So far, rs-fMRI has been applied mainly at
the level of groups of patients, as for instance in mental disor-
ders (Broyd et al., 2009), in Alzheimer’s disease (Goveas et al.,
2011; Damoiseaux et al., 2012; Jacobs et al., 2013) and also in
epilepsy (Bernhardt et al., 2013; Constable et al., 2013; Lang et al.,
2014). However, a large amount of inter-patient variability is typ-
ically observed in any neurological disorder. In some applications,
patient-specific features are the only clinically useful informa-
tion. A prominent example is the multimodal investigation of
patient with drug-resistant epilepsy, which aims at identifying an
epileptogenic focus that could be surgically resected (Stefan et al.,
2011; De Ciantis and Lemieux, 2013). The main goal of this study

is to develop a method to capture inter-individual variations in
resting-state networks (RSNs), and assess its potential usefulness
in patients with focal epilepsy.

Usually, the analysis of patient-specific epileptogenic focus
is based on analysing brain activity at the time of epilep-
tic discharges. However, epileptic discharges are spontaneous
and rare events that may not occur during time-limited
standard neuroimaging investigations, such as simultaneous
electro-encephalography/functional magnetic resonance imag-
ing (EEG/fMRI) (Gotman and Pittau, 2011) or magneto-
encephalography (MEG) (Stefan et al., 2011) explorations. When
studying resting-state activity in the absence of epileptic dis-
charges, some group-level studies have demonstrated rs-fMRI
connectivity patterns specific to idiopathic generalized epilepsy
(IGE) (Luo et al., 2011; Maneshi et al., 2012) and temporal
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lobe epilepsy (TLE) (Waites et al., 2006; Liao et al., 2011; Pittau
et al., 2012b). For example, using seed regions in the epileptic
focus, group comparison between TLE patients and age-matched
healthy controls, we found significant decreases in connectivity
between homologous mesio-temporal structures and also with
the dopaminergic mesolimbic and with the default mode net-
work (Pittau et al., 2012b). For IGE patients, we found significant
increases and decreases in FC when using seeds in the attention
network (Maneshi et al., 2012). The few studies, which have inves-
tigated FC changes at the individual level in patients with epilepsy,
did report some reorganization of functional networks, notably
in terms of their laterality (Negishi et al., 2011; Stufflebeam et al.,
2011; Luo et al., 2014). Taken together, these results support our
main hypothesis that resting-state fMRI connectivity could iden-
tify clinically relevant information in individual patients suffering
from epilepsy.

Resting-state functional connectivity captures the spatial cor-
relations of spontaneous fluctuations in the blood-oxygen-level
dependent (BOLD) fMRI signal (Biswal et al., 1995). Maps of
functional connectivity, i.e., temporal correlations of fMRI time
series across brain regions, reveal highly organized spatial RSNs.
These maps were found to be reproducible at the individual
(Himberg et al., 2004; Shehzad et al., 2009) and at the group levels
(Damoiseaux et al., 2006). Each RSN is a combination of mul-
tiple brain regions, not necessarily spatially contiguous, which
share similar low frequency BOLD signal fluctuations (Fox and
Raichle, 2007). These networks capture some aspects of the func-
tional organization of the brain (Yeo et al., 2011). Many methods
have been proposed to identify RSNs, including mainly variants
of independent component analysis (ICA) (Smith, 2012) and
cluster analysis (Yeo et al., 2011), see Smith et al. (2013) for a
review. Initial applications of these techniques have focussed on
group level analysis, (e.g., Damoiseaux et al., 2006), and it is
only recently that their capacity to establish a correspondence
between group and individual RSNs has been a topic of active
research. Techniques available to address this problem include
back-reconstruction in ICA (Calhoun et al., 2009) and dual-
regression ICA (Beckmann et al., 2009). Here, we decided to
build on a technique called Bootstrap Analysis of Stable Clusters
(BASC) (Bellec et al., 2010), because of two of its unique fea-
tures. First, the technique offers a statistical framework to assess
the stability of RSNs at the individual and at the group level, by
replicating a cluster analysis many times after small perturbations
of the original dataset. This quantification of stability is an asset to
establish whether atypical RSN organization observed in an indi-
vidual can simply be attributed to statistical noise or reflects bio-
logical individual characteristics. Second, BASC explicitly looks
at the modular organization of the brain, i.e., the ability to iden-
tify clusters based on the relative strength of intra-network vs.
inter-network connectivity, independently of the absolute value
of connectivity measures (see Alexander-Bloch et al., 2012 for a
discussion of the distinction between connectivity and modular-
ity). Dual-regression and back-reconstruction ICA, by contrast,
perform a regression of temporal dynamics, which is sensitive
to the absolute magnitude of connectivity. Absolute measures of
functional connectivity are particularly sensitive to physiological
noise, in particular motion (Power et al., 2012). We hypothesized

that modularity would be more robust to physiological noise than
absolute measures of connectivity.

To the best of our knowledge, none of the standard data-driven
techniques for RSN mapping (ICA, clustering) has been evalu-
ated at the individual level. They have rather been used to detect
changes between two groups. The objective of this study was
thus to develop and validate a statistical methodology, entitled
“Detection of Abnormal resting state Networks in Individuals,”
(DANI) aiming at identifying RSNs with atypical, or outlier, spa-
tial distribution, when compared to a population of controls.
The outlier RSNs were characterized by differences in stability
and spatial extent with respect to a typical RSN distribution.
We also extended BASC to include the notion of core of sta-
bility, defined as the most stable regions of a network. Because
every RSN includes regions with fairly unstable cluster assign-
ment, we hypothesized that focussing on RSN cores rather than
on full networks would translate into improved characterisation
of individual biological variability. In the first part of the paper,
we assessed the ability of DANI to identify atypical and individual
modular organization on a battery of simulated datasets.

Evaluation of RSN mapping for real individual fMRI datasets
is challenging because of the lack of ground truth. The quality
of individual mapping has been mainly assessed by test-retest
reliability studies (Shehzad et al., 2009; Zuo et al., 2010) but
test-retest reliability in itself does not indicate if reliable features
are clinically meaningful. Concerning patients with epilepsy, the
seizure outcome after surgery remains the gold standard to val-
idate a technique. For this reason, in the second part of this
study, DANI was applied to resting state fMRI data of six patients
with focal epilepsy who underwent multimodal assessment using
simultaneous EEG/fMRI acquisition followed by surgery.

MATERIALS AND METHODS
SUBJECT SELECTION
We selected healthy control subjects who underwent simulta-
neous EEG/fMRI acquisitions (Gotman et al., 2004), with the
following inclusion criteria:

(i) Right-handed.
(ii) EEG/fMRI runs during which the subject was awake: EEG

stage W according to Iber and American Academy of Sleep
Medicine (2007).

(iii) EEG/fMRI runs involving only minimal motion (less than
1 mm translation and 1◦ rotation between volumes).

Based on these criteria, we selected 25 right-handed healthy con-
trol subjects The mean age was 32.8 years, ranging from 18 to 55.
Written informed consent was obtained according to the guide-
lines and approval of the Montreal Neurological Institute research
ethics review board. Note that this database of healthy controls
acquired in our laboratory was the same as the one considered in
our previous study (Pittau et al., 2012b).

SIMULTANEOUS EEG/fMRI ACQUISITION
EEG was continuously recorded as described in Gotman et al.
(2004) inside a 3T MRI scanner (Siemens, Trio, Germany).
The EEG acquisition was performed with 25 MR compatible
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electrodes (Ag/AgCl) placed on the scalp using the 10–20 (ref-
erence at FCz) and the 10–10 (F9, T9, P9, F10, T10, and P10)
placement systems. Two electrodes were placed on the back to
record the electrocardiogram. The head of the subject was immo-
bilized with a pillow filled with foam microspheres (Siemens,
Germany) to minimize movement artifacts and for subject’s com-
fort. Data were transmitted from a BrainAmp amplifier (Brain
Products, Munich, Germany, 5 kHz sampling rate) to the EEG
monitor located outside the scanner room via an optical fiber
cable.

A T1-weighted anatomic acquisition was first done (1 mm
slice thickness, 256 × 256 matrix; echo time TE = 7.4 ms and
repetition time TR = 23 ms; flip angle 30◦). This scan was used
for co-registration purposes and to superimpose the functional
images on the anatomy. Functional data were acquired in runs
of 6 min using a T2∗-weighted EPI sequence (64 × 64 matrix;
33 slices, 3.7 × 3.7 × 3.7 mm, TE = 25 ms, TR = 1.9 s; flip angle
90◦). Subjects were instructed not to move and stay with eyes
closed, resting. Three runs were selected during wakefulness, with
less than 1 mm of variation between two volumes for the three
axes in translation and less then 1◦ of variation between two
volumes for the three axes in rotation.

fMRI DATA PREPROCESSING
The fMRI database was preprocessed using the Neuroimaging
Analysis Kit (NIAK) release 0.71 (Bellec et al., 2011). Each
fMRI dataset was corrected for inter-slice difference in acqui-
sition time. Parameters of a rigid-body motion transformation
were estimated for each time frame. Rigid-body motion was
estimated within as well as between runs. The median vol-
ume of one selected fMRI run for each subject was coregis-
tered with the individual anatomical T1 scan with Minctracc
(Collins and Evans, 1997), using a rigid transformation. The
T1 MRI of each subject was itself non-linearly co-registered to
the Montreal Neurological Institute (MNI) stereotaxic template
(Fonov et al., 2011), using CIVET pipeline (Zijdenbos et al.,
2002). We used the MNI symmetric template, generated from
the ICBM152 sample of 152 young adults, after 40 iterations
of non-linear co-registration. The rigid-body fMRI-to-T1 trans-
form and the non-linear T1-to-stereotaxic transform were all
combined, and the functional volumes were resampled in the
MNI space at a 3 mm isotropic resolution. The “scrubbing”
method proposed by Power et al. (2012) was used to remove
the volumes with excessive motion, i.e., all frames showing a
displacement greater than 0.5 mm were removed. On average,
4% of the frames were thus removed using this “scrubbing”
method. The following nuisance parameters were regressed out
from the time series at each voxel: slow time drifts (basis of
discrete cosines with a 0.01 Hz high-pass cut-off), average sig-
nals in conservative masks of the white matter and the lateral
ventricles as well as the first principal components (accounting
for 95% variance) of the six rigid-body motion parameters and
their squares (Lund et al., 2006; Giove et al., 2009). The fMRI
volumes were finally spatially smoothed with a 6 mm isotropic
Gaussian blurring kernel. A more detailed description of the

1NIAK website: http://www.nitrc.org/projects/niak.

pipeline can be found on NIAK website (http://www.nitrc.org/
projects/niak/).

To reduce the computational burden of the analysis, the spa-
tial dimension of the individual fMRI dataset was reduced using
a region-growing algorithm. The spatial dimension was selected
arbitrarily by setting the maximal size where the growing process
stopped: we chose a threshold of 800 mm3 resulting in R = 739
regions. The regions were built to maximize the homogeneity of
the time series within the regions, i.e., the average correlation
between the time series associated with any pair of voxels of the
region. The region growing was applied on the time series con-
catenated across all subjects (after transformation to zero mean
and unit variance), such that the homogeneity was maximized on
average for all subjects, ensuring the use of small homogeneous
and identical regions for all subjects. Because of the tempo-
ral concatenation of time series, we had to limit the memory
demand, and the region-growing was thus applied sequentially
and independently within each of the 116 anatomical areas of
the AAL atlas (Tzourio-Mazoyer et al., 2002). See Bellec et al.
(2006) for evaluation and further details regarding the imple-
mentation of this region-growing algorithm. Overall, this process
reduced the dataset Y of each subject into a (T × R) data array,
where T is the number of time samples and R is the number of
regions.

The analysis of neuroimaging databases typically involves a
large number of inter-connected steps. We used the Pipeline
System for Octave and Matlab PSOM (Bellec et al., 2012) to
execute processes in parallel on a cluster of workstations.

FULL BRAIN FUNCTIONAL CONNECTIVITY ANALYSIS USING BASC
Starting from preprocessed resting state fMRI data, we used
the clustering method entitled BASC (Bellec et al., 2010) to
quantify FC patterns at the individual and at the group level.
BASC models FC between distant regions using spatial clus-
tering of BOLD time courses. The key idea of BASC is to
associate spatial clustering with Bootstrap resampling (Efron
and Tibshirani, 1993) to assess the stability of such cluster-
ing among several replications, thus leading to a statistical
measure of stability of the FC patterns. Since all the anal-
yses were first done at the individual level and then across
subjects at a group level, BASC offers a unique possibility
to compare individual-level and group-level identifications of
RSNs.

BASC analysis at the individual level
For each data matrix Y obtained at the individual level, FC
was quantified using a spatial k-means clustering. Each clus-
tering estimated an R × R binary adjacency matrix, setting a
value of 1 when two regions were associated to the same clus-
ter, and 0 otherwise. To assess the statistical stability of this
clustering, the data matrix Y (T × R) was resampled using cir-
cular block bootstrap of the BOLD time-series, and a k-means
clustering was then applied on each of the B = 300 replica-
tions. The average of all the B adjacency matrices resulted in a
stability matrix Îi (i = 1, . . . , C, being the subject index) repre-
senting the likelihood to cluster together the time-series of two
regions.
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BASC analysis at the group level
A similar process was considered to assess FC patterns at the inter-
subject group level. To do so, the individual stability matrices
of all the subjects Îi (i = 1, . . . , C) were first averaged in order
to generate a first group stability matrix. In a second step, a
hierarchical clustering was applied using the Euclidean distance
between columns of this group stability matrix as a similarity
index to identify the columns with similar stability profiles. A
threshold was then applied to cut the tree at L number of clusters,
thus providing a binarised group level adjacency matrix (matrix
exhibiting a 1 when two regions were associated within the same
cluster, 0 otherwise). In order to take into account the statistical
stability of such a clustering at the group level, standard boot-
strap resampling among the C subjects was applied 1000 times
and the same hierarchical clustering procedure was applied on
each bootstrap sample.

By averaging the resulting 1000 binary adjacency matrices at
the group level, we obtained the stability matrix at the group level
Ĝ representing the likelihood to cluster together pairs of regions,
while taking into account both single subject and group inherent
variability of the data.

PARTITION OF THE BRAIN INTO FUNCTIONAL RSN
To identify Consistent Resting State Networks (CRSNs) at the
group level, the stability matrix Ĝ was converted into a partition
of the whole brain, grouping regions that have been frequently
associated within the same cluster, i.e., regions exhibiting high
FC stability in Ĝ through bootstrap resampling. To do so, a last
hierarchical clustering was applied on Ĝ to identify brain regions
depicting similar stability profiles. Here again, the Euclidean dis-
tance between columns of Ĝ was used as a similarity index to
identify the columns with similar stability profiles. A threshold
was then applied to cut the tree at the desired number of clus-
ters. We decided to threshold the dendrogram in N = 12 clusters,
thus ensuring that we did not miss any important CRSN. Indeed,
the literature usually refers to 7–10 CRSNs in healthy subjects
(Damoiseaux et al., 2006; Smith et al., 2009). Note that for N =
12 CRSNs, we estimated k = 13 for the individual level k-means
clustering and L = 14 to threshold each group level hierarchi-
cal clustering. These thresholds were estimated by optimizing a
stability contrast as proposed in Bellec et al. (2010). This is a
two-pass procedure, a first pass consisted in a fast (B = 30 boot-
strap samples) exploration of a large grid of scales to find the
scales (k(N), L(N), N) maximizing the stability of the cluster-
ing, as measured with a modified silhouette criterion of the group
stability matrix, constraining k and L values within a close neigh-
borhood of N. Local maxima of the modified silhouette (as a
function of N) were then automatically identified. We chose to
focus here on the local maximum found for N = 12, as this level
of RSN decomposition was most similar to the ones traditionally
reported in the literature (Damoiseaux et al., 2006). For such a
scale of N = 12, the optimal parameters of k = 13 and L = 14
have been estimated. Following the scale selection procedure, the
individual stability matrices for N = 12 were estimated a second
time with a larger number of bootstrap samples (B = 300).

Let us define as P(r) for r ∈ [1, R] a vector representing the
resulting partition obtained after thresholding the hierarchical

clustering of Ĝ in N clusters. When two regions are associated
within the same cluster, they are associated to the same label in P
(Figure 1A).

DETECTION OF ABNORMAL NETWORKS IN INDIVIDUALS (DANI)
BASC allows estimating stability of FC patterns at the individ-
ual level and at the group level, what we will call modules. The
objective of DANI is to detect, at the individual level, possi-
ble modifications of those modules that could be considered as
deviant or outliers when compared to a population of controls.

BASC extension: from stability matrices to trimmed stability maps
Starting from the stability matrices estimated at the individual
level Îi or at the group level Ĝ using BASC, our first contribution
was to propose a method to improve the visualization of spatially
FC information represented in these stability matrices. Therefore,
we propose to convert a stability matrix into a series of N sta-
bility maps. Each of these maps is generated using information
provided by one of the N clusters of the partition P. Consequently,
the stability maps are reporting for each region the amount of sta-
bility estimated for one particular cluster of the partition. We will
refer to each of these spatial maps as a network.

This procedure to estimate “trimmed stability maps” is
applied on each cluster of the partition. It aims at generating 3D
stability maps with enhanced contrast and increased consistency
across runs. To do so, the rows of each cluster of the partition
matrix P were first reordered in decreasing order of average sta-
bility. We then considered a percentage μ of most stable rows,
representing the stability cores. The stability profile was then esti-
mated by averaging only these “most stable rows.” The resulting
3D trimmed stability map obtained from this procedure is illus-
trated in Figure 1C. It yielded greater contrast than when simply
averaging all the rows of the cluster (Figure 1B). We performed
simulations varying the values of the parameter μ of 25, 50,
and 75% to assess the impact of such threshold on the sensi-
tivity of our detection method. It is important to mention that,
whereas only rows corresponding to a particular cluster of P are
selected, stability values from all R regions are actually averaged
to generate stability maps. Consequently regions not belonging
to that specific cluster may also exhibit some non-null stability
values.

The 3D trimmed stability maps estimated at the group level
from the stability matrix Ĝ represent the CRSNs. These CRSNs
were considered as our reference when characterizing the func-
tional organization of RS brain activity over a population of
healthy controls.

The 3D trimmed stability maps, estimated at the individual
level from the stability matrices Îi, characterized the amount of
stability assessed for each subject, within each of the CRSNs iden-
tified at the group level. Since all maps were estimated within
the same referential space, comparison between maps estimated
at the individual level and at the group level became feasible.
Estimating all trimmed stability maps from the same partition is
a strong constraint but it was necessary to provide consistency
across subjects. While providing the similar basis for comparison,
this method allowed flexibility to adapt to the particularities of
each individual.
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FIGURE 1 | Methodology to convert a stability matrix into a spatial

stability map for each network. The same process is applied for each
cluster of the partition P , thus every stability map was constrained by the
corresponding CRSN. (A) Simplistic representation in which the first cluster
of the partition P was selected on the stability matrix. (B) Averaged stability

map obtained by averaging all the rows inside a network partition, resulting in
a diffuse and low contrast representation of the network. (C) Trimmed
stability map obtained by averaging the 50% rows showing the largest
stability values, resulting in a representation of the network with greater
contrast.

Detection of abnormal modifications of functional connectivity
Let us define as CIc

n (r) the R × N × C matrix containing the
trimmed stability values of the region r (r = 1 . . . R) for the net-
work n (n = 1 . . . N) and for the healthy control subject c (c =
1 . . . C). For a specific target subject to be tested with DANI, let
us denote Tn the vector of size R containing the trimmed sta-
bility values for the network n (n = 1 . . . N) for this particular
subject. The objective of DANI is to identify automatically which
of the trimmed stability maps Tn could be considered as out-
liers when compared to the trimmed stability maps of all controls
(CIc

n, c = 1 . . . C). The first step was to detect networks exhibiting
variations in stability when compared to controls maps. The sec-
ond step was to quantify whether these variations were statistically
significant.

Detecting stability variations in the functional network organi-
zation. When performing a region-based comparison of an indi-
vidual map Tn with all CIc

n maps (c = 1 . . . C) from a population
of controls, it was not possible to use a standard Z-score. Indeed,
each map quantifies stability in FC within a network, i.e., esti-
mated from a predefined cluster of the partition P. Consequently
these maps are not continuous through the whole brain volume

(see Figure 1C). Whereas some regions outside the corresponding
cluster may exhibit non-null stability values, many other voxels
exhibit stability values very close or equal to zero. Consequently,
estimating a voxel-based mean and a standard deviation both
close to zero among the controls would lead to unstable Z-score
values. Indeed, one can obtain large Z-values, even though the
local stability was very close to zero. This issue can cause problems
of interpretation since it will attract attention to a non-stable area
of rare occurrence.

To address this issue, instead of computing Z-scores, we pro-
pose to use a binary mask, denoted Zmaskn, to highlight brain
regions depicting significant differences in stability for the target
subject and the network n when compared to the population of C
controls. These masks were defined as follows:

Zmaskn (r) = [∣∣Tn (r) − CIn (r)
∣∣ > 3.17 × std (CIn (r))

]
(1)

Where r denotes the region within the brain volume (r = 1 . . . R),
CIn (r) and std (CIn (r)) refer to the mean and the standard devi-
ation maps estimated over all CIc

n maps (c = 1 . . . C), for the
network n (n = 1 . . . N). 3.17 was chosen as the Z-threshold
considered for a non-corrected significant level of p < 0.001.
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Note that Zmaskn will identify any significant change in the tar-
get subject, whether it consisted in an increase or a decrease of
stability.

Combined map assessing the amount of stability within the
detected Zmaskn. Since stability values estimated using BASC are
statistical measurements, i.e., a probability to belong to a spe-
cific network, we created a map exhibiting these stability values
within brain regions showing significant differences between the
target subject and the population of controls. To do so, we applied
the Zmaskn to the difference between the individual subject-map
Tn and the mean stability map CIn (r) from all the controls (see
Figure S1).

Cmapn (r) = Zmaskn (r) × [
Tn (r) − CIn (r)

]
(2)

Where r denotes the region within the brain volume. Using
Cmapn instead of Z-scores maps will avoid biasing the interpreta-
tion toward brain regions showing large Z-score values and very
low stability values. Note that Figure 2 is showing a graphical
summary of all the steps included in this pipeline.

Thresholding the combined map Cmapn

In order to identify outliers when investigating changes in stabil-
ity for a particular target subject, the null hypothesis distribution
of Cmapn values was assessed by applying Equation (2) on each
of the C subjects of the control database and for each of the N
networks. Therefore, we estimated the distribution of so-called
“stability changes” likely to occur within a healthy control popu-
lation. When pooling values from all C = 25 controls and N = 12
networks, we obtained 0.1 and 99.9 percentile values of −0.34

and 0.34, respectively. Therefore, in order to consider only sta-
bility changes likely to be the most significant at the individual
level, all Cmapn values between −0.34 and 0.34 were threshold
and subsequently set to zero for the next analyses.

Analysis of the most salient findings for a specific individual
As mentioned earlier, stability measurements considered in this
study constitute already statistical measurements. Therefore, we
propose to consider first the most salient findings identified for
every target subject, i.e., for every patient with epilepsy selected
for this particular study. Consequently, for each of the six selected
patients, we carefully inspected all the N = 12 Cmapn and only
the maps exhibiting a maximum stability increase greater than 0.5
or a minimum stability decrease lower than −0.5 were reported.
Since the 0.1 and 99.9 percentiles of stability changes measured
over the control database were, respectively −0.34 and 0.34, the
threshold of 0.5 was chosen arbitrarily in order to investigate only
the most salient findings.

Automatic detection of modularity changes for a specific individual
In addition to the inspection of all Cmapn results, we also propose
a statistical analysis to automatically detect significant changes
in modularity. To do so, we proposed a new metric assessing,
for each individual network of each target subject, the strength
and spatial extent of stability interaction when compared to other
CRSNs.

Let us define Wn (r) a 3D spatial map estimating which of the
N CRSNs defined in the partition P (r) were involved in local
modifications detected using Zmaskn (r):

Wn (r) = P (r) × Zmaskn (r) (3)

FIGURE 2 | Pipeline summarizing the steps involved in DANI method starting from the preprocessed fMRI images of the control population and the

preprocessed images of the target subject on which DANI was applied.
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This operation simply consists in applying the binary mask
Zmaskn to the partition P. We then introduce the metric λn,j,
for n = 1 . . . N and j = 1 . . . N, assessing the interaction between
local changes of stability of the nth individual network (Cmapn)
with the jth CRSN (i.e., voxels where

(
Wn (r) == j

)
):

λn,j =
∑

r

((
Wn (r) == j

) × ∣∣Cmapn (r)
∣∣) (4)

λn,j quantifies the amount of stability change with which the jth
CRSN contributes to the nth network of the target subject to be
evaluated. As a summation, this metric is sensitive to both the
strength and the spatial extent of the stability changes. It is impor-
tant to mention that this metric is estimated only within Zmaskn,
therefore only significant changes in stability are accounted for
and only within regions belonging to the jth CRSN.

Therefore the N × N matrix λn,j provides an overview of all
local changes in FC of a target subject when compared to all N
CRSNs extracted from the control database.

Using the interaction metric λn,j , outlier detection was applied
in order to detect abnormal networks, i.e., interactions that are
very unlikely to occur for a specific subject. Since the a priori null
distribution of this metric is not known, a non-parametric test
was considered. To estimate the null hypothesis distribution, a
N × N matrix λn,j was first estimated for each of the C subjects of
the control database. The null distribution for each network n and
CRSN j was then estimated using a generalized jackknife approach
(Sharot, 1976). To do so, 2/3rd of the control sample was ran-
domly selected to calculate the mean and standard deviation and
one target sample was randomly selected among the remaining
1/3rd to compute the metric λn,j under the null hypothesis. The
procedure was perform 10,000 times using the C = 25 controls
to characterize the null distribution H0 for each network n and
CRSN j. The values of the metric λn,j estimated for the target sub-
ject were then compared to the corresponding H0 distribution
and p-values were estimated.

VALIDATION OF DANI USING REALISTIC SIMULATED DATA
The objective of this section is to further evaluate DANI using
simulated data obtained within a fully controlled realistic envi-
ronment, thus providing a gold-standard to assess the perfor-
mance of the method.

Generation of simulated data
We evaluated the performance of DANI by adding different levels
of structured signal to perturb the underlying “network” organi-
zation of real resting state fMRI state data. This structured signal
actually consisted in the average time series of all regions belong-
ing to the visual network (CRSN #4) of another control subject.
We also evaluated the influence, on DANI detection properties,
of the core size parameter μ considered when estimating the
trimmed stability map.

The simulated Signal-to-Noise Ratio (SNR) was defined as
follows:

SNRdB = 20log10

(
RMSdata

RMSsimul

)
(5)

Where RMS is the root mean square amplitude of the time-series
corresponding to the region where the perturbation was applied.
We refer to RMSdata as the root mean square of the original fMRI
time-series of the subject and as RMSsimul as the root mean square
of the time-series introduced to perturb the system.

Perturbation with structured signal. To force the fusion of two
networks and assess the ability of DANI to detect it, structured
signal was added on specific parts of two networks within resting
state fMRI data of one control subject. Regions belonging to parts
of the right hemisphere of the sensory-motor network (CRSN #9)
and the auditory network (CRSN #3) were selected as the area to
be perturbed (denoted area A). Structured signal was estimated
as the average time series of all regions belonging to the visual
network (CRSN #4) of another control subject. We then assessed,
at what SNRdB level, DANI could detect the fusion of these two
parts of the perturbed networks, varying SNRdB from −25 to
25 dB by steps of 1 dB. Small SNRdB values then corresponded to
the addition of a large amount of structured signal to corrupt an
area involving some regions of the sensory-motor and auditory
networks (Figure S2).

Validation metric
To quantify the performance of DANI when applied on these sim-
ulated data, we first estimated the trimmed stability map of the
sensory-motor (Figure 4, CRSN #9) and the auditory (Figure 4,
CRSN #3) networks, using a specific core size parameter μ. For
each of these two CRSNs, we evaluated the resulting estimated
stability values inside and outside the perturbed zone on which
structured signal was added, but limited to the boundaries of the
CRSN of interest. Let us define as In0 the average of all stability
values inside the perturbed zone A for a specific network n0.

In0 = 1

card (A)

∑
r∈A

Tn0 (r) (6)

Where card (A) refers to the number of voxels belonging to the
perturbed zone A and Tn0 is the trimmed stability map of the
target subject for the network n0.

Let us define as A′ the area of the specific CRSN n0 located
outside the perturbed zone , we introduced the metric On0 as the
average of all the stability values outside the perturbed zone A but
within a specific network n0.

On0 = 1

card (A′)
∑
r ∈ A′

Tn0 (r) (7)

The validation metrics In0 and On0 were evaluated for differ-
ent SNRdB levels over two different perturbed networks, namely
the sensory motor network and the auditory network. Figure 3
presents a schematic overview of this validation pipeline.

An increase in In0 would therefore be interpreted as the occur-
rence of a more stable and consistent network within the targeted
region, whereas a decrease in In0 would be interpreted as a lost
of the affected region in favor of another network. On the other
hand, a decrease in On0 would mean that the outside of the orig-
inal network is no longer associated with the new organization,
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FIGURE 3 | Pipeline summarizing the validation procedure: the input is

the preprocessed fMRI data perturbed within a region of size A (A = 1/2,

1/3, and 1/6 of the targeted networks) at a specific SNRdB and the

outputs are the metrics Cmapn , λn,j , In0 and On0. Simulations were
performed considering 3 core sizes (µ = 25, 50, and 75%) for the estimation
of the trimmed stability maps.

whereas a stable On0 value would mean that the integrity of the
original network was preserved.

Validation parameters
DANI performance was evaluated by varying the following
parameters:

• The SNRdB at which the structured signal was added ranged
from -25 to 25 dB by steps of 1 dB.

• The size of the perturbed zone A varied from 1/2, 1/3rd, and
1/6th of the sensory-motor network and the auditory network.

• The core size parameter μ considered when estimating the
trimmed stability maps varied from 25, 50, and 75% of the
most stable rows in a given cluster.

EVALUATION OF DANI ON CLINICAL DATA
This section describes the application of DANI on resting state
fMRI data of patients with focal epilepsy, who underwent mul-
timodal assessment using simultaneous EEG/fMRI acquisition
followed by surgery.

Subject selection criteria for clinical evaluation
Among a population of patients with history suggestive of drug-
resistant focal epilepsy (1989; Berg et al., 2010), we selected
patients who underwent surgery after simultaneous EEG/fMRI
investigation (Gotman et al., 2004), with at least 12 months
follow-up. Candidates underwent routine presurgical evalua-
tion, whereas EEG/fMRI was performed independently of other

modalities and not considered for placing intracranial electrodes
or for surgical decision.

Besides general criteria mentioned in Section Subject
Selection, we included the following additional inclusion criteria:

(i) Seizure free patients with at least 12 months follow up. The
location of the resection was obtained from postsurgical
morphological MRI data.

(ii) Patients who had at least two runs of EEG/fMRI show-
ing epileptic discharges, for which the BOLD response to
epileptic discharges was evaluated as either fully concordant
or partially concordant with the location of the resection,
following the methodology proposed in An et al. (2013).

(iii) Patients who had also at least two runs of EEG/fMRI
with no or small numbers of epileptic discharges on
scalp EEG in order to investigate functional connectivity
patterns independently from the occurrence of epileptic
discharges.

Six patients were selected for this study: patients 1 and 2 had right
orbito frontal epilepsy. Whereas the anatomical MRI was evalu-
ated as non-lesional, a small focal cortical dysplasia (FCD) was
confirmed by pathology. Patients 3 and 4 had, respectively left and
right mesio-temporal lobe epilepsy (MTLE) with hippocampal
sclerosis. Patients 5 and 6 had, respectively left and right frontal
lobe epilepsy (FLE) with the presence of a FCD detected on the
MRI and confirmed by pathology (see Table 1 for further details).
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Table 1 | Patients’ clinical data.

Numbers Age/Gender Anat MRI Syndrome (Etiology) Resection Pathology Follow up

1 16/F Normal R FLE (NL) R OF FCD IIa 24

2 38/M Normal R FLE (NL) R OF FCD IIb 12

3 20/M L MTS L TLE (MTS) L ant TL Gliosis 12

4 39/F R MTS R TLE (MTS) R ant TL Neuronal loss and gliosis 24

5 26/F L 2nd F gyrus FCD L FLE (FCD) L 2nd and 3rd F gyrus FCD IIb 12

6 15/M R F psagittal FCD R FLE (FCD) R 1st F gyrus FCD IIb 36

R, Right; L, Left; FLE, Frontal Lobe Epilepsy; NL, Non-Lesional; OF, Orbito-Frontal; FCD, Focal Cortical Dysplasia; MTS, Mesio-Temporal Sclerosis; TLE, Temporal

Lobe Epilepsy.

Estimation of the BOLD response to epileptic discharges
The analysis of BOLD response to epileptic discharges detected
on scalp EEG was identical to the method considered in pre-
vious studies from our group (Bagshaw et al., 2004; Gotman
and Pittau, 2011; An et al., 2013; Heers et al., 2014). fMRI data
were preprocessed following a similar methodology than the one
presented in Section fMRI Data Preprocessing. After correcting
EEG data from MR gradient artifact (Allen et al., 2000) and bal-
listocardiogram artifact (Benar et al., 2003), EEG was reviewed
by an expert epileptologist (FP) and epileptic discharges were
marked. Timing and duration of each discharge were considered
to generate regressors and convolved with four hemodynamic
response functions (HRFs) peaking at 3, 5, 7, and 9 s, in order
to model inherent variability of HRF in patients with epilepsy
(Bagshaw et al., 2004). Motion parameters were modeled as con-
founds and all regressors were included in the same general linear
model. A combined t-map was created by taking, at each voxel,
the maximum t value from the four t-maps based on four HRFs.
To be significant, a response required five contiguous voxels hav-
ing a t-value > 3.17 (p < 0.05 using Bonferroni correction to take
into account the four HRFs analyses).

Multimodal assessment
Postsurgical morphological MRI data consisted either in 3D high
resolution T1 weighted MRI (1 mm isotropic resolution) or T2
weighted axial or coronal slices (in plane resolution: 0.46 mm,
slice thickness: 5 mm). Postsurgical MRI data were co-registered
to the high resolution anatomical MRI acquired during the
EEG/fMRI session, by maximizing normalized mutual informa-
tion (Studholme et al., 1999), assuming an affine geometrical
transformation between the two volumes. Using the inverse trans-
formations of the rigid-body fMRI-to-T1 transform and the non-
linear T1-to-stereotaxic transform introduced in Section fMRI
Data Preprocessing, DANI results, i.e., the combined maps of
stability changes Cmapn for all n = 1 . . . N networks, were resam-
pled in the native space of the anatomical MRI of each patient.
Therefore, DANI results, BOLD responses to epileptic discharges
and postsurgical MRI data could be compared on a voxel/voxel
basis with the native MRI space of every patient.

RESULTS
CONSISTENT RESTING STATE NETWORKS
The resulting trimmed stability maps obtained from group
level BASC analysis of the 25 healthy controls, resulting in the

identification of 12 CRSNs, are presented in Figure 4. These
CRSNs were used as the reference functional networks to detect
possible abnormal networks in patients.

VALIDATION OF DANI USING SIMULATED DATA
Figure 5 shows the impact on DANI results when adding struc-
tured signals to perturb resting state fMRI data from parts of the
sensory-motor and the auditory CRSNs and when varying the
core size parameter μ, i.e., the percentage of stability considered
when estimating trimmed stability maps. The left column of the
Figure represents the average stability inside the target zone as a
function of SNRdB, the middle column shows the average stabil-
ity estimated outside of the target zone as a function of SNRdB

and the third column shows the resulting trimmed stability maps
for both networks at SNRdB = −25 dB, i.e., at the highest pertur-
bation level. Overall, DANI was able to identify changes around
7 dB regardless of the size of the target zone and with all core sizes.
When adding perturbation in half (Figure 5A), 1/3rd (Figure 5B)
and 1/6th (Figure 5C) of the two networks, choosing a core size μ

of 25% drastically enhanced the stability within the target region
(left column), whereas at the same time the resulting stability out-
side the target was significantly reduced, down to zero for the
auditory network, meaning that this network was lost and com-
pletely taken over by its fusion with the sensory-motor network.
Resulting trimmed stability maps obtained when most intense
perturbation was added (SNRdB = −25dB) are confirming this
trend, since mainly the fused perturbed network was detected for
both networks (Figure 5. right column). On the other hand, using
a core size μ of 75%, only moderate changes could be detected
from stability profiles especially when perturbation was added
on 1/6th of the two networks (Figure 5C), yielding a poor sta-
bility contrast between regions of interest. This trend was also
confirmed on the resulting trimmed stability maps obtained at
SNRdB = −25 dB (Figure 5 right column). Finally, choosing a
core size μ of 50% provided a good trade-off yielding good sen-
sitivity to detect the new fused network (Figure 5 left column),
while providing accurate stability measures within the remaining
sections of the non-perturbed networks (Figure 5 middle). This
trade-off corresponding to an ideal detection contrast obtained
at μ = 50% is illustrated on the resulted trimmed stability maps
obtained at SNRdB = −25 dB (Figure 5 right column).

When perturbing a large target zone involving half of both net-
works (Figure 5A), DANI detected one large fused network at the
detriment of the two original ones. The remaining non-perturbed
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FIGURE 4 | Visual representation of the 12 CRSNs identified using BASC

group level analysis of 25 healthy control subjects. For each CRSN: 3
slices (coronal, axial, sagittal) are shown superimposed on an anatomical MRI
template (MNI152). Labeling of each network was done visually based on
previously reported CRSNs in the literature. The figure shows the usual

networks: Default Mode Network (1,10), Auditory (3), Visual (4),
Sensory-Motor (9), Attention (7,11) and Language(12). BASC also identified 4
other networks, less often reported, but characterized by high statistical
stability: Mesio- Temporal (2), Mesolimbic (5), Cerebellum (6) and Deep Gray
Matter (8).

areas of the original networks were no longer classified as being
part of the network and a new fused network was detected. We
observed a different behavior when perturbing 1/3rd of the two
networks (Figure 5B) instead of completely merging the two net-
works together, DANI partially merged them. When perturbing
only a small region (1/6th of both networks, Figure 5C), the per-
turbed part of the sensory-motor network was associated with
the auditory network, resulting in the detection of a smaller
sensory-motor network and a larger auditory network.

EVALUATION OF DANI ON CLINICAL DATA
Results from both statistical analyses applied on DANI clini-
cal results are reported in Table 2. For every patient and for
every network n, the maximum and minimum values of Cmapn
were first reported. Networks exhibiting salient stability increases,

associated with a maximum value larger than 0.5, are indicated
in red font. Note that no network exhibited salient stability
decreases associated with a minimum value lower than −0.5.
The second analysis consisted in an automatic detection of mod-
ularity changes using a non-parametric approach (see Section
Automatic detection of modularity changes for a specific individ-
ual). Networks identified in a significant interaction, i.e., rejecting
the null hypothesis λn,j = 0 with p < 0.001, were reported using
a bold font and a “∗” sign in Table 2.

Note that results for each patient are represented using Cmapn,
measuring, for each network n, only the significant differences
in stability observed for the target individual patient when
compared to the population of controls. This is the reason why
remote regions from the underlying CRSN partition could be
detected in those maps, whereas main regions associated with the
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FIGURE 5 | Evaluation of DANI using simulated data. The first line shows
the initial trimmed stability maps Tn obtained for the Auditory network
(network 1) and the Sensory-Motor network (network 2) before adding any
perturbution. Graphs present the average stability inside In0 (left column)
outside On0 (middle column) the perturbed area as a function of SNRdB values
ranging from −25 dB to +25 dB, for both the Auditory (green) and the
Sensory-Motor (blue) networks. The right column shows the resulting
trimmed stability maps Tn obtained when adding the largest perturbation at
SNRdB = −25dB. (A) perturbation zone involving 1/2 of both Auditory and
Sensory-Motor networks, (B) perturbation zone involving 1/3rd of both
Auditory and Sensory-Motor networks, (C) perturbation zone involving 1/6th
of both Auditory and Sensory-Motor networks. In each case, results obtained
when varying the core size parameter μ at 25, 50, and 75% are presented.

underlying CRSN partition might not be present if no significant
stability changes were detected. All Cmapn have been thresh-
olded above the 99.9% percentile (resp. below the 0.1% per-
centile) measured over the control population, i.e., above 0.34 and
below −0.34.

Main results obtained for patient 1 with right orbito-frontal
epilepsy are presented in Figure 6. A BOLD activation to epilep-
tic discharges was found in the right orbito-frontal focus and
was fully concordant with the location of the resection (patient
seizure free at 24 months). Whereas the anatomical MRI was eval-
uated as non-lesional, pathology confirmed a FCD within the
focus. The networks that showed most salient stability increases
in Cmapn were the Mesio-Temporal, Mesolimbic, Cerebellum
and Dorsal Attention networks. All these networks except the
Dorsal Attention were also involved in significant interactions of
modularity changes (p < 0.001). Cmapn for the Mesolimbic net-
work, containing the focus, showed increases in stability within
the whole Mesolimbic network, involving notably the focus and
showing increase in stability within most bilateral regions of
this network. Increase stability suggest that, when compared to
a population of controls, these regions are more reliably con-
nected together for this specific patient. A local maximum in
Cmapn was found within the right frontal pole, actually in a close
neighborhood around the focus. Cmapn for the MesioTemporal
network showed large increases in stability (up to 0.74, i.e., 74%
more stable than within the control population) within bilat-
eral mesial and lateral temporal regions and the Cerebellum.
Connections between the Mesolimbic and Mesiotemporal net-
works are well-known propagation pathways in epilepsy. Cmapn
for the Cerebellum network showed increases in stability within
bilateral mesial and lateral temporal regions, involving notably
both temporal poles. Cmapn for the Dorsal Attention network
shows stability increases within itself, involving as well some
regions of the posterior Default Mode Network (DMN) (results
not shown).

Main results obtained for patient 2 with right orbito-frontal
epilepsy are presented in Figure 7. A BOLD activation fully con-
cordant with the resected area in the right orbito-frontal region
was also observed for this patient. The MRI was evaluated as
non-lesional and a FCD was identified by pathology analysis.
Most salient stability increases in Cmapn were found for the
Mesolimbic, Cerebellum, and the Dorsal Attention networks. On
the other hand, the Sensori-Motor network, the posterior DMN
and the Dorsal Attention network were also involved in significant
interactions of modularity changes. Cmapn for the Mesolimbic
network showed stability increases within the right frontal pole
(lateralized on the side of the focus), bilateral heads of the caudate
nuclei and bilateral insulae regions, suggesting notably increase
stability in several regions surrounding the focus. Cmapn for the
Cerebellum network showed stability increases in some regions
of the Cerebellum, with some involvement of bilateral temporal
structures. Cmapn for the Dorsal Attention network shows large
stability increases within itself, involving as well some regions of
the posterior DMN and a right anterior frontal region (also later-
alized on the side of the focus). A very similar pattern was found
for Cmapn of the posterior DMN network (results not shown).
Cmapn for the Sensory Motor network identified increase in
stability with itself, involving as well some frontal more anterior
regions, far from the focus (results not shown).

Main results obtained for patient 3 with left MTLE and hip-
pocampal sclerosis are presented in Figure 8. BOLD activations
to epileptic discharges were found within the left mesio-temporal
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Table 2 | Analysis of the most salient findings detected by DANI.

Network numbers S1 S2 S3 S4 S5 S6

1. Ant. DMN −0.16/0.44 −0.24/0.27 −0.21/0.43 −0.20/0.35* −0.19/0.43 −0.16/0.49

2. Mesio-Temporal −0.10/0.74* −0.10/0.38 −/− −0.10/0.70 −0.08/0.52 −0.10/0.54

3. Auditory −0.28/0.22 −0.24/0.35 −0.26/0.30 −0.30/0.38 −0.29/0.38 −0.30/0.50

4. Visual −0.18/0.37 −0.33/0.40 −0.24/0.57* −/0.46* −0.22/0.20 −0.26/0.70*

5. Mesolimbic −0.48/0.58* –/0.56 –/0.53 –/0.51 –/0.40 –/0.59*

6. Cerebellum −0.34/0.64* −0.41/0.54 −0.48/0.59* −0.49/0.48* −0.35/0.60 −0.47/0.72*

7. Working Memory −0.17/0.30 −0.15/0.24 −0.16/0.33 −0.17/0.34 −0.17/0.41 −0.16/0.33

8. Deep Gray Matter −0.29/0.29 −0.28/0.39 −0.26/0.37 −0.26/0.43 −0.22/0.50 −0.32/0.39

9. Sensory Motor −0.16/0.49 −0.30/0.43* −0.18/0.32 −0.17/0.55* −0.18/0.57 −0.16/0.60

10. Post. DMN −0.22/0.40 −0.30/0.47* −0.30/0.48 −0.30/0.43 −0.36/0.49 −0.27/0.47

11. Dorsal attention −0.13/0.50 −0.22/0.58* −0.17/0.56* −0.25/0.43 −0.23/0.51 −0.23/0.49

12. Language −0.17/0.30 −0.14/0.14 −0.16/0.41* −0.17/0.26 −0.15/0.40 −0.15/0.30

For each of the 12 networks and for each patient, we are reporting the global maximum and minimum value of stability changes identified in Cmapn. Networks

exhibiting the most salient increases in stability, i.e., more than 0.5, were indicated in red font (no salient findings showing a minimum decrease in stability lower than

−0.5 were found). Network involved in significant interactions of modularity changes with other CRSN at p < 0.001 (cf. Section Automatic detection of modularity

changes for a specific individual) were indicated with a “*” and in bold font. (“-” indicates that no negative values were found in Cmapn).

focus, involving as well the left temporal neocortex. BOLD
results were classified as fully concordant with the location
of the resection involving the anterior part of the tempo-
ral lobe. Most salient stability changes in Cmapn were found
for the Visual, Mesolimbic, Cerebellum and Dorsal Attention
networks. The Visual, Cerebellum, Dorsal Attention and also
the Language networks have been identified within significant
interaction in modularity changes. Very widespread stability
increases have been identified within Cmapn of the Visual net-
work, involving mainly the secondary-association visual areas
including the fusiform gyri bilaterally, and not the primary
visual areas. Stability increases were also found in the left hip-
pocampus, bilateral thalami, putamen, insulae, cerebellum and
some regions of the Dorsal Attention network. Interestingly,
Cmapn of the Mesolimbic network showed a well-localized
and lateralized left temporo-lateral stability increase, closely
related to the focus. Cmapn of the Cerebellum network exhib-
ited some reorganization resulting in stability increases and
decreases within the cerebellum itself. Cmapn of the Dorsal
Attention network suggests stability increases within itself, involv-
ing also some regions of the posterior DMN (results not
shown). Cmapn of the Language network shows increase in
stability in bilateral temporo-posterior regions at the temporo-
occipital junction, involving also bilateral fusiform gyri. Increase
stability in bilateral thalami was also identified (results not
shown).

Main results obtained for patient 4 with right MTLE and
hippocampal sclerosis are presented in Figure 9. BOLD acti-
vation to epileptic discharge was found in the right mesio-
temporal structures, fully concordant with the location of the
resection. Most salient stability changes in Cmapn were found
for the Mesio-Temporal, Mesolimbic and Sensory Motor net-
works, whereas significant interaction in modularity changes were
found for the anterior DMN, the Visual, the Cerebellum and
the Sensory Motor networks. The largest stability increases in
Cmapn were found for the MesioTemporal network (maximum

of 0.7), involving mainly the right mesio-temporal focus, as
well as left mesial and lateral temporal regions and bilateral
cerebellum. Cmapn of the Mesolimbic network shows stabil-
ity increases in the fronto-mesial and polar regions on the side
of the focus. Cmapn for the Cerebellum network shows very
interestingly a lateralized stability increase in the right tem-
poral region, very close to the focus, and a bilateral stability
decrease within the cerebellum itself. Slight stability increases
within regions of the Mesolimbic and Dorsal Attention net-
works were also observed. Note that even if Cerebellum Cmapn
was not considered among the most salient findings, the max-
imum stability increase of 0.48 was very close to our arbi-
trary threshold of 0.5. Within Cmapn of the Visual network,
we identified a bilateral stability increase within secondary-
association visual areas including the fusiform gyri and within
the right insula (lateralized on the side of the focus, results
not shown). Cmapn of the Sensory Motor network exhibited
stability increases withing itself involving also some regions of
the posterior DMN and Visual network, bilaterally (results not
shown). Cmapn of the anterior DMN showed a small focal sta-
bility increase in the supplementary motor area (results not
shown).

Main results obtained for patient 5 with left frontal FCD
are presented in Figure 10. The resection was circumscribed to
the lesional area and a BOLD deactivation response to epilep-
tic discharges had a maximum t-value (negative value) at the
anterior edge of the resection. Even if the overlapping voxels
were only few, the fact that they contained the maximum t-value
allowed us classifying this case as “partially concordant.” Most
salient stability increases in Cmapn involved MesioTemporal,
Cerebellum, Deep Gray Matter, Sensory Motor and Dorsal
Attention networks, whereas no significant interactions of mod-
ularity changes could be detected. None of these changes were
really spatially concordant with the left frontal focus or lat-
eralized to the side of the focus. Cmapn of the Deep Gray
Matter network exhibited increase stability within itself also
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FIGURE 6 | Evaluation of DANI on Patient 1 with right Orbito-Frontal

epilepsy. Results are presenting most salient stability changes observed in
Cmapn followed by a t-map of the BOLD response to epileptic discharges
and a postsurgical T1 MRI, all resampled in the native anatomical MRI space
of the patient. Most salient stability changes observed for Cmapn of

Mesio-Temporal, Mesolimbic, and Cerebellum networks are presented.
These three networks were also involved in significant interactions of
modularity changes at p < 0.001. Cmapn are presented between 0.34 and 0.8
(resp. −0.34 and −0.8) and BOLD t-map between 3.17 and 8.0 (resp. −3.17
and −8.0) using a yellow–red colormap (resp. white–blue colormap).

involving bilateral insulae. Cmapn of the Sensory-Motor net-
work shows increase stability within itself and also involving
regions of the posterior DMN. Cmapn of the Dorsal Attention
network shows increase stability within itself and in some bilat-
eral lateral and mesial frontal regions of the anterior DMN.
Cmapn of the MesioTemporal network shows increase in stabil-
ity in bilateral Cerebellum regions and Cmapn of the Cerebellum
shows increase in stability in bilateral temporal (results not
shown).

Main results obtained for patient 6 with right frontal FCD
are presented in Figure 11. The resection was circumscribed to
the lesional area. The BOLD response to epileptic discharges was
really noisy. The cluster of BOLD activation showing a maxi-
mum t-value in the right central region is partially concordant
with the edge of resection, but the presence of motion artifacts
cannot let us classify this case as “concordant.” Most salient stabil-
ity changes in Cmapn involved MesioTemporal, Auditory, Visual,
Mesolimbic, Cerebellum, and Sensory Motor networks. Among
these networks, the Visual, Mesolimbic and Cerebellum net-
works were also involved in significant interactions of modularity
changes. Cmapn of the visual network shows stability increase

within secondary-association visual areas including the fusiform
gyri. Cmapn of the Cerebellum network exhibited local stabil-
ity increases and decreases within the Cerebellum but also a
very focal and very intense right postcentral stability increase
(maximum increase of 0.72), partially concordant with BOLD
activation and lateralized to the side of the lesion. Cmapn of the
Sensory Motor network shows increase stability within itself and
involving some more posterior parietal bilateral regions. Cmapn
of the Mesolimbic network shows increase stability within bilat-
eral temporal regions, Cmapn of the Mesio-Temporal network
shows increase stability in bilateral temporal and anterior cingu-
late region (part of the Mesolimbic network) and Cmapn of the
auditory network shows bilateral increase in stability within itself
and within Thalami (results not shown). Since BOLD results to
epileptic discharges were really contaminated by motion artifacts,
similar artifact could have also biased DANI results in this case,
although we carefully removed all the frames showing a displace-
ment of more than 0.5 mm as suggested by Power et al. (2012).

Even though we reported mainly the concordance of the sta-
bility changes detected using DANI and the BOLD responses to
epileptic discharges with the resected area, it is important to point
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FIGURE 7 | Evaluation of DANI on Patient 2 with right

Orbito-Frontal epilepsy. Results are presenting most salient
stability changes observed in Cmapn followed by a t-map of the
BOLD response to epileptic discharges and a postsurgical T1 MRI,
all resampled in the native anatomical MRI space of the patient.

Most salient stability changes observed for Cmapn of Mesolimbic,
Cerebellum, and Dorsal Attention networks are presented. The
Dorsal Attention network was also involved in significant
interactions of modularity changes at p < 0.001. Same colormap
conventions than in Figure 6.

out that for most patients both results, i.e., DANI and BOLD
responses to epileptic discharges, were not only showing signif-
icant changes closely related to the presumed epileptic focus,
but were also exhibiting more complex connectivity patterns
reorganization extending to some more distant regions.

DISCUSSION
The advantage of our proposed method DANI is the ability to
identify atypical and individual modular organization of FC for
one specific individual. Besides extending BASC (Bellec et al.,
2010) to produce trimmed stability maps focussing on the core
of the networks, we reproduced the main CRSNs in agreement
with previous studies, using the group level BASC analysis on 25
healthy controls (Raichle et al., 2001; Damoiseaux et al., 2006;
Fox and Raichle, 2007; Smith et al., 2009). We notably repro-
duced group level BASC results presented in Bellec et al. (2010),
using another database of 25 healthy controls. The trimmed sta-
bility maps, representing at the group or at the individual the
statistically most stable networks allows focussing on RSN cores
rather than on full networks. Our evaluation using simulated data

demonstrated than an optimal sensitivity contrast was obtained
when choosing a core size μ of 50%. Using these maps, we
were able to characterize individual variability with a good
compromise between flexibility and consistency. This approach
provides consistency across subjects while allowing for flexibil-
ity to adapt the networks at the individual level. The combined
maps Cmapn exhibiting significant changes in stability, allowed
us to avoid the problem of large and unstable Z-scores in regions
where the mean and standard deviation of stability in the con-
trols were close to zero. In order to detect abnormal networks
statistically stable at the level of individuals, we proposed DANI,
which involves the following steps: (i) generation of trimmed sta-
bility maps of each network at the individual level, (ii) assessment
of significant stability variations in FC using Cmapn, (iii) non-
parametric test to automatically detect significant interactions of
modularity changes with other CRSNs.

DANI was first evaluated using realistic simulated data. Our
results demonstrate that detecting modular changes over vari-
ous spatial extents was possible. DANI is sensitive to changes
caused by the addition of structured signal to modify modular

Frontiers in Neuroscience | Brain Imaging Methods December 2014 | Volume 8 | Article 419 | 14

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Dansereau et al. Detection of abnormal resting-state networks in individuals

FIGURE 8 | Evaluation of DANI on Patient 3 with left MTLE. Results are
presenting most salient stability changes observed in Cmapn followed by a
t-map of the BOLD response to epileptic discharges and a postsurgical T2
MRI, all resampled in the native anatomical MRI space of the patient. Most

salient stability changes observed for Cmapn of Visual, Mesolimbic and
Cerebellum networks are presented. The Visual and Cerebellum networks
were also involved in significant interactions of modularity changes at
p < 0.001. Same colormap conventions than in Figure 6.

structures. Whatever was the size of the simulated perturbation,
DANI detected changes in modularity up to an energy ratio of
7 dB between the original signal and the simulated signal. The
criterion to choose an optimal core size μ for the trimmed map
is to be sensitive to small changes without completely changing
the modular structure, when the affected regions were represent-
ing a substantial fraction of the original module. A core size μ of
50% of the most stable regions in each cluster has proven to be a
good candidate to meet this criterion. We showed that when the
perturbed area was spatially limited (1/6th of the networks), the
modular reorganization tended to associate that perturbed zone
with one of the two original networks (the auditory network),
while removing it from the other one (the somato-sensory net-
work). When increasing the size of that perturbation zone, the
new perturbed zone started to overcome the stability of the two
original networks, resulting in the extinction of one or both of the
original networks.

We acknowledge the fact that the proposed method includes a
series of parameters that have to be set, for which the default (rec-
ommended) values are summarized in Table 3. First of all, BASC
and DANI have been applied on a parcellation of the brain in

R = 739 ROIs. These ROIs were obtained using a region-growing
algorithm proposed in Bellec et al. (2006), in order to ensure
homogeneity, over all control subjects, of the measurements on
small functional units or parcels. Although a target subject to be
evaluated using DANI might exhibit slightly different functional
parcels in theory, we believe that those changes will be reflected
in the stability strengths of the regions in question. We there-
fore think that this approach should allow sufficient flexibility
to capture individual changes while maintaining a good consis-
tency across subjects. Moreover, the main reason for applying
BASC and DANI on a parcellation of the brain was for dimen-
sionality reduction purposes, in order to limit the computational
burden of the proposed method. A potential improvement not
explored in this study would be to apply BASC and DANI directly
at the voxel-level instead of the parcel-level. This interesting mod-
ification of the method was out of the scope of the present
study. Secondly, the overall analysis was proposed using a scale
of N = 12 CRSNs, in order to be in agreement with the literature
describing those CRSNs (Damoiseaux et al., 2006; Smith et al.,
2009). However, in BASC, Bellec et al. (2010) suggested and eval-
uated an optimization strategy to estimate the parameters k, L
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FIGURE 9 | Evaluation of DANI on Patient 4 with right MTLE.

Results are presenting most salient stability changes observed in
Cmapn followed by a t-map of the BOLD response to epileptic
discharges and a postsurgical FLAIR MRI, all resampled in the
native anatomical MRI space of the patient. Most salient stability

changes observed for Cmapn of Mesio-Temporal and Mesolimbic
networks are presented. We also present Cmapn of the
Cerebellum network (max. stability increase of 0.48), since it was
involved in significant interactions of modularity changes at
p < 0.001. Same colormap conventions than in Figure 6.

and N for different scales of interest. In this context, it would be
highly relevant in a future study to investigate how the choice of
such a scale could impact the sensitivity and specificity of DANI
results. Finally, when presenting these preliminary results on 6
patients with focal epilepsy, we focussed our interest on the most
salient findings only (cf. Zmaskn threshold at 3.17 (p < 0.001
non-corrected), Cmapn threshold at 0.34 (99.9% percentile over
the control population and maximum Cmapn showing more than
50% of stability changes). It would be relevant to investigate fur-
thermore in a future study, the specificity of the method when
applied on a larger dataset of controls and patients as well as
the reproducibility of the results, using test/re-test reliability for
instance.

DANI was then evaluated on resting state fMRI data from
six patients with focal epilepsy who underwent simultaneous
EEG/fMRI acquisition followed by surgery. Only patients with
a seizure free outcome and at least 12 months follow up were
selected. For all patients, the BOLD responses to epileptic dis-
charges were evaluated as fully or partially concordant with the
location of the resection, following the methodology proposed by

An et al. (2013). Interpretation of BOLD responses for patient 5
and 6 was more difficult (details hereunder). The most signifi-
cant BOLD responses (maximum positive or negative t-values)
were considered to assess the level of concordance between
BOLD results and the location of the resection. Whereas we
acknowledge that BOLD responses are also often found distant
from the presumed focus (e.g., patients 1, 2, and 6), we previ-
ously demonstrated that considering the most significant BOLD
results provided best agreement with the presumed focus and
EEG results (Pittau et al., 2012a; Heers et al., 2014). Overall
DANI identified clearly several outlier networks for each patient.
These changes in the stability of FC patterns were salient, show-
ing increases in stability larger than 0.5, whereas the 99.9%
percentile of stability increase measured over the healthy con-
trols database was 0.34. For 5 out of 6 patient, “abnormal” or
outlier networks closely related to the epileptogenic focus were
detected. We also found reorganizations of some remote net-
works distant from the focus (e.g., Dorsal Attention network and
posterior DMN). These results suggest large reorganization of
FC patterns, extended far the from the focus. Similar findings
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FIGURE 10 | Evaluation of DANI on Patient 5 with left frontal FCD.

Results are presenting most salient stability changes observed in Cmapn
followed by a t-map of the BOLD response to epileptic discharges and a
postsurgical FLAIR MRI, all resampled in the native anatomical MRI space of

the patient. Most salient stability changes observed for Cmapn of Deep Gray
Matter, Sensory Motor, and Dorsal Attention networks are presented. No
networks were involved in significant interactions of modularity changes at
p < 0.001. Same colormap conventions than in Figure 6.

have been suggested in group analysis of MTLE patients (see
Bernhardt et al., 2013; for a recent review), but also in the few
studies including individual level analysis of patients with epilepsy
(Negishi et al., 2011; Stufflebeam et al., 2011; Luo et al., 2014).
Whereas CRSNs observed in healthy controls are usually bilateral,
we identified for 5 out of 6 patients at least one abnormal net-
work exhibiting increase in stability lateralized on the side of the
focus. Despite widespread involvement of several networks, the
importance of laterality in FC patterns of patients with epilepsy
has been suggested as a key feature by several studies (Bettus et al.,
2009; Negishi et al., 2011; Constable et al., 2013; Luo et al., 2014).
For instance, Negishi et al. (2011) proposed to use patient specific
BOLD responses to epileptic discharges to define seeds for a seed-
based FC analysis. They found that poor surgical outcome was
associated with a low degree of laterality of FC maps. The poten-
tial clinical impact of providing accurate and sensitive FC analysis
during presurgical investigation in the context of neurooncology,
epilepsy surgery, and deep brain stimulation has been recently
reviewed by Lang et al. (2014), pointing out the importance
of developing methods dedicated to single subject analysis of
FC patterns.

For patients 1 and 2 who had right orbito-frontal epilepsy,
DANI detected specific reorganization within the Mesolimbic,
Mesio-Temporal and Cerebellum networks. The right orbito-
frontal focus belongs to the Mesolimbic network, which exhib-
ited stability increases in the Mesolimbic and Mesio-Temporal
networks. Interaction between these two networks was not sur-
prising. Concerning the involvement of the cerebellum, BOLD
responses in cerebellum regions during frontal epileptic dis-
charges have been suggested by Fahoum et al. (2012). Several
studies have demonstrated the interaction among brain regions
belonging to the Mesolimbic and Mesio-Temporal networks. This
topic has been recently reviewed for TLE (Cataldi et al., 2013),
but it is much more difficult to establish connectivity starting
from the orbito-frontal region. Whereas the epileptogenic net-
work in TLE is relatively well-characterized (Spencer, 2002) and
encompasses orbito-frontal regions, it is not clear which brain
regions should be part of the orbito-frontal network in epilepsy.
Nevertheless, intracranial EEG studies in orbito-frontal epilepsy
showed that epileptic discharges from the orbito-frontal focus
have the tendency to spread toward the mesial temporal structures
(Munari et al., 1995; Smith et al., 2004).
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FIGURE 11 | Evaluation of DANI on Patient 6 with right frontal

FCD. Results are presenting most salient stability changes
observed in Cmapn followed by a t-map of the BOLD response
to epileptic discharges and a postsurgical FLAIR MRI, all
resampled in the native anatomical MRI space of the patient.

Most salient stability changes observed for Cmapn of Visual,
Cerebellum, and Sensory Motor networks are presented. The
Visual and Cerebellum networks were also involved in significant
interactions of modularity changes at p < 0.001. Same colormap
conventions than in Figure 6.

Table 3 | Parameters used in the method.

Symbol Description Value(s) Default

- Maximal size of a region in the region-growing process 800 mm3 800–1000 mm3

R Number of regions 739 This was obtained by the region-growing
on all controls

k Individual level clustering threshold 13 Estimated using BASC
L Group level hierarchical clustering threshold 14 Estimated using BASC
N Final clustering threshold at the group level 12 Selected scale in agreement with most

literature on CRSNs
µ Core size for estimating the trimmed stability maps 25%, 50%, 75% 50% according to our simulations
- Zmaskn threshold to identify the mask of significant stability changes

(p < 0.001, non-corrected)
3.17 3.17

- Cmapn threshold (combined map assessing the amount of stability change),
selected as the 99.9% percentile estimated over the control population

0.34

- Threshold for the detection of most salient findings: max |Cmapn| >

threshold
0.5 0.5

- Significant level testing for interaction of modularity changes between
network n and CRSN j: λn,j (non-parametric test)

p < 0.001 p < 0.001

List of the parameters that are referred in the method with their respective values as well as the default recommended values.
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For patients 3 and 4 with, respectively left and right MTLE
and hippocampal sclerosis, the most salient findings identified
using DANI involved mainly the Visual, the Mesolimbic and the
Cerebellum networks, as well as the Mesio-Temporal network
(patient 4 only). As stated before, the connection and propaga-
tion pathways between the Mesio-Temporal and the Mesolimbic
regions have been clearly identified in MTLE patients (Spencer,
2002) and associated changes in FC involving these networks
in MTLE patients have been identified by our group Pittau
et al. (2012b) and carefully reviewed in Cataldi et al. (2013) and
Bernhardt et al. (2013). The involvement of BOLD activation in
the mid-cingulate gyri, at the time of temporal lobe discharges,
has been demonstrated by Fahoum et al. (2012). Importantly,
DANI identified clearly lateralizing results, as for instance a left
temporal increase in stability observed for patient 3 within the
Mesolimbic Cmapn, and a right temporal increase in stability
observed for patient 4 within the Cerebellum Cmapn. The impor-
tance of laterality patterns in FC studies in MTLE has been
suggested in Bettus et al. (2009) showing increased connectivity
between temporal regions contralateral to the focus and in Pittau
et al. (2012b) showing decreased connectivity between ipsilat-
eral and contralateral temporo-mesial regions. Interestingly, the
Visual network Cmapn was detected by DANI for both patients.
Stability increases consisted mainly in lateral parts of this net-
work, containing the fusiform gyri. These regions are secondary-
association visual and memory areas and are connected to the
posterior part of mesial and lateral part of the temporal lobes.
Note that for patient 3, stability increases in Visual network
Cmapn were also found in subcortical sutructures (thalamus and
putamen).

Overall results obtained for patients 5 and 6 were less obvious
to interpret. Differently from the first four cases, some concerns
were raised regarding the BOLD responses to epileptic discharges:
case 5 had a deactivation only partially concordant with the loca-
tion of the resection; in case 6 the whole BOLD response was
affected by motion artifacts, and only a part of the activation was
found in “partial” agreement with the resected area. In both cases,
the lesion consisted in a relatively focal dysplasia clearly identi-
fied on structural MRI data and the resection was circumscribed
to the lesion. Some interesting findings were observed for patient
6, showing some partial concordance between a right postcentral
increase in stability observed for the Cerebellum network Cmapn,
stability increase within the sensory motor network, a right cen-
tral BOLD activation and a right precentral lesion. However, the
fact that a small resection allowed these patients to become seizure
free suggests that the network reorganization was less spread spa-
tially, despite clear involvement of the sensory-motor network for
patient 6.

For 4 out of 6 patients, DANI detected the Dorsal Attention
network as abnormal, showing mainly stability increases within
itself but also in posterior and anterior DMN regions and
Mesolimbic regions. Overall, these network reorganizations were
bilateral and distant from the focus. Whereas an involvement of
DMN is well-known for patients with temporal and extratem-
poral lobe epilepsy (Laufs et al., 2007; Kobayashi et al., 2009;
Fahoum et al., 2012), the attention network has been less studied,
especially in patients with extratemporal lobe epilepsy, probably

because of the difficulty of finding homogeneous groups for this
type of epilepsy. Nevertheless, the involvement of the dorsal atten-
tion network has been demonstrated as impaired in patients with
TLE (Zhang et al., 2009), frontal epilepsy (Fahoum et al., 2012)
as well as in patients with epileptic syndromes (Vaudano et al.,
2014).

In the last decade connectivity studies have shed light to several
aspects of the epileptic brain. However, clinical applications (for
diagnostic or prognostic purposes) of each method, including
our proposed method DANI, require further validations before
being consistently applied to the clinical management of the single
patient. Moreover, it is important to remember that each diagnos-
tic technique has to be integrated with all the other clinical and
diagnostic data of the individual patient.

CONCLUSION
We proposed DANI as a new method to capture inter-individual
variations in RSNs, and assess its performance in realistic simu-
lations and its potential usefulness in patients. DANI is based on
an extension of the BASC method to extract FC networks, allow-
ing the assessment of statistical stability in RSNs at the individual
level. Our results suggest that the ability of the method to cap-
ture modular changes is affected by the core size used to obtain
the trimmed map. BASC is indeed sensitive to modular changes
within the FC structure of a subject and DANI is able to detect
small perturbations of those modules as well as the fusion of
areas of various sizes with good sensitivity. The evaluation of the
method on subjects with epilepsy identified in most cases (5/6)
abnormal networks exhibiting significant changes in FC stability
closely related and lateralized to the epileptogenic focus. These
results are encouraging since the findings are supported by other
modalities and were obtained without any prior on the disease.
DANI also showed the involvement of distant networks, not con-
taining the focus, suggesting remote reorganization. Although the
fact that focal epilepsies affect distant networks is more and more
recognized (Richardson, 2012), it is still premature to evaluate
whether significant changes in FC are linked to effects of the dis-
charge of the individual patient, or to other effects more remotely
associated to the epilepsy of the patient (e.g., effect of medication,
neuropsychological impairment). Clinical studies involving more
patients and a specific comparison with the epileptogenic network
of each patient will be required to investigate these issues.
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Figure S1 | Data workflow used to generate the combined significant

stability-map Cmapn comparing, for one particular network, the trimmed

stability map of one subject vs. the population of controls. A binary mask

Zmaskn assessing significant changes in local stability is first estimated.

This binary mask is then applied to the subject trimmed stability map

centered using the mean stability of all controls. Cmapn allows the

identification of most stable regions showing significant changes in

stability when compared to the average of controls. In this example,

Cmapn of the auditory network identified an increase in stability in

bilateral Thalami. Note that the most posterior region also identified in

Zmaskn was not detected in Cmapn, because it was associated with very

low stability values.

Figure S2 | Method used to combine some structured noise time-series

with the original fMRI signal of the sensory-motor and auditory network

time-series. This process is repeated for each region of these two

networks located inside the red area corresponding to the simulated

perturbed zone. The structured noise consisted in the averaged

time-series of the visual network of an independent control, thus

introducing additional correlations between the auditory and

sensory-motor networks.
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